NUMERICAL
METHODS

Using MATLAB

FOURTH EBITIQN/

_\ y
xamp /6 N 4 ////

GEORGE LINDFIEED 7/
JOHN PENNY @ /

- - v /
8 R ¢

Numerical Methods
Using MATLAB®

Numerical Methods
Using MATLAB®

Fourth Edition

George Lindfield

Aston University, School of Engineering and Applied Science,
Birmingham, England, United Kingdom

John Penny

Aston University, School of Engineering and Applied Science,
Birmingham, England, United Kingdom

A% 5
ELSEVIER

ACADEMIC PRESS
An imprint of Elsevier

Academic Press is an imprint of Elsevier

125 London Wall, London EC2Y 5AS, United Kingdom

525 B Street, Suite 1650, San Diego, CA 92101, United States

50 Hampshire Street, S5th Floor, Cambridge, MA 02139, United States

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2019 Elsevier Inc. All rights reserved.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the
text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on
how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted
herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or
damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-812256-3

For information on all Academic Press publications
visit our website at https://www.elsevier.com/books-and-journals

aa Working together
—4AB8 (o grow libraries in
Bock&id developing countries

ELSEVIER

www.elsevier.com ¢ www.bookaid.org

Publisher: Katey Birtcher

Acquisition Editor: Steve Merken

Editorial Project Manager: Peter Jardim / Michael Lutz
Production Project Manager: Sruthi Satheesh
Designer: Matthew Limbert

Typeset by VTeX

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

This book is for my wife Zena. With tolerance and patience,
she has supported and encouraged me for many years
and for our grown up children Katy and Helen.

George Lindfield

This book is for my wife Wendy, for her patience, support and
encouragement, and for our grown up children, Debra, Mark and Joanne.
Also to our cat Jeremy who provided me with company
whilst I worked on this book.

John Penny

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
2.1

22

23

24

2.5
2.6

2.7
2.8
29

3.1

32
33

Superimposed graphs obtained using plot(x,y) and hold statements.

Plot of y = sin(x?) using 51 equispaced plotting points.

Plot of y = sin(x?) using the function fplot to choose plotting points adaptively.

Function plotted over the range from —4 to 4. It has a maximum value of 4 x 10°.

The same function as plotted in Fig. 1.4 but with a limit on the range of the y-axis.

An example of the use of the subplot function.

polar and compass plots showing the roots of x> — 1 =0.

Polar scatter plots. Left diagram with default size circle markers. Right diagram with larger
filled black circles.

Polar scatter histogram.

Three-dimensional surface using default view.

Three-dimensional contour plot.

Filled contour plot.

Implicit quadrafolium and folium of Descartes.

Plots illustrating aspects of handle graphics.

Plot of functions shown in Fig. 1.14 illustrating further handle graphs features.

Plot of cos(2x). The axes of the right-hand plot are enhanced using handle graphics.

Plot of (wp + x)zot cos(wyx).

Electrical network.

Three intersecting planes representing three equations in three variables. (A) Three plane
surfaces intersecting in a point. (B) Three plane surfaces intersecting in a line. (C) Three plane
surfaces, two of which do not intersect. (D) Three plane surfaces intersecting in three lines.
Planes representing an under-determined system of equations. (A) Two plane surfaces
intersecting in a line. (B) Two plane surfaces which do not intersect.

Planes representing an over-determined system of equations. (A) Four plane surfaces
intersecting in a point. (B) Four plane surfaces intersecting in a line. (C) Four plane surfaces not
intersecting at a single point. Point of intersection of (S1, S2, S3) and (S1, S2, S4) are visible.
(D) Four plane surfaces representing inconsistent equations.

Plot of an inconsistent equation system (2.30).

Plot of inconsistent equation system (2.30) showing the region of intersection of the equations,
where + indicates “best” solution.

Effect of minimum degree ordering on LU decomposition. The spy function shows the matrix,
the ordered matrix, and LU decomposition with and without preordering.

Mass-spring system with three degrees of freedom.

Connections of different strengths between five pages of the internet.

Solution of x = exp(—x/c). Results from the function fzero are indicated by o and those from
the Armstrong and Kulesza formula by +.

Plot of the function f(x) = (x — 1)>(x +2)%(x — 3).

Plot of f(x) =exp(—x/10)sin(10x).

30
31
31
32
32
33
34

35
35
37
37
37
38
41
42
43
44
74

77

80

81
110

112

125
128
150

158
159
159

xiii

Xiv

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

34
35
3.6
3.7
3.8

3.9
3.10
3.11
4.1
42
43
4.4
45
5.1
52
53
5.4
55
5.6
5.7

5.8

59

5.10

5.11

5.12
5.13

5.14

5.15

List of Figures

Iterates in the solution of (x — 1)(x — 2)(x — 3) =0 from close but different starting points.
Geometric interpretation of Newton’s method.

Plot of x3 — 10x% 4+ 29x — 20 = 0 with the iterates of Newton’s method shown by o.

Plot showing the complex roots of cos(x) — x =0.

Plot of the iterates for five complex initial approximations for the solution of cos(x) —x =0
using Newton’s method. Each iterate is shown by o.

The cursor is shown close to the position of the root.

Plot of graph f(x) =sin(1/x). This plot is spurious in the range £0.2.

Plot of system (3.30). Intersections show roots.

A log—log plot showing the error in a simple derivative approximation.

Simpson’s rule, using a quadratic approximation over two intervals.

Plots of functions defined by (4.41), (4.42), and (4.43).

Function sin(1/x) in the range x = 2 x 10™* to 2.05 x 10~*. Nineteen cycles of the function
are displayed.

Graph of z = y®sinx.

Exact o and approximate + solution for dy/dt = —0.1(y — 10).

Geometric interpretation of Euler’s method.

Points from the Euler solution of dy/dt = y — 20 given that y = 100 when # = 0. Approximate
solutions for 7 = 0.2, 0.4, and 0.6 are plotted using o, +, and * respectively. The exact solution
is given by the solid line.

Absolute errors in the solution of dy/dt = y where y = 1 when ¢ = 0, using Euler’s method
with 2 =0.1.

Relative errors in the solution of dy/dt = y where y = 1 when ¢t = 0, using Euler’s method with
h=0.1.

Solution of dy/dt = y using Euler (x) and trapezoidal method, o. Step 2 = 0.1 and yp =1 at
t=0.

Solution of dy/dt = —y. The * represents Butcher’s method, + Merson’s method, and o the
classical method.

Absolute error in solution of dy/dt = —2y using the Adams—Bashforth—-Moulton method. The
solid line plots the errors with a step size of 0.5. The dot-dashed line plots the errors with step
size 0.7.

Relative error in the solution of dy/dt =y where y = 1 when ¢ = 0, using Hamming’s method
with a step size of 0.5.

Solution of Zeeman’s model with p = 1 and accuracy 0.005. The solid line represents s and the
dashed line represents x.

Solution of Zeeman’s model with p =20 and accuracy 0.005. The solid line represents s and
the dashed line represents x.

Sections of the cusp catastrophe curve in Zeeman’s model for p = 0:10: 40.

Variation in the population of lynxes (dashed line) and hares (solid line) against time, beginning
with 5000 hares and 100 lynxes. Accuracy 0.005.

Graph showing the three coordinate responses of a mass-spring-damper system, shown by full
lines, when excited by a half sine pulse, shown by a dotted line.

Plot showing the difference between the Newmark and 4th-order Runge—Kutta method
solutions for the three coordinates.

163
165
167
168
168
172
172
182
192
197
221
224
227
240
241
242
244
244
246

251

253

255

261

261
262

263

270

270

Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23
5.24
5.25

5.26
5.27

5.28

5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
6.1

6.2

6.3
6.4
6.5
6.6

List of Figures

Solution of Lorenz equations for r = 126.52, s = 10, and b = 8/3 using an accuracy of
0.000005 and terminating at r = 8.

Solution of Lorenz equations where each variable is plotted against time. Conditions are the
same as those used to generate Fig. 5.16. Note the unpredictable nature of the solutions.
Solution of Lorenz equations for » = 28, s = 10, and b = 8/3. Initial conditions x =[5 5 5]
shown by the full line, and x = [5.0091 4.9997 5.0060] shown by the dashed line. Note the
sudden divergence of the two solutions from each other and unpredictable nature of the
solutions.

Solution of Lorenz equations for r =28, s = 10, and b = 8/3. The full line shows the solution
using the default accuracy of the MATLAB Runge—Kutta 4/5 function. The dashed line shows a
higher accuracy solution. Note the sudden divergence of the two solutions from each other and
unpredictable nature of the solutions.

Case 1: The full line is the output from Duffing oscillator. w = 100 rad/s (15.92 Hz). Zero initial
conditions. The dashed line is the input force, arbitrarily scaled in amplitude.

Output from Duffing oscillator. w = 120 rad/s. Full line gives output with zero initial conditions.
Dashed line give output with an initial displacement of 1 mm and an initial velocity of 1 m/s.
Output from Duffing oscillator. w = 120 rad/s. Solution with zero initial velocity and initial
displacements of 1, 1.001, and 1.002 mm. (Shown by full, dashed and dot-dashed lines
respectively.)

Output from Duffing oscillator. Phase plane plot. w = 120 rad/s.

Poincaré map showing output from Duffing oscillator. w = 120 rad/s.

Output from Duffing oscillator showing where points from two solutions lie on a Poincaré map.
+ and o indicate points generated from two different initial conditions with @ = 120 rad/s.

Plot of sigmoid function V = (1 + tanhu)/2.

Neural network finds the binary equivalent of 5 using 3 neurons and an accuracy of 0.005. The
three curves show the convergence to the binary digits 1, 0, and 1.

Relative error in the solution of dy/dt = y using Hermite’s method. Initial condition y = 1
when r =0 and a step of 0.5.

Model of a second-order differential equation, (5.62).

Model of a second-order differential equation with Coulomb damping.

A second-order system modeled by a transfer function.

Model of Van der Pol’s equation.

Model of a pair of simultaneous ordinary differential equations.

Two simultaneous ordinary differential equations modeled in state space form.

Model to determine the root of a cubic equation.

The Simulink model of Fig. 5.35 replaced by a single mask.

Second-order differential equations with one or two independent variables and their solutions.
Solutions of x2(d?y/dx?) — 6y = 0 with initial conditions y = 1 and dy/dx = s when x = 1,
for trial values of s.

Equispaced nodal points.

Grid mesh in rectangular coordinates.

Node numbering used in the solution of (6.15).

Finite difference solution of (1 4+ x2)(d?z/dx?) + xdz/dx — z = x*. The o indicates the finite
difference estimate; the continuous line is the exact solution.

XV

272

272

273

273

275

275

276
276
271

277
278

280

284
289
290
290
291
292
293
294
295
302

303
305
306
307

310

Xvi

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

6.7
6.8

6.9
6.10

6.11
6.12
6.13
6.14
6.15

7.1

72
73
7.4

7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12

7.13

7.14

7.15

7.16

8.1

List of Figures

Node numbering used in the solution of (6.17).

The finite difference estimates for the first and second eigenfunctions of

x(d?z/dx?) + dz/dx +)z/x = 0, denoted by a * and a o respectively: solid lines show the
exact eigenfunctions zo(x) and zj (x).

Plot shows how the distribution of temperature through a wall varies with time.

Variation in the temperature in the center of a wall. The steadily decaying solution denote by the
solid line was generated using the implicit method of solution; the temperatures computed by
the explicit method of solution are denoted by o. Note how the explicit method of solution gives
temperatures that are oscillating and diverging with time.

Solution of (6.29) subject to specific boundary and initial conditions.

Temperature distribution around a plane section. Nodes 1 and 2 are shown.

Finite difference estimate for the temperature distribution for the problem defined in Fig. 6.12.
Deflection of a square membrane subject to a distributed load.

Finite difference approximation of the second mode of vibration of a uniform rectangular
membrane.

Increasing the degree of the polynomial to fit the given data. (A) 1st degree; (B) 2nd degree;
(C) 3rd degree; (D) 4th degree.

Use of splines to define cross-sections of a ship’s hull.

Spline fit to the data of Table 7.1 denoted by o.

The solid curve shows the function y = 2{1 4 tanh(2x)} — x/10. The dashed line shows an
eighth-degree polynomial fit; the dotted line shows a spline fit.

Fitting a cubic polynomial to data. Data points are denoted by o.

Fitting third- and fifth-degree polynomials (that is, a full and a dashed line, respectively) to a
sequence of data. Data points are denoted by o.

Polynomials of degree 4, 8, and 12 attempting to fit a sequence of data indicated by o in the
graph.

Data sampled from the function y = sin[1/(x + 0.2)] 4 0.2x. Data points denoted by o.
Fitting y = a1 e“?* 4+ aze®* to data values indicated by o.

Fitting transformed data, denoted by “0” to a quadratic function.

Fitting (7.15) to the given data denoted by o.

The graph shows the original data, denoted by o, and the fits obtained from y = be®* shown by
the full line and y = ax” shown by the dotted line.

Changes in the height of a projectile over the time of fight. Graph shows the path of the
projectile without noise as the dashed line, the observed values including noise as asterisks and
the path generated by the Kalman filter as the continuous line.

Considerably expanded graph of the height of projectile over time of flight showing
observations subject to noise by asterisks, the dashed line of the flight of the projectile subject
only to laws of dynamics and the output of the Kalman filter after processing the noisy data.
Relationship between selected variables. Dashed line is generated using only the first principal
component.

Relationship between selected variables. Dashed line is generated using only the first and
second principal component.

Numbering scheme for data points.

311

312
316

316
319
320
324
324

325

331
334
336

336
350

353

354
356
358
360
360

362

371

371

371

371
385

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

8.23

8.24
8.25

List of Figures

Graph shows the relationship between a signal frequency and its component in the DFT. Thus,
for example, a signal frequency of twice Nyquist frequency, 2 f;,,4x, Will give a component of
zero frequency in the DFT.

Stages in the FFT algorithm.

Plots of the real and imaginary part of the DFT.

Frequency spectra.

The top graph shows the data in the time domain and the bottom graph shows the corresponding
frequency spectrum. Note frequency components at 20, 50, and 70 Hz.

The top graph shows the data in the time domain and the bottom graph shows the corresponding
frequency spectrum. Note that due to aliasing, frequency components are at 20, approximately
32.4 and 50 Hz.

Spectrum of a sequence of data.

Plot of data y against time, in seconds. The dashed line is the envelope derived from the
absolute value of the analytic data.

A three-dimensional plot of the real and imaginary parts of the analytic data against time, in
seconds, showing an exponentially decaying spiral.

Plot of frequency, in Hz, derived from the Hilbert transform, against time, in seconds. The
dashed line is the exact frequency.

Fourier transform of the data, showing a spectrum between 0.5 Hz and 1.5 Hz, but the transform
gives no information about the variation of frequency with time.

Original data is shown in the first plot in the left column. The remaining plots are of the first 5
intrinsic mode functions derived from it.

Plot of the original data over the interval from r = 14.5 s to 16.5 s and data points reconstructed
from the first and second intrinsic mode functions indicated by o. Note the very close agreement.
Plot showing the variation with time of the frequency components. The full lines are data from
the intrinsic mode functions. The dashed lines are the actual frequency components.

Plot showing the variation with time of the amplitude of the frequency components. The full
lines are data from the intrinsic mode functions The dashed lines are the actual amplitudes of
the frequency components.

Fourier transform of the data of Example 8.5. Note that this plot gives no information about the
variation of frequency with time.

Walsh functions in the range t = 0 to 1, in ascending sequency order from WAL(O, ¢), with no
zero crossings to WAL(7, ¢) with seven zero crossings.

Upper figure shows plot of time series. Lower figure shows power sequency spectrum of the
time series.

Plots show the coefficients of CAL and SAL sequency spectrum for the time series shown in
Fig. 8.19.

Diagram showing the partitioning of the time—frequency plane in the DWT.

The Haar wavelets in ascending order from (0,) to ¥ (7,) over the range 0 < ¢ < 1.

Flow diagram for the fast Haar transform. Data carried by a dashed line entering a node is
negated and added to the data carried by the full line entering a node.

Decomposition of x(¢) into a constant term and 6 levels of Haar wavelets.

Reconstruction of x () from its Haar wavelet components. Adding the constant term (Level —1)
and all the Haar wavelets from Level 0 to Level 5 together provides and exact reconstruction

x(1).

XVii

386

390

392

393

394

395

398

404

404

404

404

406

406

406

406

407

408

413

413

417

417

418

420

420

Xviii

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

8.26

8.27

8.28

8.29
8.30

8.31

8.32

8.33

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

List of Figures

Contour plot of DWT of signal defined by (8.66), a composition of square waves. Responses
can be clearly seen at levels 5, 3, and 8.

Contour plot of DWT of signal defined by (8.67), a composition of sine waves. Responses can
be observed at levels 5, 3, and 8.

Contour plot of DWT of signal comprising bursts of exponentially decaying components,
(8.68). Response at levels 5 (atr =3.2), 8 (att =6.4), 7 (att = 11.2), 9 (att = 17.6), and 3 (at
t = 19.2) can be observed.

Plots of the wavelets db2, db4, db8, and db16.

Plots of the real and imaginary parts of the Morlet wavelet. The mother wavelet in the middle of
the plot with a = 1 and b = 0, that is, the wavelet is neither dilated nor shifted. The wavelet at
the right of the plot is the wavelet shifted by b = 7 but it is not dilated. The wavelet at the left of
the plot is both shifted by b = —7 and dilated by a = 1/4.

Ricker wavelet.

Contour plot of the CWT of the signal defined by (8.72). Note that the frequency (Hz) = 2%
where L is the level. The burst of energy can be seen at levels —2, 0, 2, 4, and 5, thus
corresponding to frequencies of 0.25, 1, 4, 16, and 32 Hz, respectively.

Contour plot of the CWT for Eq. (8.73). Note that the frequency (Hz) = 2~ where L is the level.
It is seen that one component of the signal clearly increases smoothly over the sampling time.
Graphical representation of an optimization problem. The dashed line represents the objective
function and the solid lines represent the constraints.

Graph of a function with a minimum in the range [x, xp].

A plot of the Bessel function of the second kind showing three minima.

Three-dimensional plot of the Styblinski and Tang function.

Contour plot of the Styblinski and Tang function, showing the location of four local minima.
The conjugate gradient algorithm has found the one in the lower left corner. The search path
taken by the algorithm is also shown.

Graph showing the Styblinski-Tang function value for the final 40 iterations of the simulated
annealing algorithm.

Contour plot of the Styblinski-Tang function. The final stages in the simulated annealing
process are shown. Note how these values are concentrated in the lower left corner, close to the
global minimum.

Genetic algorithm. Each member of the population is represented by o. Successive generations
of the population concentrate toward the value 4 approximately.

Contour plot of the Alpine 2 function showing the rapid convergence to the global maximum
using Differential Evolution. The bottom right contour plot is greatly expanded.

Graph showing the minimization of the negative of the Alpine 2 function in 4 variables. The
plots show the maximum, mean, and minimum values of the population for 200 generations of
the DE algorithm. The continuous line denotes the mean values and the dashed lines denote the
maximum and minimum values. Convergence is to the exact solution, shown by the horizontal
line.

Graph showing the objective function and constraints for Example 9.1. The four solutions are
also indicated.

Graph of log, (x).

422

423

424
424

426

427

428

428

436

441

443

448

448

461

461

464

471

472

476
477

Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4

List of Figures

Plot of the Fresnel sine integral in the range x =1 to x = 3.
Symbolic solution and numerical solution indicated by +.
The Fourier transform of a cosine function.

The Fourier transforms of a “top-hat” function.

Xix

500
513
518
518

About the Authors

George Lindfield is a former lecturer in the Department of Computer Science at Aston University and
is now retired. He taught courses in computer science and in optimization at bachelor- and master’s-
level. He has coauthored books on numerical methods and published many papers in various fields
including optimization. He is a member of the Institute of Mathematics, a Chartered Mathematician,
and a Fellow of the Royal Astronomical Society.

John Penny is an Emeritus Professor in the School of Engineering and Applied Science at Aston
University, Birmingham. England. He is a former head of the Mechanical Engineering Department. He
taught bachelor- and master’s-level students in structural and rotor dynamics and related topics such as
numerical analysis, instrumentation, and digital signal processing. His research interests were in topics
in dynamics such as damage detection in static and rotating structures. He has published over 40 peer
reviewed papers. He is a Fellow of the Institute of Mathematics and its Applications and is a coauthor
of four text books.

XXi

Preface

Our primary aim in this text is unchanged from previous editions; it is to introduce the reader to a wide
range of numerical algorithms, explain their fundamental principles and illustrate their application. The
algorithms are implemented in the software package MATLAB which is constantly being enhanced and
provides a powerful tool to help with these studies.

Many important theoretical results are discussed but it is not intended to provide a detailed and
rigorous theoretical development in every area. Rather, we wish to show how numerical procedures
can be applied to solve problems from many fields of application, and that the numerical procedures
give the expected theoretical performance when used to solve specific problems.

When used with care MATLAB provides a natural and succinct way of describing numerical algo-
rithms and a powerful means of experimenting with them. However, no tool, irrespective of its power,
should be used carelessly or uncritically.

This text allows the reader to study numerical methods by encouraging systematic experimentation
with some of the many fascinating problems of numerical analysis. Although MATLAB provides many
useful functions this text also introduces the reader to numerous useful and important algorithms and
develops MATLAB functions to implement them. The reader is encouraged to use these functions to
produce results in numerical and graphical form. MATLAB provides powerful and varied graphics facil-
ities to give a clearer understanding of the nature of the results produced by the numerical procedures.

Particular examples are given throughout the text to illustrate how numerical methods are used to
study problems which include applications in the biosciences, chaos, neural networks, engineering,
and science.

It should be noted that the introduction to MATLAB is relatively brief and is meant as an aid to the
reader. It can in no way be expected to replace the standard MATLAB manual or text books devoted to
MATLAB software. We provide a broad introduction to the topics, develop algorithms in the form of
MATLAB functions and encourage the reader to experiment with these functions which have been kept
as simple as possible for reasons of clarity. These functions can be improved and we urge readers to
develop the ones that are of particular interest to them.

In addition to a general introduction to MATLAB, the text covers the solution of linear equations and
eigenvalue problems; methods for solving non-linear equations; numerical integration and differenti-
ation; the solution of initial value and boundary value problems; curve fitting including splines, least
squares, and Fourier analysis, topics in optimization such as interior point methods, non-linear pro-
gramming, and heuristic algorithms and, finally, we show how symbolic computing can be integrated
with numeric algorithms. Specifically in this 4th edition, descriptions and examples of some functions
recently added to MATLAB such as implicit functions and the Live Editor are given in Chapter 1.
Chapter 4 now includes a section on adaptive integration. Chapter 5 now includes a brief introduction
to Simulink; a toolbox which provides a visual interface to help the user simulating the process of
solving differential equations. The old Chapter 7 has been split into two chapters and we have added
the Kalman filter and principal component analysis, and the Hilbert, Walsh, and wavelet transforms.
The old Chapter 8 has had the emphasis on the genetic algorithm reduced and replaced by the more
modern and efficient differential evolution algorithm.

xxiii

XXiv Preface

The text contains many worked examples, practice problems (some of which are new to this edition)
and solutions and we hope we have provided an interesting range of problems.

For readers of this book, additional materials, including all .m file scripts and functions listed in
the text, are available on the book’s companion site: https://www.elsevier.com/books-and-journals/
book-companion/9780128122563. For instructors using this book as a text for their courses, a solutions
manual is available by registering at the textbook site: www.textbooks.elsevier.com.

The text is suitable for undergraduate and postgraduate students and for those working in industry
and education. We hope readers will share our enthusiasm for this area of study. For those who do
not currently have access to MATLAB, this text still provides a general introduction to a wide range of
numerical algorithms and many useful and interesting examples and problems.

We would like to thank the many readers from all over the world for their helpful comments which
have enhanced this edition and we would be pleased to hear from readers who note errors or have
suggestions for improvements.

George Lindfield

John Penny

Aston University, Birmingham
March 2018

https://www.elsevier.com/books-and-journals/book-companion/9780128122563
http://www.textbooks.elsevier.com
https://www.elsevier.com/books-and-journals/book-companion/9780128122563

Acknowledgment

We thank Peter Jardim for his encouragement and support, Joe Hayton, the Publishing Director and the
production team members.

XXV

CHAPTER

AN INTRODUCTION TO MATLAB®

Abstract

MATLAB® is a software package produced by The MathWorks, Inc. (http://www.mathworks.com) and
is available on systems ranging from personal computers to super-computers and including parallel
computing. In this chapter we aim to provide a useful introduction to MATLAB, giving sufficient back-
ground for the numerical methods we consider. The reader is referred to the MATLAB manual for a full
description of the package.

1.1 THE SOFTWARE PACKAGE MATLAB

MATLAB is probably the world’s most successful commercial numerical analysis software and the
name MATLAB is derived from the phrase “matrix laboratory”. It has evolved from some software writ-
ten by Cleve Moler in the late 1970s to allow his students to access matrix routines in the LINPACK
and EISPACK packages without the need to write FORTRAN programs. This first version of MATLAB
had only 80 functions, primitive graphics and “matrix” was the only data type. Its use spread to other
universities and, after it was reprogrammed in C, MATLAB was launched as a commercial product
in 1984. MATLAB provides an interactive development tool for scientific and engineering problems
and more generally for those areas where significant numeric computations have to be performed. The
package can be used to evaluate single statements directly or a list of statements called a script can
be prepared. Once named and saved, a script can be executed as an entity. The package was origi-
nally based on software produced by the LINPACK and EISPACK projects but in 2000, MATLAB was
rewritten to use the newer BLAS and LAPACK libraries for fast matrix operations and linear algebra,
respectively. MATLAB provides the user with:

. Easy manipulation of matrix structures.

. A vast number of powerful built-in routines which are constantly growing and developing.

. Powerful two- and three-dimensional graphing facilities.

. A scripting system which allows users to develop and modify the software for their own needs.

. Collections of functions, called toolboxes, which may be added to the facilities of the core
MATLAB. These are designed for specific applications: for example neural networks, optimization,
digital signal processing, and higher-order spectral analysis.

G WN=

It is not difficult to use MATLAB, although to use it with maximum efficiency for complex tasks
requires experience. Generally MATLAB works with rectangular or square arrays of data, the elements
of which may be real or complex. A scalar quantity is thus an array containing a single element.
This is an elegant and powerful notion but it can present the user with an initial conceptual difficulty.
A user schooled in many traditional computer languages is familiar with a pseudo-statement of the
form A =B + C and can immediately interpret it as an instruction that A is assigned the sum of the

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00010-5 1
Copyright © 2019 Elsevier Inc. All rights reserved.

http://www.mathworks.com
https://doi.org/10.1016/B978-0-12-812256-3.00010-5

2 CHAPTER 1 AN INTRODUCTION TO MATLAB®

values stored in B and C. In MATLAB the variables B and C may represent arrays so that each element
of the array A will become the sum of the values of corresponding elements of B and C; that is the
addition will follow the laws of matrix algebra.

There are several languages or software packages that have some similarities to MATLAB. These
packages include:

Mathematica and Maple. These packages are known for their ability to carry out complicated sym-
bolic mathematical manipulation but they are also able to undertake high precision numerical
computation. In contrast MATLAB is known for its powerful numerical computational and ma-
trix manipulation facilities. However, MATLAB also provides an optional symbolic toolbox. This
is discussed in Chapter 10.

Other Matlab-style languages. Languages such as Scilab,' Octave,” and Freemat® are somewhat
similar to MATLAB in that they implement a wide range of numerical methods, and, in some
cases, use similar syntax to MATLAB.

It should noted that the languages do not necessarily have a range of toolboxes like MATLAB.

Julia. Julia® is a new high-level, high-performance dynamic programming language. The develop-
ers of Julia wanted, amongst other attributes, the speed of C, the general programming easy
of Python, and the powerful linear algebra functions and familiar mathematical notation of
MATLAB.

General purpose languages. General purpose languages such as Python and C. These languages
don’t have any significant numerical analysis capability in themselves but can load libraries of
routines. For example Python+Numpy, Python+Scipy, C+GSL.

The current MATLAB release, version 9.4 (R2018a), is available on a wide variety of platforms.
Generally MathWorks releases an upgraded version of MATLAB every six months.

When MATLAB is invoked it opens a command window. Graphics, editing, and help windows
may also be opened if required. Users can design their MATLAB working environment as they see fit.
MATLAB scripts and function are generally platform independent and they can be readily ported from
one system to another. To install and start MATLAB, readers should consult the manual appropriate to
their particular working environment.

The scripts and functions given in this book have been tested under MATLAB release, version
9.3.0.713579 (R2017b). However, most of them will work directly using earlier versions of MATLAB
but some may require modification.

The remainder of this chapter is devoted to introducing some of the statements and syntax of
MATLAB. The intention is to give the reader a sound but brief introduction to the power of MATLAB.
Some details of structure and syntax are omitted and must be obtained from the MATLAB manual. A de-
tailed description of MATLAB is given by Higham and Higham (2017). Other sources of information
are the MathWorks website and Wikipedia. Wikipedia should be used with some care.

Before we begin a detailed discussion of the features of MATLAB, the meaning some terminology
needs clarification. Consider the terms MATLAB statements, commands, functions, and keywords. If

1 http://www.scilab.org.

2http://www. gnu.org/software/octave.
3 http://freemat.sourceforge.net.
4https://julialzmg.org/.

http://www.scilab.org
http://www.gnu.org/software/octave
http://freemat.sourceforge.net
https://julialang.org/

1.2 MATRICES IN MATLAB 3

we take a very simple MATLAB expression, like y = sqrt(x) then, if this is used in the command
window for immediate execution, it is a command for MATLAB to determine the square root of the
variable x and assign it to y. If it is used in a script, and is not for immediate execution, then it is
usually called a statement. The expression sqrt is a MATLAB function, but it can also be called a
keyword. The vast majority of MATLAB keywords are functions, but a few are not: for example al1,
Tong, and pi. The last of these is a reserved keyword to denote the mathematical constant 7. Thus, the
use of the four word discussed are often interchangeable.

1.2 MATRICES IN MATLAB

A two-dimensional array is effectively a table of data, not restricted to numeric data. If arrays are
stacked in the third dimension, then they are three-dimensional arrays. Matrices are two-dimensional
arrays that contain only numeric data or mathematical expressions where the variables of the expression
have already been assigned numeric values. Thus, 23.2 and x2 are allowed, peter is allowed if it is a
numeric constant but not if it is a person’s name. Thus a two dimension array of numeric data can
legitimately be called an array or a matrix. Matrices can be operated on, using the laws of matrix
algebra. Thus if A is a matrix, then 3A and A~! have a meaning, whereas, if A is an alpha-numeric array
these statements have no meaning. MATLAB supports matrix algebra, but also allows array operations.
For example, an array of data might be a financial statement, and therefore, it might be necessary to
sum the 3rd through 5th rows and place the result in the 6th row. This is a legitimate array operation
that MATLAB supports.

The matrix is fundamental to MATLAB and we have provided a broad and simple introduction to
matrices in Appendix A. In MATLAB the names used for matrices must start with a letter and may be
followed by any combination of letters or digits. The letters may be upper or lower case. Note that
throughout this text a distinctive font is used to denote MATLAB statements and output, for example
disp.

In MATLAB the arithmetic operations of addition, subtraction, multiplication, and division can be
performed in the usual way on scalar quantities, but they can also be used directly with matrices or
arrays of data. To use these arithmetic operators on matrices, the matrices must first be created. There
are several ways of doing this in MATLAB and the simplest method, which is suitable for small ma-
trices, is as follows. We assign an array of values to A by opening the command window and then

typing
>> A=1[135;101;50 9]

after the prompt >>. Notice that the elements of the matrix are placed in square brackets, each row
element separated by at least one space or comma. A semicolon (;) indicates the end of a row and the
beginning of another. When the return key is pressed the matrix will be displayed thus:

4 CHAPTER 1 AN INTRODUCTION TO MATLAB®

All statements are executed by pressing the return or enter key. Thus, for example, by typing
B =1[1351;26 12;10 7 28] after the >> prompt, and pressing the return key, we assign values
to B. To add the matrices in the command window and assign the result to C we type C = A+B and
similarly if we type C = A-B the matrices are subtracted. In both cases the results are displayed row by
row in the command window. Note that terminating a MATLAB statement with a semicolon suppresses
any output.

For simple problems we can use the command window. By simple we mean MATLAB statements
of limited complexity — even MATLAB statements of limited complexity can provide some powerful
numerical computation. However, if we require the execution of an ordered sequence of MATLAB
statements (commands) then it is sensible for these statements to be typed in the MATLAB editor
window to create a script which must be saved under a suitable name for future use as required. There
will be no execution or output until the name of this script is typed into the command window and the
script executed by pressing return.

A matrix which has only one row or column is called a vector. A row vector consists of one row
of elements and a column vector consists of one column of elements. Conventionally in mathematics,
engineering, and science an emboldened upper case letter is usually used to represent a matrix, for
example A. An emboldened lower case letter usually represents a column vector, that is X. The transpose
operator converts a row to a column and vice versa so that we can represent a row vector as a column
vector transposed. Using the superscript T in mathematics to indicate a transpose, we can write a row
vector as x'. In MATLARB it is often convenient to ignore the convention that the initial form of a vector
is a column; the user can define the initial form of a vector as a row or a column.

The implementation of vector and matrix multiplication in MATLAB is straightforward. Beginning
with vector multiplication, we assume that row vectors having the same number of elements have been
assigned to d and p. To multiply them together we write x = dxp’. Note that the symbol * transposes
the row p into a column so that the multiplication is valid. The result, x, is a scalar. Many practitioners
use .’ to indicate a transpose. The reason for this is discussed in Section 1.4.

Assuming the two matrices A and B have been assigned, for matrix multiplication the user simply
types C = AxB. This computes A post-multiplied by B, assigns the result to C and displays it, providing
the multiplication is valid. Otherwise MATLAB gives an appropriate error indication. The conditions
for matrix multiplication to be valid are given in Appendix A. Notice that the symbol * must be used
for multiplication because in MATLAB multiplication is not implied.

A very useful MATLAB function is whos (and the similar function, who).

These functions tell us the current content of the work space. For example, provided A, B, and C
described above have not been cleared from the memory, then

>> whos
Name Size Bytes Class
A 3x3 72 double array
B 3x3 72 double array
C 3x3 72 double array

This tells us that A, B, and C are all 3 x 3 matrices. They are stored as double precision arrays. A double
precision number requires 8 bytes to store it, so each array of 9 elements requires 72 bytes; a grand

1.3 MANIPULATING THE ELEMENTS OF A MATRIX 5

total is 27 elements using 216 bytes. Consider now the following operations:

>> clear A

> B =101 1;

>> C = zeros(4,4);

>> whos
Name Size Bytes Class
B 0x0 0 double array
C 4x4 128 double array

Here we see that we have cleared (i.e., deleted) A from the memory, assigned an empty matrix to B and
a4 x 4 array of zeros to C.
Note that the size of matrices can also be determined using the size and Tength functions thus:

>> A = zeros(4,8);
>> B = ones(7,3);
>> [p q] = size(A)

>> length(A)

ans =
8

>> L = length(B)

7

It can be seen that size gives the size of the matrix whereas Tength gives the number of elements in
the largest dimension.

1.3 MANIPULATING THE ELEMENTS OF A MATRIX

In MATLAB, matrix elements can be manipulated individually or in blocks. For example,

>> X(1,3) = C(4,5)+V(9,1)
>> A(1) = B(1)+D(1)
>> C(i,J+1) = D(i,j+1)+E(T,])

6 CHAPTER 1 AN INTRODUCTION TO MATLAB®

are valid statements relating elements of matrices. Rows and columns can be manipulated as complete
entities. Thus A(:,3), B(5,:) refer respectively to the third column of A and fifth row of B. If B has
10 rows and 10 columns, i.e. it is a 10 x 10 matrix, then B(:,4:9) refers to columns 4 through 9 of
the matrix. The : by itself indicates all the rows, and hence all elements of columns 4 through 9. Note
that in MATLAB, by default, the lowest matrix index starts at 1. This can be a source of difficulty when
implementing some algorithms.

The following examples illustrate some of the ways subscripts can be used in MATLAB. First we
assign a matrix

> A=1[23456;-4-5-6 -7 -8;35791;
46 810 12;-2 -3 -4 -5 -6]

A =
2 4 5 6
- - -6 -7 -8
7 9 1
6 8 10 12
- 3 -4 5 -6
Note the use of ... (an ellipsis) to indicate that the MATLAB statement continues on the next line.

Executing the following statements

>> v =1[1 3 5];
>> b A(v,2)

gives

b =

-3

Thus b is composed of the elements of the first, third, and fifth rows in the second column of A. Exe-
cuting

>> C = Alv,:)

gives
C =
2 3 5 6
5 9 1
- - - 5 -6

Thus C is composed of the first, third, and fifth rows of A. Executing

>> D = zeros(3);
>> D(:,1) = A(v,2)

1.3 MANIPULATING THE ELEMENTS OF A MATRIX 7

gives
D =
0 0
0
-3 0 0

Here D is a 3 x 3 matrix of zeros with column 1 replaced by the first, third, and fifth elements of
column 2 of A.
Executing

>> E = A(1:2,4:5)

gives

Note that if we index an existing square or rectangular array with a single index, then the elements
of the array are identified as follows. Index 1 gives the top left element of the array, and the index
is incremented down the columns in sequence, from left to right. For example, with reference to the
preceding array C

Cl =¢C;
C1(1:4:15) = 10

Cl =
10 3 4 5 10
3 10 7 9 1
-2 -3 10 -5 -6

Note that in this example the index is incremented by 4.

When manipulating very large matrices it is easy to become unsure of the size of the matrix. Thus, if
we want to find the value of the element in the penultimate row and last column of A defined previously
we could write

>> size(A)

ans =

>> A(4,5)

ans =
12

8 CHAPTER 1 AN INTRODUCTION TO MATLAB®

but it is easier to use end thus:

>> A(end-1,end)

ans =
12

The reshape function may be used to manipulate a matrix. As the name implies, the function reshapes
a given matrix into a new matrix of any specified size provided it has an identical number of elements.
For example a 3 x 4 matrix can be reshaped into a 6 x 2 matrix but a 3 x 3 matrix cannot be reshaped
into a 5 x 2 matrix. It is important to note that this function takes each column of the original matrix in
turn until the new required column size is achieved and then repeats the process for the next column.
For example, consider the matrix P.

>> P =C(:,1:4)

P =
2 3 4 5

5 7 9

- -3 -4 5

>> s = reshape(P,1,12);
>> s(1:10)

1.4 TRANSPOSING MATRICES

A simple operation that may be performed on a matrix is transposition which interchanges rows and
columns. Transposition of a vector is briefly discussed in Section 1.2. In MATLAB transposition is
denoted by the symbol *. For example, consider the matrix A, where

>> A=1[123:;456;7 8 9]

7 8 9
To assign the transpose of A to B we write

>> B = A’

2 5
6 9

1.5 SPECIAL MATRICES

9

Had we used .’ to obtain the transpose we would have obtained the same result. However, if A is
complex then the MATLAB operator * gives the complex conjugate transpose. For example

>> A = [1+427 34514421 3+41]

A =
1.0000 + 2.00001 3.0000 + 5.00001
4.0000 + 2.00001 3.0000 + 4.0000i

>> B = A’

B =

1.0000 - 2.00001 4.0000 - 2.0000i
3.0000 - 5.00001 3.0000 - 4.00001

To provide the transpose without conjugation we execute
>> C = A
C =

1.0000 + 2.00001 4.0000 + 2.00001
3.0000 + 5.00001 3.0000 + 4.00001

1.5 SPECIAL MATRICES

Certain matrices occur frequently in matrix manipulations and MATLAB ensures that these are gen-
erated easily. Some of the most common are ones(m,n), zeros(m,n), rand(m,n), randn(m,n), and
randi(p,m,n). These MATLAB functions generate m x n matrices composed of ones, zeros, uni-
formly distributed random numbers, normally distributed random numbers and uniformly distributed
random integers, respectively. In the case of randi(p,m,n), p is the maximum integer. If only a sin-
gle scalar parameter is given, then these statements generate a square matrix of the size given by the

10 CHAPTER 1 AN INTRODUCTION TO MATLAB®

parameter. The MATLAB function eye(n) generates the n X n unit matrix. The function eye(m,n)
generates a matrix of m rows and n columns with a diagonal of ones; thus:

>> A = eye(3,4), B = eye(4,3)

A =
1 0 0 0
0 1 0 0
0 0 1 0
B =
1 0 0
0 1 0
0 0 1
0 0 0

If we wish to generate a random matrix C of the same size as an already existing matrix A, then the

statement C = rand(size(A)) can be used. Similarly D = zeros(size(A)) and E = ones(size(A))

generates a matrix D of zeros and a matrix E of ones, both of which are the same size as matrix A.
Some special matrices with more complex features are introduced in Chapter 2.

1.6 GENERATING MATRICES AND VECTORS WITH SPECIFIED ELEMENT
VALUES

Here we confine ourselves to some relatively simple examples thus:

-8:1:8 (or x = -8:8) sets x to a vector having elements —8, —7, ..., 7, 8.
-2:.2:2 sets y to a vector having elements —2, —1.8, —1.6, ..., 1.8, 2.
[1:3 4:2:8 10:0.5:11] sets z to a vector having the elements

1 2 3 4 6 8 10 105 11]

The MATLAB function 1inspace also generates a vector. However, in this function the user defines the
beginning and end values of the vector and the number of elements in the vector. For example

>> w = linspace(-2,2,5)

W=
-2 -1 0 1 2

This is simple and could just as well have been created by w = -2:1:2 or even w = -2:2. However,

consider

>> w = linspace(0.2598,0.3024,5)

0.2598 0.2704 0.2811 0.2918 0.3024

1.6 GENERATING MATRICES AND VECTORS 11

Generating this sequence of values by other means would be more difficult. If we require logarithmic
spacing then we can use

>> w = logspace(1,2,5)

W =
10.0000 17.7828 31.6228 56.2341 100.0000

Note that the values produced are between 10" and 102, not 1 and 2. Again, generating these values
by any other means would require some thought! The user of Togspace should be warned that if the
second parameter is pi the values run to 7, not 107 . Consider the following

>> w = logspace(1l,pi,5)

W o=
10.0000 7.4866 5.6050 4.1963 3.1416

More complicated matrices can be generated by combining other matrices. For example, consider the
two statements

>> C
>> D

[2.3 4.9; 0.9 3.17;
[C ones(size(C)); eye(size(C)) zeros(size(C))]

These two statements generate a new matrix D the size of which is double the row and column size of
the original C; thus

D =
2.3000 4.9000 1.0000 1.0000
0.9000 3.1000 1.0000 1.0000
1.0000 0 0 0
0 1.0000 0 0

The MATLAB function repmat replicates a given matrix a required number of times. For example,
assuming the matrix C is defined in the preceding statement, then

>> E = repmat(C,2,3)

replicates C as a block to give a matrix with twice as many rows and three times as many columns.
Thus we have a matrix £ of 4 rows and 6 columns:

F =
2.3000 4.9000 2.3000 4.9000 2.3000 4.9000
0.9000 3.1000 0.9000 3.1000 0.9000 3.1000
2.3000 4.9000 2.3000 4.9000 2.3000 4.9000
0.9000 3.1000 0.9000 3.1000 0.9000 3.1000

The MATLAB function diag allows us to generate a diagonal matrix from a specified vector of diagonal
elements. Thus

12 CHAPTER 1 AN INTRODUCTION TO MATLAB®

>> H = diag([2 3 41)

generates

H =
2 0 0
0 3 0
0 0

There is a second used of the function diag which is to obtain the elements on the leading diagonal of
a given matrix. Consider

>> P = rand(3,4)

p =
0.3825 0.9379 0.2935 0.8548
0.4658 0.8146 0.2502 0.3160
0.1030 0.0296 0.5830 0.6325

then

>> diag(P)

ans =
0.3825
0.8146
0.5830

A more complicated form of diagonal matrix is the block diagonal matrix. This type of matrix can be
generated using the MATLAB function b1kdiag. We set matrices Al and A2 as follows:

>> Al =[1 2 5;346;3457;
>> A2 = [1.2 3.5,8;0.6 0.9,561;
Then,

>> blkdiag(Al,A2,78)

ans =
1.0000 2.0000 5.0000 0 0 0 0
3.0000 4.0000 6.0000 0 0 0 0
3.0000 4.0000 5.0000 0 0 0 0
0 0 0 1.2000 3.5000 8.0000 0
0 0 0 0.6000 0.9000 56.0000 0
0 0 0 0 0 0 78.0000

The preceding functions can be very useful in allowing the user to create matrices with complicated
structures, without detailed programming.

1.7 MATRIX ALGEBRA IN MATLAB 13

1.7 MATRIX ALGEBRA IN MATLAB

The matrix is fundamental to MATLAB and we have provided a broad and simple introduction to
matrices in Appendix A.

MATLAB allows matrix equations to be simply expressed and evaluated. For example, to illustrate
matrix addition, subtraction, multiplication, and scalar multiplication, consider the evaluation of the
matrix equation

Z=AA"+sP—Q

2 3 45 13 -7 3
A:[z 46 8} P:[z —9} Q:[5 1}

Assigning A, P, Q, and s, and evaluating this equation in MATLAB we have

where s = 0.5 and

>> A=1[2345;246 8];

>> P =1[13;2 -91;
>> Q=1[-7 3;511;
>> s =0.5;

>> 7 = AxA’+sxP-Q
Z =

61.5000 78.5000
76.0000 114.5000

This result can be readily checked by hand!

MATLAB allows a single scalar value to be added to or subtracted from every element of a matrix.
This is called explicit expansion. To illustrate this we first generate a fourth-order Riemann matrix
using the MATLAB function gallery. This function gives the user access to a range of special matrices
with useful properties. See Chapter 2 for further discussion. In the following piece of MATLAB code
we use it to generate a 4 x 4 Riemann matrix, and then subtract 0.5 from every element of the matrix.

>> R = gallery(’riemann’,4)

R =
1 -1 1 -1
-1 2 -1 -1
-1 1 -1
-1 -1 - 4

>> A =R-0.5

A =

0.5000 -1.5000 0.5000 -1.5000
-1.5000 1.5000 -1.5000 -1.5000
-1.5000 -1.5000 2.5000 -1.5000
-1.5000 -1.5000 -1.5000 3.5000

14 CHAPTER 1 AN INTRODUCTION TO MATLAB®

In the 2016b release of MATLAB this feature has been extended to allow a row or column vector to be
added to a matrix. For example

>> B = 2xones(4)-[1 2 3 4]

B =
1 0 -1 -2
1 0 -1 -2
1 0 -1 -2
1 0 -1 -2
>> C = 2%ones(4)+[2 4 6 8]’
C =
4
6 6 6
8

10 10 10 10

Note that 2xones(4) produces a 4 x 4 matrix where each element is 2. In computing B the results
show that 1 is subtracted from each element of the first column, the 2 from each element in the second
column, the 3 from each element of the third column and so on. Similarly. in computing C the results
show that 2 is added to each element of the first row, the 4 to each element in the second row, the 6 to
each element of the third row and so on.

1.8 MATRIX FUNCTIONS

Some arithmetic operations are simple to evaluate for single scalar values but involve a great deal of
computation for matrices. For large matrices such operations may take a significant amount of time.
An example of this is where a matrix is raised to a power. We can write this in MATLAB as A*p where
p is a scalar value and A is a square matrix. This produces the power of the matrix for any value of p. For
the case where the power equals 0.5 it is better to use sqrtm(A) which gives the principal square root
of the matrix A, (see Appendix A, Section A.13). Similarly, for the case where the power equals —1
it is better to use inv(A). Another special operation directly available in MATLAB is expm(A) which
gives the exponential of the matrix A. The MATLAB function Togm(A) provides the principal logarithm
to the base e of A. If B=Togm(A) then the principal logarithm B is the unique logarithm for which every
eigenvalue has an imaginary part lying strictly between —m and 7.
For example

>> A = [61 45;60 76]

61 45
60 76

1.9 USING THE MATLAB OPERATOR FOR MATRIX DIVISION 15

>> B = sqrtm(A)

B =
7.0000 3.0000
4.0000 8.0000
>> Br2
ans =

61.0000 45.0000
60.0000 76.0000

1.9 USING THE MaTLAB OPERATOR FOR MATRIX DIVISION

As an example of the power of MATLAB we consider the solution of a system of linear equations. It
is easy to solve the problem ax = b where a and b are simple scalar constants and x is the unknown.
Given a and b then x = b/a. However, consider the corresponding matrix equation

Ax=b (1.1

where A is a square matrix and x and b are column vectors. We wish to find x. Computationally this is
a much more difficult problem and in MATLAB it is solved by executing the statement

x = A\Db

This statement uses the important MATLAB division operator \ and solves the linear equation sys-
tem (1.1).

Solving linear equation systems is an important problem and the computational efficiency and other
aspects of this type of problem are discussed in considerable detail in Chapter 2.

1.10 ELEMENT-BY-ELEMENT OPERATIONS

Element-by-element operations differ from the standard matrix operations but they can be very useful.
They are achieved by using a period or dot (.) to precede the operator. If X and Y are matrices (or
vectors), then X .~ Y raises each element of X to the power of the corresponding element of Y. Similarly
X.*Y and Y.\X multiply or divide each element of X by the corresponding element in Y respectively. The
form X./Y gives the same result as Y. \X. For these operations to be executed the matrices and vectors
used must be the same size. Note that a period is not used in the operations + and - because ordinary
matrix addition and subtraction are element-by-element operations. Examples of element-by-element
operations are given as follows:

16 CHAPTER 1 AN INTRODUCTION TO MATLAB®

>> A =1[1 2;3 4]
A =

1 2

3 4
>> B =[5 67 8]
B =

5 6

7

First we use normal matrix multiplication thus:

>> A*B

ans =
19 22
43 50

However, using the dot operator (.) we have

>> AL+B
ans =
5 12
21 32

which is element-by-element multiplication. Now consider the statement

>> A."B

ans =
1 64
2187 65536

In the above, each element of A is raised to the corresponding power in B.
Element-by-element operations have many applications. An important use is in plotting graphs (see
Section 1.14). For example

>> x = -1:0.1:1;
>> y = x.*cos(x);
>> yl = x.A3.x(x.A2+3xx+sin(x));

Notice here that using the vector x of many values, allows a vector of corresponding values for y and
y1 to be computed simultaneously from single statements. Element-by-element operations are in effect
operations on scalar quantities performed simultaneously.

1.11 SCALAR OPERATIONS AND FUNCTIONS 17

1.11 SCALAR OPERATIONS AND FUNCTIONS

In MATLAB we can define and manipulate scalar quantities, as in most other computer languages, but
no distinction is made in the naming of matrices and scalars. Thus A could represent a scalar or matrix
quantity. The process of assignment makes the distinction. For example

>> X = 2;
>>y XN2+3%x-7

y =

%

v

>
I

[1 2;3 4]

N4
4
<
I

= X."2+3%x-7

-3
11 21

Note that in the preceding examples, when vectors are used the dot must be placed before the operator.
This is not required for scalar operations, but does not cause errors if used.

In the case where we multiply a square matrix by itself, for example, in the form x"2 we get the
full matrix multiplication as shown below, rather than element-by-element multiplication as given by
X. N2,

>> y = X"2+3%x-7

A very large number of mathematical functions are directly built into MATLAB. They act on scalar
quantities, arrays or vectors on an element-by-element basis. They may be called by using the function
name together with the parameters that define the function. These functions may return one or more
values. A small selection of MATLAB functions is given in the following table which lists the function
name, the function use and an example function call. Note that all function names must be in lower
case letters.

All MATLAB functions are not listed in Table 1.1, but MATLAB provides a complete range of
trigonometric and inverse trigonometric functions, hyperbolic and inverse hyperbolic functions and

18 CHAPTER 1 AN INTRODUCTION TO MATLAB®

Table 1.1 Selected MATLAB mathematical functions
Function Function gives Example
sqrt(x) square root of x y = sqrt(x+2.5);
abs(x) if x is real, is the positive value of x

if x is complex, is the scalar measure of x | d = abs(x)*y;
real(x) real part of x when x is complex d = real(x)*y;
imag(x) imaginary part of x when x is complex d = imag(x)*y;
conj(x) the complex conjugate of x x = conj(y):
sin(x) sine of x in radians t = x+sin(x);
asin(x) inverse sine of x returned in radians t = x+sin(x);
sind(x) sine of x in degrees t = x+sind(x);
Tog(x) log to base e of x z = log(14x);
10g10(x) log to base 10 of x z = 10910(1-2%x);
cosh(x) hyperbolic cosine of x u = cosh(pixx);
exp(x) exponential of x, i.e., e p = .7%xexp(x);
gamma(x) gamma function of x f = gamma(y);
bessel(n,x) | nth-order Bessel function of x f = bessel(2,y);

logarithmic functions. The following examples illustrate the use of some of the functions listed be-
fore:

>> x = [-4 3];
>> abs(x)

ans =
>> X = 3+41i;
>> abs(x)

ans =

>> imag(x)

ans =

>> y = sin(pi/4)

0.7071

and

1.11 SCALAR OPERATIONS AND FUNCTIONS 19

>> x = linspace(0,pi,5)

0 0.7854 1.5708 2.3562 3.1416
>> sin(x)

ans =
0 0.7071 1.0000 0.7071 0.0000

and

>> x = [0 pi/2;pi 3xpi/2]

0 1.5708
3.1416 4.7124

>> y = sin(x)

0 1.0000
0.0000 -1.0000

Some functions perform special calculations for important and general mathematical processes. These
functions often require more than one input parameter and may provide several outputs. For example,
bessel(n,x) gives the nth-order Bessel function of x. The statement y = fzero(’fun’,x0) deter-
mines the root of the function fun near to x0 where fun is a function defined by the user that provides
the equation for which we are finding the root. For examples of the use of fzero, see Section 3.1. The
statement [Y,I] = sort(X) is an example of a function that can return two output values. Y is the
sorted matrix and I is a matrix containing the indices of the sort.

In addition to a large number of mathematical functions, MATLAB provides several utility functions
that may be used for examining the operation of scripts. These are:

pause causes the execution of the script to pause until the user presses a key. Note that the cursor is
turned into the symbol P, warning the script is in pause mode. This is often used when the script
is operating with echo on.

echo on displays each line of script in the command window before execution. This is useful for
demonstrations. To turn it off, use the statement echo off.

who lists the variables in the current workspace.

whos lists all the variables in the current workspace, together with information about their size and
class, and so on.

MATLAB also provides functions related to time:

20 CHAPTER 1 AN INTRODUCTION TO MATLAB®

clock returns the current date and time in the form: <year month day hour min sec>.

etime(t2,tl) calculates elapsed time between t1 and t2. Note that t1 and t2 are output from the
clock function. When timing the duration of an event tic ... toc should be used.

tic ... toctimes an event. For example, finding the time taken to execute a segment of script. The
statement t i c starts the timing and toc gives the elapsed time since the last tic.

cputime returns the total time in seconds since MATLAB was launched.

timeit times the operation of a function. Suppose we carry out a 8192 point Fourier
transform using the MATLAB function fft (described in Chapter 8) then we run
fft_time = timeit(@()fft(8192)).

The script e4s101.m uses the timing functions described previously to estimate the time taken to solve
a 1000 x 1000 system of linear equations:

% e4s101.m Solves a 5000 x 5000 Tinear equation system
A = rand(5000); b = rand(5000,1);
T_before = clock;

tic
t0 = cputime;
y = A\Db;

tend = toc;

tl = cputime-t0;

t2 = timeit(@() A\b);

disp(’ tic-toc cputime timeit”)
fprintf(’%10.2f %10.2f %10.2f \n\n’, tend,tl,t2)

Running script e4s101.m on a particular computer gave the following results:

tic-toc cputime timeit
2.52 5.09 2.60

The output shows that the three alternative methods of timing give essentially the same value. When
measuring computing times the displayed times vary from run to run and the shorter the run time, the
greater the percentage variation.

1.12 STRING VARIABLES

We have found that MATLAB makes no distinction in naming matrices and scalar quantities. This is
also true of string variables or strings. For example, A = [1 2; 3 4], A = 17.23,0r A = "help’ are
each valid statements and assign an array, a scalar or a text string respectively to A.

Characters and strings of characters can be assigned to variables directly in MATLAB by placing the
string in quotes and then assigning it to a variable name. Strings can then be manipulated by specific
MATLAB string functions which we list in this section. Some examples showing the manipulation of
strings using standard MATLAB assignment are given below.

1.12 STRING VARIABLES 21

>> sl = ’Matlab ’, s2 = ’is 7, s3 = ’“useful’

sl =
Matlab

S2
is

s3 =
useful

Strings in MATLAB are represented as vectors of the equivalent ASCII code numbers; it is only the
way that we assign and access them that makes them strings. For example, the string *is * is actually
saved as the vector [105 115 32]. Hence, we can see that the ASCII codes for the letters i, s, and
a space are 105, 115, and 32 respectively. This vector structure has important implications when we
manipulate strings. For example, we can concatenate strings, because of their vector nature, by using
the square brackets as follows

>> sc = [sl s2 s3]

sc =
Matlab is useful

Note the spaces are recognized. To identify any item in the string array we can write:

>> sc(2)

ans =
a

To identify a subset of the elements of this string we can write:

>> sc(3:10)

ans =
tlab is

we can display a string vertically, by transposing the string vector thus:

>> sc(l:3)”

We can also reverse the order of a substring and assign it to another string as follows:

22 CHAPTER 1 AN INTRODUCTION TO MATLAB®

>>a = sc(6:-1:1)

a =

baltaM

We can define string arrays as well. For example, using the string sc as defined previously:

>> sd = ’Numerical method’
>> s = [sc; sd]

Matlab is useful

Numerical method

To obtain the 12th column of this string we use

>> s(:,12)

Note that the string lengths must be the same in order to form a rectangular array of ASCII code
numbers. In this case the array is 2 x 16. We now show how MATLAB string functions can be used to
manipulate strings. To replace one string by another we use strrep as follows:

>> strrep(sc,’useful’, super”)

ans =
Matlab is super

Notice that this statement causes useful in sc to be replaced by super.
We can determine if a particular character or string is present in another string by using findstr.
For example

>> findstr(sd,’e’)

ans =
4 12

This tells us that the 4th and 12th characters in the string are ‘e’. We can also use this function to find
the location of a substring of this string as follows

>> findstr(sd, ’'meth’)

ans =
11

The string "meth’ begins at the 11th character in the string. If the substring or character is not in the
original string, we have the result illustrated by the example below:

1.12 STRING VARIABLES 23

>> findstr(sd,’E”)

ans =

L]

We can convert a string to its ASCII code equivalent by either using the function doub1e or by invoking
any arithmetic operation. Thus, operating on the existing string sd we have

>> p = double(sd(1:9))

p =
78 117 109 101 114 105 99 97 108

>> q = 1%sd(1:9)
q =
78 117 109 101 114 105 99 97 108

Note that in the case where we are multiplying the string by 1, MATLAB treats the string as a vector
of ASCII equivalent numbers and multiplies it by 1. Recalling that sd(1:9) = *Numerical * we can
deduce that the ASCII code for N is 78 and for u it is 117, etc.

We convert a vector of ASCII code to a string using the MATLAB char function. For example

>> char(q)

ans =
Numerical

To increase each ASCII code number by 3, and then to convert to the character equivalent we have

>> char(gq+3)

ans =
Qxphulfdo

>> char((q+3)/2)

ans =
(<84:6327

>> double(ans)

ans =
40 60 56 52 58 54 51 50 55

char(q) has converted the ASCII string back to characters. Here we have shown that it is possible to do
arithmetic on the ASCII code numbers and, if we wish, convert back to characters. If after manipulation
the ASCII code values are non-integer, they are rounded down.

It is important to appreciate that the string ‘123’ and the number 123 are not the same. Thus

24 CHAPTER 1 AN INTRODUCTION TO MATLAB®

>> a = 123
a =
123
>> sl = ’123°
sl =
123

Using whos shows the class of the variables a and s1 as follows:

>> whos
Name Size Bytes Class
a 1x1 8 double array
sl 1x3 6 char array

A total of 4 elements using 14 bytes. Thus, a character requires 2 bytes, a double precision num-
ber requires 8 bytes. We can convert strings to their numeric equivalent using the functions str2num,
str2double as follows:

>> x=str2num(’123.56")

X =
123.5600

Appropriate strings can be converted to complex numbers but the user should take care, as we
illustrate below:

>> x = str2num(’1+237)

X =
1.0 + 2.0000i

but

>> x = str2num(’1+2 j’)

X =
3.0000 0 + 1.00001

Note that str2double can be used to convert to complex numbers and is more tolerant of spaces.

>> x = str2double(’1+2 j’)

X =
1.0 + 2.00001

1.13 INPUT AND OUTPUT IN MATLAB 25

There are many MATLAB functions which are available to manipulate strings; see the appropriate
MATLAB manual. Here we illustrate the use of some functions.

bin2dec(’111001") or bin2dec(’111 001”) returns 57.

dec2bin(57) returns the string ‘111001°.

int2str([3.9 6.2]) returns the string ‘4 6’.

num2str([3.9 6.2]) returns the string ‘3.9 6.2’.

str2num(’3.9 6.2”) returns 3.9000 6.2000.

strcat("how *,’why ’,’when’) returns the string ‘howwhywhen’.

stremp("whitehouse’, whitepaint’) returns O because strings are not identical.

strncmp("whitehouse’, "whitepaint’,5) returns 1 because first the 5 characters of strings are
identical.

date returns the current date, in the form 24-Aug-2011.
A useful and common application of the function num2str is in the disp and title functions see
Sections 1.13 and 1.14 respectively.

1.13 INPUT AND OUTPUT IN MATLAB

To output the names and values of variables, the semicolon can be omitted from assignment statements.
However, this does not produce clear scripts or well-organized and tidy output. It is often better practice
to use the function disp since this leads to clearer scripts. The disp function allows the display of text
and values on the screen. To output the contents of the matrix A on the screen we write disp(A). Text
output must be placed in single quotes, for example,

>> disp(’This will display this test’)
This will display this test

Combinations of strings can be printed using square brackets [], and numerical values can be placed
in text strings if they are converted to strings using the num2str function. For example,

>> x = 2.678;
>> disp([’Value of iterate is ’, num2str(x), * at this stage’])

will place on the screen
Value of iterate is 2.678 at this stage

The more flexible fprintf function allows formatted output to the screen or to a file. It takes the
form

fprintf(’filename’, format_string’,list);

Here 1175t is a list of variable names separated by commas. The filename parameter is optional; if not
present, output is to the screen rather than to the filename. The format string formats the output. The
basic elements that may be used in the format string are

26 CHAPTER 1 AN INTRODUCTION TO MATLAB®

%P . Qe for exponential notation

%P.Qf fixed point

%P .Qg becomes %P .Qe or %P.Qf whichever is shorter
\n gives a new line

Note that P and Q in the preceding are integers. The integer string characters, including a period (.),
must follow the % symbol and precede the letter e, f, or g. The integer before the period (P) sets the
field width; the integer after the period (Q) sets the number of decimal places after the decimal point.
For example, %8.4f and %10.3f give field width 8 with four decimal places and 10 with three decimal
places, respectively. Note that one space is allocated to the decimal point. For example,

>> x =1007.461; y = 2.1278; k = 17;
>> fprintf(’\n x = %8.2f y = %8.6f k = %2.0f \n’,x,y,k)

outputs

x = 1007.46 y = 2.127800 k = 17

whereas

>> p = sprintf(’\n x = %8.2f y = %8.6f k = %2.0f \n’,x,y,k)
gives

p =

x = 1007.46 y = 2.127800 k = 17

Note that p is a string vector, and can be manipulated if required.

The degree to which the MATLAB user will want to improve the style of MATLAB output will
depend on circumstances. Is the output generated for other persons to read, perhaps requiring a clearly
structured output, or is it just for the user alone and therefore requiring only a simple output? Will the
output be filed away for future use, or is it a quick result that is rapidly discarded? In this text we have
given examples of very simple output and sometimes quite elaborate output.

We now consider the input of text and data via the keyboard. An interactive way of obtaining input
is to use the function input. One form of this function is

>> variable = input(’Enter data: ’);
Enter data: 67.3

The input function displays the text as a prompt and then waits for a numeric entry from the keyboard,
67.3 in this example. This is assigned to variable when the return key is pressed. Scalar values or
arrays can be entered in this way. The alternative form of the input function allows string input thus:

>> variable = input(’Enter text: ’,’s’);
Enter text: Male

This assigns the string Male to variable.
For large amounts of data, perhaps saved in a previous MATLAB session, the function 1oad allows
the loading of files from disk using

1.13 INPUT AND OUTPUT IN MATLAB 27

load filename

The filename normally ends in .mat or .dat. A file of sunspot data already exists in the MATLAB
package and can be loaded into memory using the command

>> Toad sunspot.dat

In the following example, we save the values of x, y, and z in file test001, clear the workspace and the
reload x, y, and z into the workspace, thus

>> x = 1:5; y = sin(x); z = cos(x);

>> whos
Name Size Bytes Class
X 1x5 40 double array
y 1x5 40 double array
z 1x5 40 double array
>> save test001
>> clear all, whos Nothing Tlisted
>> load test001
>> whos
Name Size Bytes Class
X 1x5 40 double array
y 1x5 40 double array
z 1x5 40 double array

>> x = 1:5; y = sin(x); z = cos(x);
Here we only save x, y in file test002 and then we clear the workspace and reload x, y thus:

>> save test002 x y
>> clear all, whos Nothing Tisted
>> load test002 x y, whos

Name Size Bytes Class
X 1x5 40 double array
y 1x5 40 double array

Note that the statement 1oad test002 has the same effect as Toad test002 x y. Finally we clear the
workspace and reload x into the workspace thus:

>> clear all, whos Nothing Tisted
>> load test002 x, whos
Name Size Bytes Class
X 1x5 40 double array

Files composed of Comma Separated Values (CSV) are commonly used to exchange large amounts
of tabular data between software applications. The data is stored in plain text and the fields are sepa-
rated by commas. The files are easily editable using common spread sheet applications (e.g. MS Excel).
If data has been generated elsewhere and saved as a CSV file it can be imported into MATLAB

28 CHAPTER 1 AN INTRODUCTION TO MATLAB®

using csvread. We use csvwrite to generate a CSV file from MATLAB. In the following MATLAB
statements we save the vector p, we clear the workspace and then reload p, but now call it the vector g:

>> p =1:6;
>> whos
Name Size Bytes Class
p 1x6 48 double array

>> csvwrite(’test003”,p)

>> clear
>> g = csvread(’test003")
g =
1 2 3 4 5

As a further example of the 1o0ad and save commands, consider the following example:

% e4s110
x=[102311; y=1[-104117;

A= [X;x."2; X."3;x.Mx. 5]
B = [Xx;2%x; 3*x; 4*x;5*x];
save test004 A B

clear all

whos

disp(’nothing listed’)

load test004

C = AxB;

disp(’Results of matrix multiplication’)
disp(C)

Running script e4s110 gives

>> e4s110
nothing listed
Results of matrix multiplication

24 0 48 72 24
54 0 108 162 54
138 0 276 414 138
378 0 756 1134 378
1074 0 2148 3222 1074

1.14 MAaTLAB GRAPHICS

MATLAB provides a wide range of graphics facilities which may be called from within a script or
used simply in command mode for direct execution. We begin by considering the p1ot function. This
function takes several forms. For example,

1.14 MATLAB GRAPHICS 29

Table 1.2 Symbols and characters used in plotting
Line Symbol Point Symbol | Color Character

Solid - point . yellow y
Dashed - - plus + red r
Dotted : star * green g
Dashdot - circle o blue b

x mark X black k

plot(x,y) plots the vector x against y. If x and y are matrices the first column of x is plotted against
the first column of y. This is then repeated for each pair of columns of x and y.

plot(x1l,yl, typel’,x2,y2, type2’) plots the vector x1 against y1 using the line or point type given
by typel, and the vector x2 against y?2 using the line or point type given by type2.

The type is selected by using the required symbol from Table 1.2. This symbol may be preceded by a
character indicating a color.

Semilog and log—log graphs can be obtained by replacing plot by semilogx, semilogy, or 1oglog
functions and various other replacements for p1ot are available to give special plots. Titles, axis labels
and other features can be added to a given graph using the functions x1abel, ylabel, title, grid, and
text. These functions have the following forms:

title(’title’) displays the title which is enclosed between quotes, at the top of the graph.
x1abel(’x_axis_name’) displays the name which is enclosed between quotes for the x-axis.
ylabel('y_axis_name’) displays the name which is enclosed between quotes for the y-axis.

grid superimposes a grid on the graph.

text(x,y, text-at-x,y’) displays text at position (x, y) in the graphics window where x and y are
measured in the units of the current plotting axes. There may be one point or many at which text is
placed depending on whether or not x and y are vectors.

gtext (" text’) allows the placement of text using the mouse by positioning it where the text is required
and then pressing the mouse button.

ginput allows information to be taken from a graphics window. The function takes two main forms.
The simplest is

[x,y]l = ginput

This inputs an unlimited number of points into the vectors x and y by positioning the mouse cross-hairs
at the points required and then pressing the mouse button. To exit ginput the return key must be pressed.
If a specific number of points n are required, then we write

[x,y]l = ginput(n)

In addition, the function axis allows the user to set the limits of the axes for a particular plot. This
takes the form axis(p) where p is a four-element row vector specifying the lower and upper limits of
the axes in the x and y directions. The axis statement must be placed after the plot statement to which
it refers. Similarly the functions x1abel, ylabel, title, grid, text, gtext, and axis must follow the
plot to which they refer.

Script e4s102.m gives the plot which is output as Fig. 1.1. The function hold is used to ensure that
the two graphs are superimposed.

30 CHAPTER 1 AN INTRODUCTION TO MATLAB®

10

Two tails...

y—axis
=

FIGURE 1.1
Superimposed graphs obtained using plot(x,y) and hold statements.

% e4s102.m
X = -4:0.05:4;
y = exp(-0.5%x).*sin(5%x);

figure(l), plot(x,y)
xlabel(’x-axis’), ylabel(’y-axis”)
hold on

y = exp(-0.5%x).*xcos(5%x);
plot(x,y), grid

gtext(’Two tails...”)

hold off

Script e4s102.m illustrates how few MATLAB statements are required to generate a graph.

The function fplot allows the user to plot a previously defined function between given limits. The
important difference between fplot and plot is that fplot chooses the plotting points in the given
range adaptively depending on the rate of change of the function at that point. Thus, more points
are chosen when the function is changing more rapidly. This is illustrated by executing the MATLAB
script e4s103.m:

% e4s103.m

y = @(x) sin(x.”3);

X 2:.04:4;

figure(l)
plot(x,y(x), o-")
xlabel(’x’), ylabel(’y’)
figure(2)

fplot(y,[2 4])
xlabel(’x”), ylabel(’y’)

Note figure(1l) and figure(2) direct the graphic output to separate windows. The interpretation of
the anonymous function @(x) sin(x.”3) is explained in Section 1.19.

1.14 MATLAB GRAPHICS 31

1 1
0.5 0.5
> 0 > 0
05 -0.5
2 2.5 3 35 4
X
FIGURE 1.2 FIGURE 1.3
Plot of y = sin(x3) using 51 equispaced plotting Plot of y = sin(x3) using the function fp1ot to choose
points. plotting points adaptively.

Running script e4s103.m produces Fig. 1.2 and Fig. 1.3. In the plot example, we have deliberately
chosen an inadequate number of plotting points and this is reflected in the quality of Fig. 1.2. The
function fplot produces a smoother and more accurate curve. Note that fplot only allows a function
or functions to be plotted against an independent variable. Parametric plots cannot be created by fplot.

The MATLAB function ezplot is similar to fplot in the sense that we only have to specify the
function, but has the disadvantage that the step size is fixed. However, ezplot does allow parametric
plots and three-dimensional plots. For example

>> ezplot(@(t) (cos(3*t)), @(t) (sin(l.6*t)), [0 50])

is a parametric plot but the plot is rather coarse.

We have seen how fplot helps in plotting difficult functions. Other functions which help to clarify
when the plot of a function is unclear or unpredictable are y1im and x1im. The function y11im allows the
user to easily limit the range of the y-axis in the plot and x1im does the same for the x-axis. Their use
is illustrated by the following example. Fig. 1.4 (without the uses of x1im and y11im) is unsatisfactory
since it gives little understanding about how the function behaves except at the specific points x = —2.5,
x=1,and x =3.5.

>> x = -4:0.0011:4;

>> y =1./(((x+2.5).72) .x((x-3.5).72))+1./((x-1).72);
>> plot(x,y)

>> y1im([0,10])

Fig. 1.5 shows how the MATLAB statement y1im([0,10]) restricts the y-axis to maximum value
of 10. This gives a clear picture of the behavior of the graph. There are a number of special features
available in MATLAB for the presentation and manipulation of graphs and some of these are now be
discussed. The subp1ot function takes the form subplot(p,q,r) where p and g split the figure window
into a p x g grid of cells and places the plot in the rth cell of the grid, numbered consecutively along

32 CHAPTER 1 AN INTRODUCTION TO MATLAB®

x106 10
4 8
3 6

-~

)
~

1 ol
0 ‘ : 0 .
—4 -2 0 2 4 —4 -2 0 2 4
X X
FIGURE 1.4 FIGURE 1.5
Function plotted over the range from —4 to 4. It hasa The same function as plotted in Fig. 1.4 but with a
maximum value of 4 x 10°. limit on the range of the y-axis.

the rows. This is illustrated by running script e4s104.m which generates six different plots, one in each
of the six cells. These plots are given in Fig. 1.6.

% e4s104.m

x =0.1:.1:5;

subplot(2,3,1), plot(x,x)

title(’plot of x’), xlabel(’x’), ylabel(’y’)
subplot(2,3,2), plot(x,x.”2)

title(’plot of x*2’), xlabel(’x’), ylabel(’y”)
subplot(2,3,3), plot(x,x.”3)

title(’plot of x737), xlabel(’x’), ylabel(’y”)
subplot(2,3,4), plot(x,cos(x))

title(’plot of cos(x)’), xlabel(’x’), ylabel(’y’)
subplot(2,3,5), plot(x,cos(2%x))

title(’plot of cos(2x)’), xlabel(’x”), ylabel(’y”)
subplot(2,3,6), plot(x,cos(3%x))

title(’plot of cos(3x)’), xlabel(’x’), ylabel(’y”)

The current plot can be held on screen by using the function hold and subsequent plots are drawn
over it. The function hold on switches the hold facility on while hold off switches it off. The figure
window can be cleared using the function c1f.

MATLAB provides many other plot functions and styles. To illustrate two of these, the polar and
compass plots, we display the roots of x> — 1 = 0 which have been determined using the MATLAB
function roots. This function is described in detail in Section 3.11. Having determined the five roots
of this equation we plot them using both polar and compass. The function polar requires the absolute
values and phase angles of the roots, whereas as the function compass plots the real parts of the roots
against their imaginary parts.

1.14 MATLAB GRAPHICS

33

plot of x plot of X2 plot of x>
6 30 150
4 20 100
)))
2 10 50
00 5 00 5 00 5
X X X
plot of cos(x) plot of cos(2x) plot of cos(3x)
1 1 1
0.5 0.5 0.5
> 0 > 0 > 0
-0.5 -0.5 -0.5
-1 -1 -1
0 5 0 5 0 5
X X X
FIGURE 1.6
An example of the use of the subplot function.
>> p=roots([1 0000 11)
p =
-1.0000
-0.3090 + 0.95111
-0.3090 - 0.9511i
0.8090 + 0.5878i
0.8090 - 0.58781
>> pm = abs(p.”)
pm =
1.0000 1.0000 1.0000 1.0000 1.0000
>> pa = angle(p.”)
pa =
3.1416 1.8850 -1.8850 0.6283 -0.6283

>> subplot(l,2,1), polar(pa,pm,’ok”)

>> subplot(l,2,2), compass(real(p),imag(p),’k”)

Fig. 1.7 shows these subplots.

An interesting development introduced in the 2016b release of MATLAB are polar scatter and polar
histogram plots that allow data to be plotted in polar coordinates. For the polar scatter function the
points are plotted on a circle, each point being denoted by a circle, or some other selected symbol.

34 CHAPTER 1 AN INTRODUCTION TO MATLAB®

FIGURE 1.7

polar and compass plots showing the roots of x> — 1 =0.

For the polar histogram the data is divided into bins in the usual manner of histogram plots but the
bins are plotted as appropriate size segments of a circle. These processes are implemented using the
MATLAB functions polarscatter and polarhistogram. The simplest form of polarscatter is given
by:

polarscatter(th,r)

Here the th and r parameters are vectors of the same size providing the polar coordinates, so a call
would take the form:

>> th = -2xpi:0.1:2*%pi; r= 2*cos(th.*th);
>> polarscatter(th,r,’black”)

This produces the diagram shown on the left side of Fig. 1.8. Additional parameters may be included

in the function parameter list to increase marker size, provide color and fill the markers, and change

marker symbol. Remarkably, different marker sizes can be set by using a vector for the marker sizes.
The following commands will produce the same figure but with much larger black, filled circles.

>> th2 = -2xpi:pi/4:2%pi; r2= 2xth2;
>> polarscatter(th2,r2,150, black”, filled”)

Note the extra parameter values used are, 150, "black’, " filled’. These provide the marker size, 150,
the color, black, and require that the plotting symbol is filled. These commands produce the diagram
on the right side of Fig. 1.8.

We now consider the polar histogram plot this divides a data set into a specific number of groups
called bins. The data values of equal value are placed in the separate bins so in general the bins will
contain a different numbers of values according to the frequency with which the data values occur. The
polar histogram function plots a histogram of the data in polar coordinates. As an example we give the
following commands which are executed in the command window:

>> x = 2%pi*rand(1,100);
>> polarhistogram(x,20)

which produces the polar histogram shown on the left side of Fig. 1.9.

1.15 THREE-DIMENSIONAL GRAPHICS 35

120 e 60 120 % 60
O
08 3R
150 6O 01'5800 30 150 10 30
8% o g ° oge
% OO 0 98
180 o go 0 180@ @ ® O
o $o G0
93 = %o 3 (J ()
210 0 0 @@)Q% 330 210 @ ® ®
o © o O o
240 9% 300 240 300
270 270

FIGURE 1.8
Polar scatter plots. Left diagram with default size circle markers. Right diagram with larger filled black circles.

90 90
120 10 60 120 12 60
8
150 30 150 8 30
180 0 180 % 0
210 330 210 330
240 300 240 300
270 270

FIGURE 1.9
Polar scatter histogram.

The polar histogram function can include additional parameters. A new color can be set using
FaceColor together with an indicator of color, for example ‘red’ or ‘black’, which plots the histogram
blocks in red or black; transparency can be altered using FaceAlpha and a numerical value between 0
and 1. The higher the numerical value associated with ‘FaceAlpha’ the less transparent the image. As
an example we give the commands:

>> x = 2%xpi*xrandn(1,100);
>> polarhistogram(x,20, Facecolor’, ’black’, ’FaceAlpha’, 0.1)

These commands produce the output shown on the right side of Fig. 1.9. In this plot the bin seg-
ments are clearly transparent because of the low value, 0.1 used for the parameter FaceAlpha in the
command.

1.15 THREE-DIMENSIONAL GRAPHICS

It is often convenient to draw a three-dimensional graph of a function or set of data to gain a deeper
insight into the nature of the function or data. MATLAB provides powerful and extensive facilities to
allow the user to draw a wide range of three-dimensional graphs. Here we only briefly introduce a small
selection of these functions. These are the functions meshgrid, mesh, surfl, contour, and contour3.
It should be noted that the more complex graphs of this type may take a significant time to draw on the

36 CHAPTER 1 AN INTRODUCTION TO MATLAB®

screen, depending on the algebraic complexity of the function, the amount of detail required, and the
power of the computer being used.

Usually three-dimensional functions are plotted to illustrate particular features of the function such
as regions where maxima or minima lie. Plotting surfaces to illustrate these features can be difficult
and some careful analysis of the function may be needed before the graph is drawn successfully. In
addition, even when the region of interest is successfully located and plotted, the feature of interest
may be hidden and it is then be necessary to choose a different viewpoint. Discontinuities may also be
present and cause plotting problems.

For the function z = f(x, y) the MATLAB function meshgrid is used to generate a complete set
of points in the x—y plane for the three-dimensional plotting functions. We can then compute the
values of z and these are finally plotted by using one of the functions mesh, surf, surf1, or surfc. For
example, to plot the function

2=(=20x>+x)/2+ (—15y> +5y)/2 for x=—4:02:4 and y=—-4:0.2:4

we first set up the values of the x—y domain and then compute z corresponding to these x and y values
using the given function. Finally we plot the three-dimensional graph using the function surf1. This is
achieved by using the script e4s105.m. Note how the function figure is used to direct the output to a
graphics window so that the first plot is not overwritten by the second.

% e4s105.m

[x,y] = meshgrid(-4.0:0.2:4.0,-4.0:0.2:4.0);

Z = 0.5%x(-20%x.724+x)+0.5%(-15*y . "2+5%y);

figure(l)

surfl(x,y,z); axis([-4 4 -4 4 -400 01])
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis”’)
figure(?2)

contour3(x,y,z,15); axis([-4 4 -4 4 -400 0])
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)
figure(3)

contourf(x,y,z,10)

xlabel(’x-axis’), ylabel(’y-axis”)

Running script e4s105.m generates the plots shown in Fig. 1.10, Fig. 1.11, and Fig. 1.12. The first plot
is created using surf1 and shows the function as a surface; the second is created by contour3 and
is a three-dimensional contour plot of the surface; and the third, created using contourf, provides a
two-dimensional filled contour plot.

When plotting surfaces a very useful function is view. This function allows the surface or mesh to
be viewed from different positions. The function has the form view(az,el) where az is the azimuth
and el is the elevation of the viewpoint required. Azimuth may be interpreted as the viewpoint rotation
about the z-axis and elevation as the rotation of the viewpoint about the x—y plane. A positive value of
the elevation gives a view from above the object and a negative value a view from below. Similarly a
positive value of azimuth gives a counterclockwise rotation of the viewpoint about the z-axis while a
negative value gives a clockwise rotation. If the view function is not used, the default values are —37.5°
for the azimuth and 30° for the elevation.

There are many other three-dimensional plotting facilities but they are not described here.

1.16 IMPLICIT GRAPHICS 37

FIGURE 1.10 FIGURE 1.11
Three-dimensional surface using default view. Three-dimensional contour plot.

y—axis

—4 -2 0 2 4
X—axis

FIGURE 1.12
Filled contour plot.

1.16 IMPLICIT GRAPHICS

Since the 2016b release, MATLAB has the facility to plot implicit functions. An explicit function in two
dimensions takes the form y = f(x) whereas an implicit function takes the form f(x, y) = 0. Plotting
a two-dimensional implicit function is achieved by using the MATLAB function fimplicit. To plot
an implicit function of the form f(x, y,z) = 0, that is in three dimensions, the MATLAB function

fimplicit3 is used.
An example of a two-dimensional implicit function is the quadrafolium, given by the implicit func-
tion:

(2 +y5)? —4ax®y? =0
This function can be plotted for x and y the range —1 to 1 by using the MATLAB statement:
>> fimplicit(@ (x,y) (x."2+y."2)."3-4*x."2 .*xy."2,[-1 11)

The result of executing this command is shown in the left side of Fig. 1.13.

38 CHAPTER 1 AN INTRODUCTION TO MATLAB®

1 4
0.5 2
> 0 > 0
0.5 2
1 -4

1 0 1 4 2 0 2 4

FIGURE 1.13
Implicit quadrafolium and folium of Descartes.

Another function, called the folium of Descartes, is defined by:
x4+ y3 —3y=0
Using MATLAB to plot this function, we have:
>> fimplicit(@ (x,y) Xx."3+y."3-3*x.*y,[-4 47)

The result of executing this command is shown in the right side of Fig. 1.13.

Note that for the function fimp1icit the ranges for each variable can be different. In this case the
single range for example [—4 4] can be replaced by [—5 5 0 6]. Here the first pair of values provide
the range for the x variable and the second pair provide the range for the y variable. In addition the
line type, color, and thickness can be specified. For example including the parameter -g, will ensure
a continuous green line is use for the graph and using the parameter pair LineWidth, 4 will ensure a
thicker line is used.

We can use the MATLAB function fimplicit3 to plot three-dimensional implicit functions. The
following three-dimensional implicit function represents the general form of a torus:

2
(,/x2+y2—a> +22—b*=0

where the distance form the center of the torus to the center of the torus ring is a and the radius of the
torus tube is b.

As an example, suppose we plot one torus inside another. The distance from the center of the torus
to the center of the torus tubes are a = 1 and @ = 3 and the radius of both torus tube is b = 0.4. This is
achieved by using the script e4s106.m:

% e4s106.m

fimplicit3(@ (x,y,z) (sqrt(x.”2 +y.”2)-3).72 ...
+72.72-0.472,[-2+pi1 2%pi -2%pi 2xpi, -0.4,0.41,
>EdgeColor’, ’none’, ’FaceAlpha’,0.9);

hold on

fimplicit3(@ (x,y,z) (sqrt(x.”2 +y.”2)-1).72 ...
+7.72-0.472,[-2%xpi 2%pi -2%pi 2xpi, -0.4,0.4],

1.17 MANIPULATING GRAPHICS — HANDLE GRAPHICS 39

"EdgeColor’, ’none’, ’FaceAlpha’,0.9);
view([-5.036 -75.5651)

In this example, we use the MATLAB function fimplicit3, together with a number of parameters.
These are: the implicit function we wish to plot, the range of each of the variables x, y, and z, the param-
eter EdgeColor, which gives the color of any edge lines on the surface, and the parameter FaceAlpha,
which gives the transparency of the surface. In this case we have used EdgeColor as zero, so that no
edges appear and FaceAlpha as 0.9 to provide limited transparency. The variables x and y are defined
in the range —27 to 277 and z is between —0.4 and 0.4. Notice a view statement is also included which
a direction of view favored by the user. This may be introduced by selecting the figure in its window
and then it may be rotated, panned, and zoomed or viewed in the standard window. Once an acceptable
view is obtained the code may be updated to provide this specific view.

We do not show the figure generated by this code. If the reader runs the code a pair of tori will be
plotted.

1.17 MANIPULATING GRAPHICS — HANDLE GRAPHICS

Handle graphics allows the user to choose for a particular plot, font type, line thickness, symbol type
and size, axes form, and many other features for a particular figure. It introduces more complexity into
MATLAB but has considerable benefits. Here we give a very brief introduction to some of the main
features. There are two key functions, get and set. The get function allows the user to obtain detailed
information about a particular graphics function such as: plot, title, x1abel, ylabel, and others. The
function set allows the user to modify the standard setting for the particular graphics element such as
xTabel or plot. In addition, gca can be used with set to retrieve the handles of the axes of the current
figure and with get to manipulate the properties of the axes of that figure.

To illustrate the details involved in a simple graphics statement, consider the following statements,
where handles h and h1 have been introduced for the plot and title functions:

>> x = -4:.1:4;

>> y = cos(x);

>> h plot(x,y);

>> hl = title(’cos graph’)

To obtain information about the detailed structure of the plot and tit1e functions we use get and the
appropriate handle as follows. Note that only a selection of the properties produced by get are shown.

>> get(h)
Color: [0 O 1]
EraseMode: ’normal’
LineStyle: -~
LineWidth: 0.5000
Marker: ’none’
MarkerSize: 6
MarkerEdgeColor: ’auto’

40 CHAPTER 1 AN INTRODUCTION TO MATLAB®

However for the tit1e function we have:

>> get(hl)

FontName = Helvetica

FontSize = [10]

FontUnits = points
HorizontalAlignment = center

LineStyle = -

LineWidth = [0.5]

Margin = [2]

Position = [-0.00921659 1.03801 1.000111]

Rotation = [0]

String = cos graph

Notice there are different properties for plot and title. Script e4s106.m illustrates the use of handle
graphics:

% e4s107.m

% Example for handle graphics

x = -5:0.1:5;

subplot(1,3,1)

el = plot(x,sin(x)); title(’sin x")

subplot(1,3,2)

eZ2 = plot(x,sin(2xround(x))); title(’sin round x’)
subplot(1,3,3)

e3 = plot(x,sin(sin(5*x))); title(’sin sin 5x’)

Running script e4s107.m gives Fig. 1.14.
‘We now modify the script e4s106.m using a sequence of set statements to give script e4s108.m.

% e4s108.m

% Example for handle graphics

x = -5:0.1:5;

sl = subplot(1,3,1);

el = plot(x,sin(x)); tl = title(’sin(x)’);

s2 = subplot(1,3,2);

e2 = plot(x,sin(2xround(x))); tZ2 = title(sin(round(x))’);
s3 = subplot(1,3,3);

e3 = plot(x,sin(sin(5*x))); t3 = title(’sin(sin(bx))’);
% change dimensions of first subplot
set(sl,’Position’,[0.1 0.1 0.2 0.51);

%change thickness of line of first graph

set(el,’ LineWidth’,6)

set(sl, XTick’,[-5 -2 02 51)

%Change all titles to italics

(
1
(
1

1.17 MANIPULATING GRAPHICS — HANDLE GRAPHICS 41

sin(x) . sin(round(x)) . sin(sin(5x))
0.8 | 1 0.8 1
0.6 i 1 0.6 1
041 g 04t i
0.2 1 0.2f 1
or — B ofF i
-0.21 1 -0.2f k
-041 1 -04r
-0.61 i -0.61
-0.81 1 -0.8f
-1 — B 1 -1 1
-5 0 5 -5 0 5
X X X

FIGURE 1.14
Plots illustrating aspects of handle graphics.

set(tl, FontAngle’, italic’), set(tl, FontWeight’, bold’)
set(tl, FontSize’,16)

set(t2,’ FontAngle’, italic’)

set(t3, FontAngle’, ’italic”)

%change dimensions of Tast subplot

set(s3,’Position’,[0.7 0.1 0.2 0.51);

The position statement has the values
[shift from left, shift from bottom, width, height].
The size of the plotting area is taken as a unit square. Thus

set(s3,’Position’,[0.7 0.1 0.2 0.5]1);

shifts the figure 0.7 from the left and 0.1 from the bottom; its width is 0.2 and its height is 0.5. It
may need some experimentation to get the required effect. Executing script e4s107.m gives Fig. 1.15.
Notice the differing sizes of the boxes, thicker line in the first graph, bold title different ticks on x-axis
and that all the titles are in italics, many other aspects could have been changed.

The following example shows how we can manipulate the various properties of the axes in Fig. 1.16
using gca with set which gets the current axes properties. The examples that follow show the use of
gca in altering various properties of the axes:

42 CHAPTER 1 AN INTRODUCTION TO MATLAB®

sin round x
1 T —
0.8 B
0.6 B
04r B
sin x sin sin 5x
1 0.2 1 1
0.8
0 L — -
0.6
0.4 —02} i
0.2
0 =04 1
-0.2 U
_06 =
-0.4
-0.6 0.8} 4
-0.8 L
-1 s 0 5 1
-5 -2 0 2 5 -5 0 5

FIGURE 1.15
Plot of functions shown in Fig. 1.14 illustrating further handle graphs features.

>> x = -1:0.1:2; h = plot(x,cos(2%x));
These statements give left plot in Fig. 1.16.

>> get(gca, FontWeight”)

ans =
normal

>> set(gca,’ FontWeight’,’bold”)
>> set(gca,’ FontSize’,16)
>> set(gca,’XTick’,[-1 0 1 2])

These additional statements provide the right plot of Fig. 1.16. Note that the differences produced
larger bold font.

An alternative approach to manipulating font styles and other features is illustrated in script
e4s109.m.

% e4s109.m
% Example of the use of special graphics parameters in MATLAB
% illustrates the use of superscripts, subscripts,

1.17 MANIPULATING GRAPHICS — HANDLE GRAPHICS

FIGURE 1.16

43

Plot of cos(2x). The axes of the right-hand plot are enhanced using handle graphics.

% Fontsize and special characters

x = -5:.3:5;

plot(x, (1+x).72.%cos(3*x), ...
"Tinewidth’,1, marker’, hexagram’, 'markersize’,12)
title(’(\omega_2+x)~2\alpha cos(\omega_1x)’, fontsize’,14)
xlabel(’x-axis’), ylabel(’y-axis’, rotation’,0)
gtext(’graph for \alpha = 2,\omega_2 = 1, and \omega_l = 37)

Executing script e4s109.m provides the graph shown in Fig. 1.17.

We now describe the features that were used in this script. We have used Greek characters from an
extensive range of symbols that can be introduced using the backslash character “\”. The following

gives examples of how these characters may be introduced:

* \alpha gives o,
* \beta gives 8,
* \gamma gives y.

Any of the Greek symbols may be obtained by typing the backslash followed by the standard
English name of the Greek letter. Titles and axis labels may include superscripts and subscripts by

TR

preceding the subscript character by

and the superscript by “A”. Font sizes may be specified by

placing the additional parameter ' fontsize’ in the x1abel, ylabel, or title statements, followed by

and separated by a comma from the actual font size required. For example,

44 CHAPTER 1 AN INTRODUCTION TO MATLAB®

(u)2+x)2<1 cos(®, X)

graph for 0= 2,0, =1 and © =3

X—axis

FIGURE 1.17

Plot of (wy + x)2a cos(wix).

title(’(\omega_2+x)"2\alphaxcos(\omega_1l*x)’, fontsize’,14)
gives
(wy + x)zoe * cos(wy * X)

in 14 point font. In the plot function itself, additional markers for the graph points are available and
may be indicated by using the additional parameter 'marker’ followed by the name of the marker, for
example,

"marker’, hexagram’

The size of the marker may also be specified using the additional parameter ‘markersize’ followed by
the required marker size thus:

"markersize’,12

The line thickness may also be adjusted using the parameter *1inewidth’, for example,
"Tinewidth’,1

Finally, the orientation of any label may be changed using 'rotation’. For example,
‘rotation’,0

This additional parameter with the setting zero makes the label horizontal to the y-axis rather than the
usual vertical orientation; the value of the parameter gives the angle in degrees.

A further more complex example involving reference to a partial differential equation in a MATLAB
text statement is as follows:

gtext(’Solution of \partial~2V/\partialx”*2+\partial”r2V/\partialy”2 = 0")
This leads to the text
Solution of 82V/8x2 + 82V/8y2 =0

1.18 SCRIPTING IN MATLAB 45

being placed in the current graphics window at a point selected using the cross-hairs cursor and clicking
the mouse button.

In addition, features may be included in conjunction with the \ followed by a font name parameter
which allows the specification of any available font. Examples are \bf that gives a bold style and \it
that gives an italic style.

An important issue in placing figures in a manuscript is that they must have a consistent position
and size and must be easy to read. The listed graphics scripts work satisfactorily but would not provide
the quality required if directly imported into this manuscript. An example of this is shown in Fig. 1.14.
To ensure that size and position of the figures generated by the MATLAB scripts are generally consistent
and their fonts easily read, the following statements are added to all scripts producing graphical output
except for Figs. 1.14, 1.15, and 1.16.

set(0, defaultaxesfontsize’,16)

set(0, defaultaxesfontname’, Times New Roman’)
set(0, defaulttextfontsize’,12)

set(0, defaulttextfontname’, Times New Roman’)
axes(’position’,[0.30 0.30 0.50 0.501)

These statements are examples of handle graphics. The first and second statements set the fonts used
for the axes to 16 point Times New Roman. The third and fourth statements set the fonts used in the
plot to 12 point Times New Roman and the fifth statement controls the size of the graph within the
graphs window. Finally, we add a statement such as print -depsc Figl0l.eps at the end of each
script that generates a graph. This statement saves the plot as an extended postscript (eps) format file
for inclusion in the manuscript.

This was used in the creation and placement of the MATLAB graphs in this book. These are not
shown in the text listings because they are the same for each script.

1.18 SCRIPTING IN MATLAB

In some of the previous sections we have created some simple MATLAB scripts that have allowed
a series of commands to be executed sequentially. However, many of the features usually found in
programming languages are also provided in MATLAB to allow the user to create versatile scripts. The
more important of these features are described in this section. It must be noted that scripting is done
in the edit window using a text editor appropriate to the system, not in the command window which
only allows the execution of statements one at a time or several statements provided that they are on
the same line.

MATLAB does not require the declaration of variable types, but for the sake of clarity the role
and nature of key variables may be indicated by using comments. Any text following the symbol %
is considered a comment. In addition, there are certain variable names which have predefined special
values for the convenience of the user. They can, however, be redefined if required. These are

pi which equals &
inf the result of dividing by zero
eps which is set to the particular machine accuracy

46 CHAPTER 1 AN INTRODUCTION TO MATLAB®

realmax largest positive floating-point number

realmin smallest positive floating-point number

NaN which is not a number produced on dividing zero by zero
i, both equal ,/—1.

Assignment statements in a MATLAB script take the form
variable = <expression>;

The expression is calculated and the value assigned to the variable on the left-hand side. If the semi-
colon is omitted from the end of these statements, the names of the variable(s) and the assigned value(s)
are displayed on the screen. If an expression is not assigned explicitly to a variable then the value of
the expression is calculated, assigned to the variable ans and displayed.

In previous sections it was stated that generally a variable in MATLAB is assumed to be a matrix
of some kind; its name must start with a letter and may be followed by any combination of digits and
letters; a maximum of 32 characters is recognized. It is good practice to use a meaningful variable
name. The variable name must not include spaces or hyphens. However, the underscore character is
a useful replacement for a space. For example, test_run is acceptable; test run and test-run are
not. It is very important to avoid the use of existing MATLAB commands, function names, or even the
word MATLAB itself! MATLAB does not prevent their use but using them can lead to problems and
inconsistencies. An expression in MATLAB is a valid combination of variables, constants, operators,
and functions. Brackets can be used to alter or clarify the precedence of operations. The precedence of
operation for simple operators is first \, second =, third /, and finally + and - where

A raises to a power
* multiplies

/ divides

+ adds

- subtracts

The effects of these operators in MATLAB have already been discussed.
Unless there are instructions to the contrary, a set of MATLAB statements in a script is executed in
sequence. This is the case in script e4s110.m.

% e4s110.m

% Matrix calculations for two matrices A and B
A [123;456;7 89]7;
B=10[5-6-9;110;2410];

% Addition. Result assigned to C

C = A+B; disp(C)

% Multiplication. Result assigned to D
D = AxB; disp(D)

» Division. Result assigned to E
E = A\B; disp(E)

To allow the repeated execution of one or more statements, a for loop is used. This takes the form

for <loop_variable> = <loop_expression>

{statements>

end

1.18 SCRIPTING IN MATLAB

47

The <1oop_variable> is a suitably named variable and <1oop_expression> is usually of the form n:m
or m:1i:n where n, i, and m are the initial, incremental, and final values of <1oop_variable>. They
may be constants, variables, or expressions; they can be negative or positive but clearly they should be
chosen to take values consistent with the logic of the script. This structure should be used when the

loop is to be repeated a predetermined number of times.

Examples:

for i

= 1:n

for j = 1:m
C(i,Jj) = A(i,j)+cos((i+j)*pi/(n+m))*B(i,3);

end

end

for k

=n+2:-1:n/2

a(k) = sin(pixk);
b(k) = cos(pixk);

end

p =1

for a =1[2 13 5 11 7 3]
p = p*a;

end

p

p=1;

prime_numbs = [2 13 5 11 7 371;

for a = prime_numbs
p = p*a;

end

P

The first example illustrates the use of nested for loops, the second illustrates that upper and lower
limits can be expressions and the step value can be negative. The third example shows that the loop
does not have to use a uniform step and the fourth example, which gives an identical result to the third,
illustrates that the <1oop_expression> can be any previously defined vector.

When assigning values to a vector in a for loop, the reader should note that the vector generated is
a row vector. For example,

48 CHAPTER 1 AN INTRODUCTION TO MATLAB®

for i = 1:4
d(i) = i"3;
end

gives the row vector d = 1 8 27 64 but in this case it is not displayed.
The while statement is used when the repetition is subject to a condition being satisfied which is
dependent on values generated within the loop. This has the form

while <while_expression>
{statements>
end

The <while_expression> is a relational expression of the form el o e2 where el and e2 are ordinary
arithmetic expressions as described before and o is a relational operator defined as follows:

== equals

<= less than or equals

>= greater than or equals
~= not equals

< less than

> greater than

Relational expressions may be combined using the following logical operators:

& the and operator

| the or operator

~ the not operator

&& the scalar and operator. If the first condition is false then the second is not evaluated.
|| the scalar or operator. If the first condition is true then the second is not evaluated.

Note that false is zero and true is non-zero. Relational operators have a higher order of precedence than
logical operators.

Examples of while loops:

dif = 1;

x2 =1;

while dif>0.0005
x1 = x2-cos(x2)/(1+x2);
dif = abs(x2-x1);

x2 = x1;

end

x =1[12 3];

y =T[4 5 8];

while sum(x) ~= max(y)
X = X."2;
Yy = ytx;

end

1.18 SCRIPTING IN MATLAB 49

Note also that break stops the execution (and hence allows exit from) a while or for loop and that
break cannot be used outside of a while or for loop. The statement return must be used in these
circumstances.

A vital feature of all programming languages is the ability to change the sequence in which instruc-
tions are executed within the program. In MATLAB the i f statement is used to achieve this and has the
general form

if < if_expressionl >
< statements >
elseif < if_expression2 >
< statements >
elseif < if_expression3 >
< statements >

else
< statements >
end

Here < if_expressionl >, etc., are relational expressions of the form el o €2 where el and e2 are or-
dinary arithmetic expressions and o is a relational operator as described before. Relational expressions
may be combined using logical operators.

Examples:
for k = 1:n
for p = 1:m
if k=p
z(k,p) = 1;
total = total+z(k,p);
elseif k<p
z(k,p) = -1;
total = total+z(k,p);
else
z(k,p) = 0;
end
end
end

if (x~=0) & (x<y)
b = sqrt(y-x)/x;
disp(b)

end

The MATLAB function switch provides an alternative to the if structure and is particularly useful
when many options must be considered. This has the form:

50 CHAPTER 1 AN INTRODUCTION TO MATLAB®

switch < condition >
case refl
< statements >
case ref?2
< statements >
case ref3
< statements >
otherwise
< statements >
end

The following fragment of code allows the user to choose a particular plot, dependent on the value of n.
In the following script, the second plot has been chosen by setting n = 2.

x =1:.01:10; n =2
switch n

case 1

plot(x,log(x));

case 2
plot(x,x.*Tog(x));
case 3
plot(x,x./(1+log(x)));
otherwise
disp(’That was an invalid selection.”)
end

As a further example of the switch function, the following fragment of code allows the user to convert
an astronomical distance x given in AU (an astronomical unit), LY (a light year) or pc (a parsec) to km
by setting the string variable units to AU, LY, or pc respectively.

X = 2;
units = LY’
switch units
case {’AU’ ’Astronomical Units’}
km = 149597871*x
case {’LY’,’lightyear’}
km = 149597871x63241*x
case {’pc’ ’parsec’}
km = 149597871%63241%3.26156%x
otherwise
disp(’That was an invalid selection.”’)
end

Note that if any statement in a MATLAB script is longer than one line then it must be continued by
using an ellipsis (. . .) at the end of the line.

The menu function creates a menu window with buttons to allow the user to select options. For
example:

1.19 USER-DEFINED FUNCTIONS IN MATLAB 51

frequency = 123;
units = menu(’Select units for output data’, ’rad/s’,’Hz’, ‘rev/min’)
switch units
case 1
disp(frequency)
case 2
disp(frequency/(2*pi))
case 3
disp(frequencyx60/(2xpi))
end

creates a small window (called MENU) with three buttons, labeled ‘rad/s’, ‘Hz’, and ‘rev/min’. ‘click-
ing’ a particular button with the mouse provides a frequency converted to the chosen units.

1.19 USER-DEFINED FUNCTIONS IN MATLAB

MATLAB allows users to define their own functions but a specific form of definition must be followed.
The first form of function is the function m-file and is described as follows:

function < output_params > = func_name(< input_params >)
< func body >

< input_params > is either a single variable or a set of variable names separated by commas and
< output_params > is either a single variable or a list of variables separated by commas or spaces and
placed in square brackets. The function body consists of the statements defining the user’s function.
These statements will utilize the values of the input arguments and must include statements assigning
values to the output parameters. Once the function is defined it must be saved as an M-file under
the same name as the given < function_name >. Then the function can then be used as required. It
is good practice to put some comments describing the nature of the function immediately after the
function heading. Writing help followed by the function name in the command window will access
these comments.
To execute the function for specific parameters we write

< specific_out_params > = < func_name >(< assigned_input_params >)

where the < assigned_input_params > term is either a single parameter or a list of parameters sepa-
rated by commas. The < assigned_input_params > must match the <input_params > in the function
definition.

We now provide two examples of named functions.

Example 1.1. The Fourier series for a sawtooth wave is

]

1 . <2nnt>
— Z —sin
nw T

n=1

N =

() =

52 CHAPTER 1 AN INTRODUCTION TO MATLAB®

where T is the period of the waveform. We can create a function to evaluate this for given values of ¢
and 7. Since we cannot sum to infinity, we will sum to m terms, where m is a relatively large value.
Thus we can define the MATLAB function sawb1ade as follows. Note that this function has three input
arguments and one output.

function y = sawblade(t,T,n_trms)
% Evaluates, at instant t, the Fourier approximation of a sawtooth wave of
% period T using the first n_trms terms in the infinte series.
y =1/2;
for n = 1l:n_trms
y =y - (1/(nxpi))*sin(2#n*pi*xt/T);
end

‘We can now use this function for a specific purpose. For example, if we wish to plot this waveform and
a period of T =2 over the range t = 0 to 4 using only 50 terms in the series, we have

>> ¢ =1;
>> for t = 0:0.01:4, y(c) = sawblade(t,2,50); ¢ = c+l; end
>> plot([0:0.01:47,y)

Further valid function calls are

>> y = sawblade(0.2xperiod,period,terms)

where period and terms have previously assigned values, or
>> y = sawblade(2,5.7,60)

or using the function feval

>> y = feval(’sawblade’,2,5.7,60)

A more important application of feval, which is widely used in this text, is in the process of defin-
ing functions which themselves have functions as parameters. These function m-files can be evaluated
internally in the body of the calling function by using feval.

Example 1.2. We now consider a further example which involves the generation of a matrix within
a function. The essential features of the finite element method applied to the static and/or dynamic
analysis of structures is to express the stiffness and inertia properties of a small section or element
of the structure in matrix form. These element matrices are then assembled to obtain matrices that
describe the overall stiffness and inertia for the whole structure. Knowing the forces acting on the
structure, we can obtain the static or dynamic response of the structure. One such element is a uniform
circular shaft. For this element the inertia matrix and the stiffness matrix, relating angular accelerations
and displacements, respectively, to applied torques are given by

GJ[1 =1
K—T[_l 1}

1.19 USER-DEFINED FUNCTIONS IN MATLAB 53

and

_pJL 2 1
M= [1 z}

where L is the length of the shaft, G and p are material properties and J is the polar second moment
of area of the shaft; a geometric property related to the diameter of the shaft, d. If we intend to create a
finite element package in MATLAB, which includes torsional elements then these matrices are required.
The following function generates them from the shaft properties as follows:

function [K,M] = tors_el(L,d,rho,G)
J = pixdnr4/32;

K (GxJ/L)=[1 -1;-1 17;

M (rhoxd*L/6)x[2 1;1 2];

Note that this function has four input arguments and outputs two matrices.

MATLAB allows the inclusion of the definition of any functions, called by a function, at the end
of the main function definition. This is convenient for the user since it allows all the elements of the
function definition to be presented together, rather than saved separately. This is only useful if the
nested function is only required by the main function. An example of this is shown in Section 3.11.1.
Here the function so1veq is not a generally useful function but it is required by the function bairstow.
Therefore it is nested in bairstow. This arrangement has the advantage that bairstow is a complete
entity, it does not require solveq to be stored and available. Conversely, it has the minor disadvantage
that since it is not stored separately it cannot be used independently of bairstow.

In MATLAB release 2016b this feature was extended to allow scripts to call one or more functions.
Thus, if a particular script includes five function calls, then each of these functions can be defined after
the main calling script. This is a very useful development since it allows all the elements can be kept
and saved together rather than saved separately.

To illustrate this feature we provide the script e4s111.m, which uses two functions called fex1ive
and fitnesslive to calculate a range of numerical values. The first group of statements is the script in
which the two functions are called. This is followed by the definitions of the two functions.

%e4s11l.m
% Calling script
x = rand(5,2);
for 1 = 1:5
p(i) = x(i,2);
fv(i) = fexlive(p(i));

end
for i = 1:5

fitv(i) = fitnesslive(fv(i));
end
for i = 1:5

pr(i) = fitv(i)/sum(fitv);
end

fv

54 CHAPTER 1 AN INTRODUCTION TO MATLAB®

fitv

disp(’Probabilities’)

pr

disp(’sum of probabilities = ")

spr = sum(pr)

% The functions called in the above script are defined here
function resl = fexlive(x)

resl = x.”2+cos(x);

end

function res2 = fitnesslive(val)

if val<=0

res?2 = abs(val);
else

res2 = 1/val;
end
end

The script e4s111.m, including the functions, are saved together with an appropriate name and run.
Output from running script e4s111.mis shown here.

fv =
1.1223 1.1009 1.2160 1.2620 1.2980

fitv =
0.8910 0.9083 0.8223 0.7924 0.7704

Probabilities

pr =
0.2129 0.2171 0.1965 0.1894 0.1841

sum of probabilities =

spr =
1

We note that this is the expected valid output and illustrates that the script and the two function defini-
tions have been saved as a single entity.

MATLAB allows functions to be defined recursively. The technique provides a useful approach to
the definition of a range of functions, although in many cases a recursive approach is less efficient than
the standard iterative approach. Essentially in a recursive function definition the function definition

1.19 USER-DEFINED FUNCTIONS IN MATLAB 55

calls within it the function itself. This is a natural approach for some mathematical functions which are
defined in this way. For example the Fibonacci series is

Fiy1 = Fr + Fr—q, fork=2,3, 4,..

where Fp, = F| = 1.
One of the simplest recursive function definitions is based on the factorial formula f(n) =
nf(n — 1) where f(0) = 1. The following MATLAB function defines the factorial function recursively:

function y = facr(n)
% Factorial function implemented recurcively
if n<0
disp(’n must be positive’)
return
end
if n==
y=1;
return
end
for i = 1:n
% here the function calls itself
y = n*xfacr(n-1);
end
end

Using this function we obtain the results

>> facr(4)

ans =
24

>> facr(-5)
n must be positive

>> facr(0)

ans =
1

Thus we obtain the expected results for various cases of using the factorial function. A more interesting
example is given for the evaluation of trigonometric integrals of the form:

b
1, :/ cos" 0 db
a

56 CHAPTER 1 AN INTRODUCTION TO MATLAB®

or, alternatively, the same expression but with the sine function. The expression is evaluated using
simple integration by parts and takes the form:

. 1 b n—1 b 2
I, = [sm@cos(”*)G/n] + / cos™2 g 40

a n a

Taking limits between 0 and 7 /2, the first term vanishes and this equation may be rewritten in the form:

n—1
I, = I
n

The same formula applies for the sine integral. We now provide a MATLAB recursive function for this
integral.

function I = cosnr(n)
% This function written recursively provides the integral of
% the nth degree cosine function in the range 0 to pi/2 if n >=2
if n==
I =1;
return
end
if n==
I =pi/d;
return
end
% Here we call the function within the defintion of the function
I = (n-1)/n*xcosnr(n-2);
end

We now calculate some values of the cosine integral for a range of values of the power n using
the recursive function cosnr and compare the results with those obtained using a MATLAB numerical
integration function integral. This is achieved using the script e4s112.m:

%edsll?.m

fprintf(’%1ls %12s %12s\n’,’n’,’117,712");

for n =1:10
I1 = cosnr(n); I2 = integral(@(x) cos(x).”n,0,pi/2);
fprintf(’%2.0f %12.4f %12.4f\n’,n,11,12);

end

Running script e4s112.m produces the table of results for the integration of cos” (x) to the powers of

n =0to 10.

n 11 12
1 1.0000 1.0000
2 0.7854 0.7854

3 0.6667 0.6667

1.19 USER-DEFINED FUNCTIONS IN MATLAB 57

4 0.5890 0.5890
5 0.5333 0.5333
6 0.4909 0.4909
7 0.4571 0.4571
8 0.4295 0.4295
9 0.4063 0.4063
10 0.3866 0.3866

Note that there is complete agreement to 4 decimal places between the two sets of results for the
integration.

An alternative and simpler form of the MATLAB user-defined function is the anonymous function.
This function is not saved as an m-file; it is either entered into the workspace from the command
window or from a script. For example, suppose we wish to define the function

X \3 2x TX
() - ()
2.4 2.4 2.4

This mathematical expression may be defined as an anonymous function in MATLAB as follows:
>> f = @(x) (x/2.4).73-2xx/2.4+cos(pixx/2.4);

An example calls of this function is f([1 2]) which produces two values corresponding to x = 1 and
x = 2. Another way of using this function is as an input parameter to another function. For example,

>> solution = fzero(f,2.9)
solution =
3.4825

This gives the zero of f closest to 2.9. A further example of its use is
>> x =0:0.1:5; plot(x,f(x))

Here we must call f(x) because the plot function needs all the values of the function over the range
of x. Another form is

>> solution = fzero(@(x) (x/2.4)."3-2*x/2.4+cos(pi*x/2.4), 2.9)

Here we have used the anonymous function definition directly, rather than assigning it to a handle
(f in this case) and then using the handle.

If an m-file function has an anonymous function as one of its input arguments, then this anonymous
function can be evaluated directly without the use of the MATLAB function feval. If, however, the
function in the parameter list requires a multi-statement definition, a function m-file must be used, and
in this case feval must be used. In this text, to allow flexibility, when defining function m-files we have
used feval so that the user can input a function as an m-file function or as an anonymous function.

For example, we define the m-file functions sp_cubic and minandmax thus:

function y = sp_cubic(x)
Yy = X."3-2xx."2-6;

58 CHAPTER 1 AN INTRODUCTION TO MATLAB®

function [minimum maximum] = minandmax(f,v)
% v is a vector with the start, increment and end value
y = feval(f,v); minimum = min(y); maximum = max(y);

Using this definition of minandmax means that f can be an anonymous or an m-file function. Thus,
using the anonymous function’s definition for f given before, we have

>> [1o hil = minandmax(f,[-5:0.1:5]);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,T0,hi)

lo = -181.0000 hi = 69.0000
Alternatively, using the other form of the function

>> [To hil = minandmax(’sp_cubic’,[-5:0.1:51);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,10,hi)

1o = -181.0000 hi = 69.0000

give identical answers. However, suppose we define m-file function minandmax without the use of
feval as follows

function [minimum maximum] = minandmax(f,v)
% v is a vector with the start, increment and end value
y = f(v); minimum = min(y); maximum = max(y);

Then, if f is an anonymous function, we obtain the preceding results, but if f is the m-file function
sp_cubic, the function minandmax fails as shown below:

>> [To hil = minandmax(’sp_cubic’,[-5:0.1:51);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,T0,hi)
7?77 Subscript indices must either be real positive integers or logicals.

Error in ==> minandmax at 4
y = f(v);

1.20 DATA STRUCTURES IN MATLAB

Previous sections discussed the use of numerical and non-numerical data. We now introduce the cell
array structure which allows a more complex data structure. The cell data structure is indicated by curly

brackets, i.e., { }. As an example,
>> A = cell(4,1);
>> A = {’maths’; ’physics’; “history’; *IT’}

1.20 DATA STRUCTURES IN MATLAB 59

"maths’
"physics’
“history’
T

We may refer to the individual components

>> p = A(2)

p =
"physics’

>> A(3:4)

ans =
"history’
T

To access the contents of the cell we use curly brackets thus:

>> cont = A{3}

cont =
history

Note that history is no longer in quotes and thus we can reference individual characters as follows:

>> cont(4)

ans =
t

A cell array can include both numeric and string data and can also be generated using the ce11 function.
For example, to generate a cell with 2 rows and 2 columns we have

>> F =cell(2,2)
L[] [1]
[] []

To assign a scalar, an array, or a character string to a cell we write

>> F{1,1} = 2;

>> F{1,2} = "test’;
>> F{ = ones(3);
>> F

60 CHAPTER 1 AN INTRODUCTION TO MATLAB®

L 2] "test’
[3x3 double] []

An equivalent way of generating F is
>> F = {[2] "test’; [ones(3)1 [1!}

Because we cannot see the detailed content of F{2,1} in the preceding, we use the function ce11disp
thus:

>> celldisp(F)

F{1,1} =
2
F{2,1} =
1 1 1
1 1 1
1 1 1
F{1,2} =
test
F{2,2} =
L[]

The cell array allows us to group data of different sizes and types together in the form of an array and
access its elements by using subscripts.

The last form of data we consider is the structure, implemented in MATLAB using struct. This is
similar to a cell array but individual cells are indexed by name. A structure combines a number of fields,
each of which may be a different type. There is a general name for the field, for example, "name’ or
"phone number’. Each of these fields can have specific values such as *George Brown’ or *12719". To
illustrate these points consider the following example which sets up a structure called StudentRecords
containing three fields: NameField, FeesField, and SubjectField.

Note that we begin by setting up the information for three students as specific values held in the
cell arrays: names, fees, and subjects.

>> names = {’A Best’, ’D Good’, ’S Green’, ’'J Jones’}

names =
"A Best’ "D Good’ 'S Green’ *J Jones’

>> fees = {333 450 200 800}

1.20 DATA STRUCTURES IN MATLAB

fees =
[333] [450] [200] [8001]

>> subjects = {’cs’,’cs’, ’maths’,’eng’}
subjects =
cs’ ‘cs’ ‘maths’ ‘eng’

>> StudentRecords = struct(’NameField’,names,’ FeesField’, fees,
>SubjectField’,subjects)

StudentRecords =

1x4 struct array with fields:
NameField
FeesField
SubjectField

61

Now, having set up our structure, we can refer to each individual record using a subscript thus:

>> StudentRecords(1)

ans =

NameField: "A Best’
FeesField: 333
SubjectField: ’cs’

Further we can examine the contents of the components of each record thus:

>> StudentRecords(1).NameField

ans =
A Best

>> StudentRecords(2).SubjectField

ans =

cs

We can change or update the values of the components of the records thus:
>> StudentRecords(3).FeefField = 1000;

Now we check the contents of this student’s FeesField

>> StudentRecords(3).Feefield

ans =
1000

62 CHAPTER 1 AN INTRODUCTION TO MATLAB®

MATLAB provides functions that allow us to convert from one data structure to another and some of
these are listed here.

cell2struct
struct2cell
num2cell
str2num
num2str
int2str
double
single

Most of these conversions are self-explanatory. For example, num2str converts a double precision
number to an equivalent string. The function doub1e converts to double precision and examples of its
usage are given in Chapter 10.

The use of cells and structures is not usually essential in the development of numerical algorithms
although they can be used to enhance an algorithm’s ease of use. There is an example of the use of
structures in Chapter 10.

1.21 EDITING MATLAB SCRIPTS

To help the user develop scripts MATLAB provides a comprehensive selection of debugging tools.
These can be listed using the command help debug.

When a typing in a script into the MATLAB editor the user should note that the small colored square
is displayed at the top right of the text window. This square is colored red if the script contains one
or more fatal syntactic errors, orange warns of possible non-fatal problems, and green indicates no
syntactic errors. Each error or warning is also indicated by an appropriately colored dash beneath the
square. Touching these dashes will provide a description of the error or warning and the line in which
it occurs.

Errors can be found by using checkcode. The m1int function can also be used but is now obso-
lete and is replaced by checkcode. The following script, e4s113.m, contains numerous errors and is
provided to illustrate the use of checkcode:

% e4s113.m A script full of errors!!!
A=T[123; 456

B=1[23;7 6 5]

c(l) =15 c(l) = 2;

for k = 3:9
c(k) = c(k-1)+c(k-2)
if k=3

displ(’k = 3, working well)
end
c

Running and checking script e4s113.m gives the following output:

1.21 EDITING MATLAB SCRIPTS 63

>> e4s113

Error: File: e4sl12.m Line: 3 Column: 3

The expression to the Teft of the equals sign is not a valid target
for an assignment.

Applying checkcode to script e4s113.m gives

>> checkcode e4s113

3 (C 3): Invalid syntax at ’=’. Possibly, a), }, or 1 is missing.

3 (C 16): Parse error at "J]’: usage might be invalid MATLAB syntax.

5 (C 1-3): Invalid use of a reserved word.

7 (C 5-6): IF might not be aligned with its matching END (line 9).

7 (C 10): Parse error at ’=’: usage might be invalid MATLAB syntax.

8 (C 15-35): A quoted string is unterminated.

11 (C 0): Program might end prematurely (or an earlier error
confused Code Analyzer).

r.r— r— r— — r— —

Note how both line (L), character position (C), and nature of the error are given so the errors are clearly
identified. Of course, some errors cannot be detected at this stage. For example, the following script,
eds113c.m, is a partially corrected version of script e4s113.m.

% e4s113c.m A script less full of errors!!!

A=1[123; 456];
B=1[223;7 6];
c(l)y =1; c(l) = 2;
for k = 3:9
c(k) = c(k-1)+c(k-2)
if k ==
disp(’k = 3, working well”)
end
end
Cc

Running script e4s113c.m gives

>> e4sll3c
Attempted to access c(2); index out of bounds because numel(c)=1.

Error in e4sll2c (line 6)
c(k) = c(k-1)+c(k-2)

>> checkcode e4dsll2c
L 6 (C5): The variable ’c’ appears to change size on every loop
iteration (within a script). Consider pre-allocating for speed.
L 6 (C 10): Terminate statement with semicolon to suppress output
(within a script).
L 11 (C 1): Terminate statement with semicolon to suppress output
(within a script).

64 CHAPTER 1 AN INTRODUCTION TO MATLAB®

Now the script can be run as far as line 6 other possible errors now are detected.
In addition, a menu option “Debug” is provided in the MATLAB text editor.

1.22 SOME PITFALLS IN MATLAB

We now list five important points which if observed enable the MATLAB user to avoid some significant
difficulties. This list is not exhaustive.

* Itis important to take care when naming files and functions. File names and function names follow
the rules for variable names; that is, they must start with a letter followed by a combination of letters
or digits and names of existing functions must not be used.

* Do not use MATLAB function names or commands for variable names. For example, if we were so
foolish as to assign a number to a variable which we will call sin, access to the sine function would
be lost. For example,

>> sin =4

sin =
4

>> 3%sin

ans =
12

>> sin(1)

ans =

>> sin(2)
77?7 Index exceeds matrix dimensions.

>> sin(1.1)
??? Subscript indices must either be real positive integers or logicals.

» Matrix sizes are set by assignment so it is vital to ensure that matrix sizes are compatible. Often it
is a good idea initially to assign a matrix to an appropriately sized matrix of zeros; this also makes
code execution more efficient. For example, consider the following simple script:

for i =1:2

end

1.23 SPEEDING UP CALCULATIONS IN MATLAB 65

We assign two elements to b in the for loop and define A to be a 2 x 2 array, so we would expect this
script to succeed. However, if b had in the same session been previously set to be a different size
matrix, then this script would fail. To ensure that it works correctly we must either assign b to be a
null matrix using b = [1, or make b a column vector of two elements by using b = zeros(2,1)
or by using the clear statement to clear all variables from the system.

» Take care with dot products. For example, when creating a user-defined function where any of the
input parameters may be vectors, dot products must be used. Note also that 2.”x and 2. ~x are
different because the space is important. The first example gives the dot power while the second
gives 2.0 to the power x, not the dot power. Similar care with spaces must be taken when using
complex numbers. For example, A = [1 2-41i] assigns two elements: 1 and the complex number
2 —14. Incontrast B = [1 2 -41] assigns three elements: 1, 2, and the imaginary number —4:.

» At the beginning of a script, it is often good practice to clear variables or set arrays equal to the
empty matrix e.g., A = [1. This avoids incompatibility in matrix operations.

1.23 SPEEDING UP CALCULATIONS IN MATLAB

Calculations can be greatly speeded up by using vector operations rather than using a loop to repeat a
calculation. To illustrate this consider the following simple examples.

Example 1.3. The script e4s114.m fills the vector b using a for loop.

% edslld.m
% Fill b with square roots of 1 to 100000 using a for loop
tic;
for i = 1:200000
b(i) = sqrt(i);
end
t = toc;
disp([’'Time taken for loop method is *, num2str(t)]);

Example 1.4. The script e4s115.m fills the vector b using a vector operation.

% edsll5.m

% Fill b with square roots of 1 to 200000 using a vector
tic

a 1:200000; b = sqrt(a);

t = toc;

disp([’Time taken for vector method is ’,num2str(t)]);

If the reader runs scripts e4s114.m and e4s115.m and compares the time taken they will notice the
vector method is generally faster than the loop method. There is a need to think very carefully about
the way algorithms are implemented in MATLAB, particularly with regard to the use of vectors and
arrays.

66 CHAPTER 1 AN INTRODUCTION TO MATLAB®

1.24 LIVE EDITOR

Here we give a brief description of the Live Editor which was first introduced into MATLAB in release
2016a.

The Live Editor allows the user to turn their MATLAB code into an interactive document and thereby
provide a vivid platform for project and other presentations. Bare code can be enhanced to create a
story. Text, equations, images, numerical and graphical output from the code, and even hyperlinks can
all be added to the code in the Live Editor document. Thus, for example, a Live Editor document might
begin with some text and possibly some images, describing the background to a problem. This might
be followed by text and equations, providing detailed description of the proposed mathematical model
for the problem. Having established the mathematical model the MATLAB code required to solve the
problem is given, together with any numerical or graphical output from the code. This output is created
as the code is executed. It is not a piece of text or a diagram inserted into the file, it is actually generated
by running the code and it changes if the code is changed.

The Live Editor is extremely easy to use. Opening an existing Live Editor file automatically acti-
vates the Live Editor. Then the code, text, equations, and image options can be accessed from the Live
Editor menu. The output from the MATLAB code is included in the Live Editor file and may be placed
in the same column as the code or placed in the other column to suit the user’s requirements.

1.25 SUMMARY

In this chapter we have provided some of the key features of MATLAB. Clearly a user new to MATLAB
would need to support this description of the language with reference to the user manuals and lots of
computer based experimentation. In the introduction to this chapter it is stated that the original version
of MATLAB had only 80 functions. Currently, including the many toolboxes, it has over 8000 functions.
Obviously users are, or will become, familiar only with the subset of these functions appropriate to
the problems they wish to solve. This might, for example, be the core of MATLAB and two or three
toolboxes.

1.26 PROBLEMS

1.1. (a) Start up MATLAB. In the command window type x = -1:0.1:1 and then execute each of
the following statements by typing them in and pressing return:

sqrt(x) cos(x)
sin(x) 2./x
x.\ 3 plot(x, sin(x.”3))

plot(x, cos(x.”4))

Examine the effects of each statement carefully.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.26 PROBLEMS 67

(b) Execute the following and explain the results:

=[2 3 4 5]
= -1:1:2

"y

LKy

Ly

X X X < X

(a) Set up the matrix A = [1 5 8;84 81 7;12 34 71] in the command window and examine
the contents of A(1,1), A(2,1),A(1,2),A(3,3),A(1:2,:),A(:,1),A(3,:),and A(:,2:3).
(b) What do the following MATLAB statements produce?

1:1:10
= rand(10)
= [z:x]
rand(4)
= [c eye(size(c)); eye(size(c)) ones(size(c))]
= sqrt(c)
1 = dxd
t2 = d.xd

- a ® 0 < N X
Il

Set up a 4 x 4 matrix. Given that the function sum(x) gives the sum of the elements of the
vector x, use the function sum to find the sums of the first row and second column of the matrix.
Solve the following system of equations using the MATLAB function inv and also using the
operators \ and / in the command window:

2x+y+5z=5
2x+2y+3z=7
x+3y+3z=6

Verify the solution is correct using matrix multiplication.

Write a simple script to input two square matrices A and B; then add, subtract, and multiply
them. Comment the script and use disp to output suitable titles.

Write a MATLAB script to set up a 4 x 4 random matrix A and a four-element column vector b.
Calculate x = A\b and display the result. Calculate A+x and compare it with b.

Write a simple script to plot the two functions y; = x2 cos x and y, = x2 sin x on the same graph.

Use comments in your script and take x = —2:0.1: 2.
Write a MATLAB script to produce graphs of the functions y = cosx and y = cos(x?) in the
range x = —4 :0.02 : 4 using the same axes. Use the MATLAB functions x1abel, ylabel, and

title to annotate your graphs clearly.

Draw the function y = exp(—xZ) c0s(20x) in the range x = —2: 0.1 : 2. All axes should be
labeled and a title included. Compare the results of using the functions fplot and plot to plot
this function.

Write a MATLAB script to draw the functions y = 3sin(x) and y = exp(—0.2x) on the same
graph for x = 0:0.02 : 4. All axes should be labeled. Use gtext to label one of the several
points of intersection of the graphs.

68

1.18.

. An iterative equation for solving the equation x

CHAPTER 1 AN INTRODUCTION TO MATLAB®

. Use the functions meshgrid and mesh to obtain a three-dimensional plot of the function

2=2xy/(x*+y?) forx=1:0.1:3 and y=1:0.1:3

Redraw the surface using the function surf, surf1, and contour.
2 —x —1=0is given by

Xrp1=14+(1/x,) forr=0,1,2, ...

Given xq is 2 write a MATLAB script to solve the equation. Sufficient accuracy is obtained when
[Xr41 — x| < 0.0005. Include a check on the answer.

. Given a4 x 5 matrix A, write a script to find the sums of each of the columns using:

(a) the for ... end construction
(b) the function sum

. Given a vector x with n elements, write a MATLAB script to form the products

Pk =X1X2 .. . Xg—1Xk4+1---Xn

for k =1, 2,...,n. That is, p; contains the products of all the vector elements except the kth.
Run your script with specific values of x and n.

. The series for log, (1 4 x) is given by

log,(1+x)=x —x2/24+x3/3— ...+ (=D*xk/k ...

Write a MATLAB script to input a value for x and sum the series while the value of the current
term is greater than or equal to the variable fol. Use values of x = 0.5 and 0.82 and tol =
0.005 and 0.0005. The result should be checked by using the MATLAB function 10g. The script
should display the value of x and fol and the value of log, (1 + x) obtained. Use input and disp
functions to obtain clear output and prompts.

. Write a MATLAB script to generate a matrix which has the values d along the main diagonal

and the values ¢ on the diagonals above and below the main diagonal and zero elsewhere. Your
script should allow the user to input any values for ¢ and d and work for any size of matrix n.
The script should give clear prompts for input and display the results with a suitable heading.

. Write a MATLAB function to solve the quadratic equation

ax’>+bx+c=0

The function will use three input parameters a, b, ¢ and output the values of the two roots. You
should take account of the three cases:

(a) no real roots

(b) real and different roots

(c) equal roots

Hint: Develop the function rootquad given in Section 1.19.

Adjust the function of Problem 1.17 to deal with the case when a = 0. That is, when the equation
is non-quadratic. In this case include a third output parameter which will have the value 1 if the
equation is quadratic and O otherwise.

1.26 PROBLEMS 69

1.19. Write a simple function to define f(x) = x? — cos(x) — x and plot the graph of the function in
the range O to 2. Use this graph to find an initial approximation to the root and then apply the
function fzero to find the root to tolerance 0.0005.

1.20. Write a script to generate the sequence of values given by

Xpu) = { x[2 ifxiseven o012,
3x, +1 if x, isodd

where xq is any positive integer. The sequence terminates when x, = 1. Show after a sufficient
number of steps that the sequence terminates for any value of xg you choose. It is interesting to
plot the values of x, against r.

1.21. Write a MATLAB script to plot the surface z = f(x, y) over the ranges x = —4 : 0.1 : 4 and
y=—4:0.1:4 where z is given by:

2= fy) = —x)e P — pe P — ¢ HDY

and p = x? + y2. The script should provide mesh, contour, and surf plots and use the function
subplot to layout the three plots one above the other.
1.22. The following three functions are presented in parametric form:

x =a(t —sin(t)) and y =a(l — cos(t))
x =2at and y=2a/(1 +1%)
x =acos(t) — bcos(at/b) and y =asin(t) — bsin(at/b)

Write a MATLAB script to plot each of these functions one above the other using the
MATLAB subplot function given a = 2 and b = 3; ¢ is assigned the range of values
—10:0.1:10.

1.23. The Riemann ¢ function may be defined as the sum of an infinite series:

1 1 1 1

{(S)=1+2—S+3—S+4?+...+n—s+...
Write a MATLAB script zetainf(s,acc) to sum terms of this series until a term is less than acc
and where s is an integer

1.24. Write a MATLAB function to sum the series:

S=1+42%/2143%/31+ ...+ n’/n!

to n terms. The function should take the form sumfac(n) where n is the number of terms used.
You may use the MATLAB function factorial to evaluate the factorial terms. Write MATLAB
statements using this function to sum the series to 5 and 10 terms.
Rewrite your script avoiding the need to use the function factorial by noting that the k + 1th
term Ty is given by T x (k 4 1)/k>.

1.25. Given the matrix D = [1 -1; 3 2], give the values which will be assigned to A, B, C, and E
by executing the following MATLAB statements:

70

1.26.

1.27.

1.28.

1.29.

CHAPTER 1 AN INTRODUCTION TO MATLAB®

(@) A = Dx(Dxinv(D))

(b)B = D.*D

(c)C = [D,ones(2);eye(2),zeros(2)]

(d) E = D’xones(2)*eye(2)

The following matrices, called the Dirac matrices are defined by:

0 I 0 —ib L 0
! |:Iz 0] z [112 0 } : [0 -
where the 0 represents a 2 x 2 matrix of zeros and I, represents a 2 x 2 unit matrix and 1 =
/(—1). A related set of matrices is given by:

{0 P _
Qk_|:_Pk 0j| fork=1,2,3

Write MATLAB statements to generate the matrices Py, P>, P3 and the matrices Qy for
k=1, 2, 3. Note that in Qi the 0 represents a 4 x 4 matrix of zeros.
Plot the function

1
Y K +252(x—35)
for values of x = —4 :0.001 : 4. Then use the MATLAB functions x1im and y1im in the form:

y1im([0,201) and x1im([-3,-2]) to illustrate how this allows considerable clarification of the
nature of the function.
Write user-defined functions for the following functions:

(a) y = x? cos(1 +x2)
1+e*

®) Y= cos(x) + sin(x)

(© 7 =cos(x2 +y?)

Rewrite each of the previous functions as anonymous functions and illustrate of the use of these
anonymous functions by using the function the MATLAB subplot to plot graphs of the functions
(a) and (b) in the range for x =0 to 2.

Consider the following MATLAB script which contains some errors. Use the MATLAB function
checkcode to find these errors.

function sol = solvepoly(x0, acc)
%poly solver
d = l+acc;
whil abs(d)>acc
x1 = (2xx072-1))/x072;
d = x1-x0;
x0 = x1/x2
end
sol = x0;

1.26 PROBLEMS 71

1.30. The symmetric hyperbolic Fibonacci sine and cosine functions are defined as follows:

y' =y y 4y
sFs(x) = ———— and cFs(x) = ——
V5 NG
where y = (1 + «/g) /2. Also, the complex quasi-sine Fibonacci function is defined as
F(x.n) y* —cos(nwx)y ™ sin(nmx)y™*
cqsF(x,n) = L
V5 NG

where y is defined as before.
Write a MATLAB script that begins by defining these three functions as anonymous functions.
Then, using these anonymous functions, carry out the following operations within the script:
(a) In a single figure, plot the graphs of sFs(x) and cFs(x) against x over the range —5 to 5.
(b) Plot the real and imaginary parts of the function cqsF(x,5) in 3D space. Plot the real part of
the function in the y direction, the imaginary part in the z direction. Plot the function over the
range —5 to 5. Use the MATLAB function plot3.
Stakhov and Rozin (2005, 2007) provide more information on these functions.

1.31. The Fibonacci series is defined by the equations:

Fry1 = Fr + Fr—, fork=2,3,4,...,n

where F, = F| =1.
Write a MATLAB recursive function to evaluate the elements of this series to any number of
steps n. Use this function to produce a table of the values of the Fibonacci series, Fy for k =
1,2,...,10.

1.32. Use the MATLAB function fimp1icit to provide a plot of the two-dimensional implicit function:

cos(x? +y3) +xy =0

for values of x and y in the range x = —4to 4; y = —4 to 4.
1.33. For the three-dimensional implicit function

sin(x? 4+ y% 4+ 22) —x2y?22 =0

use the MATLAB function fimp1icit3 to plot this function for x and y in the range x = —4 to 4;
y=—4to4.
1.34. For the three-dimensional implicit function

(24 y% +72) — 6xyz =0

use the MATLAB function fimp11cit3 to plot this function for x and y in the range x = —4 to 4;
y=—-4to4.
1.35. Use the MATLAB polar scatter function to plot the data given by:

r =cos(f)sin(f) for 6 = —2m to 2w

72

1.36.

1.37.

1.38.

1.39.

1.40.

CHAPTER 1 AN INTRODUCTION TO MATLAB®

using the MATLAB polarscatter function. Replot this data again but introducing extra param-
eter values so that the face color is green and the size of the points is 200.
Draw a polar histogram figure for the data:

x; =2nr; i=1,2,3,...,100

where r; is a random number in the range O to 1. Using the MATLAB polarhistogram function
you should use 15 bins and the necessary parameters to provide a face color red and transparency
of 0.5.

Write a MATLAB function to calculate the values of f(x) where

f(x) = x?sin(x?)

for any vector x. In addition write a function which takes the vector x and finds the element
with the minimum value, x,,;,,, and the element with the maximum value, x,,,, and returns the
value of the scalar r where:

r = (Xmax — Xmin)/ Xmax + Xmin)

Write a MATLAB script which will obtain the values of the function, f(x), for x =0 to 10
in increments 0.1 and plot a graph of this function. Then use the function you have written to
calculate the value of r. Save the MATLAB script together with the functions using the name
functiontest and run it.

Use the function fimp1icit3 to draw the implicit function

(2 +y> =302 —4x’2—x)=0

Use the ranges of values for x and y as 0 to 2, and —3 to 3 respectively. Label the x and y axes
appropriately and give the graph a title.
Write a MATLAB script to determine the sum of the series

S=/e)[14+1/Bx 1) +1/6x2)+1/(7 x 3!) +....00]

to a prescribed accuracy. Take sufficient terms to obtain 6 decimal places of accuracy. The sum to
infinity is equal to the value of the integral given in Problem 4.35. See Jolley (1961), Eq. (1004).
Determine the output from executing the MATLAB command why. You should execute this com-
mand more than once.

When you have become bored with this, try Togo, spy, penny, and image.

CHAPTER

LINEAR EQUATIONS AND
EIGENSYSTEMS

Abstract

When physical systems are modeled mathematically, they are sometimes described by linear equation
systems or alternatively by eigensystems and in this chapter we examine how such equation systems
are solved.

MATLAB is an ideal environment for studying linear algebra, including linear equation systems and
eigenvalue problems, because MATLAB functions and operators can work directly on vectors and
matrices. MATLAB is rich in functions and operators which facilitate the manipulation of matri-
ces.

2.1 INTRODUCTION

We now discuss linear equation systems and defer discussion of eigensystems until Section 2.15. To
illustrate how linear equation systems arise in the modeling of certain physical problems, we will
consider how current flows are calculated in a simple electrical network. The necessary equations
can be developed using one of several techniques; here we use the loop-current method together with
Ohm’s law and Kirchhoff’s voltage law. A loop current is assumed to circulate around each loop in the
network. Thus, in the network given in Fig. 2.1, the loop current /| circulates around the closed loop
abcd. Thus the current /1 — I flows in the link connecting b to c¢. Ohm’s law states that the voltage
across an ideal resistor is proportional to the current flow through the resistor. For example, for the link
connecting b to ¢

Ve = Ro(I) — 1)

where R» is the value of the resistor in the link connecting b to c. Kirchhoff’s voltage law states that the
algebraic sum of the voltages around a loop is zero. Applying these laws to the circuit abcd of Fig. 2.1
we have

Vab + Ve +Vea =V

Substituting the product of current and resistance for voltage gives

Rih+Ry(I1 —Dh)+Rsh =V

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00011-7 73
Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-812256-3.00011-7

74 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Ry Ry Ry Ry
a b — [
+
C DRZG e C DRZQ’ RS
Ry R, R, R,
d pag - LT

FIGURE 2.1

Electrical network.

We can repeat this process for each loop to obtain the following four equations:

R+R+R)L — R =V

(Ri+2R2y+Ry) b — Roli — Ry I3 =0
(Ri +2Ry+ Ry) Iz — Ryl — RyI4 =0 2.1

(Ri1+Ry+R3+Ra) s — Ry [3=0

Letting Ri =Ra4 =1, R, =2 2, R3 =4 Q and V =5 volts, (2.1) becomes

41y -2, =5

=211 +6I, —2I3=0
=2 +6I3—214,=0
—2I3+814,=0

This is a system of linear equations in four variables, Iy, ..., I4. In matrix notation it becomes

4 =2 0 0 I
-2 6 -2 0 b
0 -2 6 -2 Iz
0 0 -2 8 Iy

2.2)

S O O W

This equation has the form Ax = b where A is a square matrix of known coefficients, in this case
relating to the values of the resistors in the circuit. The vector b is a vector of known coefficients,
in this case the voltage applied to each current loop. The vector x is the vector of unknown cur-
rents. Although this set of equations can be solved by hand, the process is time consuming and
error prone. Using MATLAB we simply enter matrix A and vector b and use the command A\b as
follows:

> A=1[4 -2 00;-26 -20;0-26 -2;00 -2 81;
> b =1[50001.";
>> x = A\b

2.1 INTRODUCTION 75

1.5426
0.5851
0.2128
0.0532

The sequence of operations that are invoked by this apparently simple command is examined in Sec-
tion 2.3.

In many electrical networks the ideal resistors of Fig. 2.1 are more accurately represented by elec-
trical impedances. When a harmonic alternating current (AC) supply is connected to the network,
electrical engineers represent the impedances by complex quantities. This is to account for the effect
of capacitance and/or inductance. To illustrate this we will replace the 5 volt DC supply to the network
of Fig. 2.1 by a 5 volt AC supply and replace the ideal resistors Ry, ..., R4 by impedances Zy, ..., Z4.
Thus, (2.1) becomes

(Zv+ 22+ Zy) L — 2oL =V

(Z1+2Z2+ Zy) [— Zo 1)y — Z213=0
(Z1+2Zr+ Zy) I3 — Zr]r — Zp14, =0 2.3)

(Z1+Zy+ Z3+ Zs) 4 — Z213 =0

At the frequency of the 5 volt AC supply we will assume that Z; =Z4s=(1+0.57) Q, Z, =2+
0.57) Q, Z3 = (44 1) Q where j = +/—1. Electrical engineers prefer to use rather than ¢ for /—1.
This avoids any possible confusion with i (or /) which is normally used to denote the current in a
circuit. Thus, (2.3) becomes

@+15) —Q2+05))L=5

—Q2405) 4+ (6420 —(2+0.5))3=0
—Q2405)hL+ (6+2.0)5—(2+05))14=0
—2+05))4+8+25))I4=0

This system of linear equations becomes, in matrix notation,

4+15) —Q2+05)) 0 0 I
—(240.5)) (64+2.0)) —(2+0.5)) 0 L
0 —2+05)) (6+20;) —(2+05)) I
0 0 —(24+05)) (842.5)) L

2.4)

S O O W

76 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Note that the coefficient matrix is now complex. This does not present any difficulty for MATLAB
because the operation A\b works directly with both real and complex numbers. Thus:

>> p = 4+1.5i; q = -2-0.51;

>> r = 6+2i; s = 8+2.51;

> A=[pq00;grq0:;0qraq;00qs];
>> b =1[50001.";

>> A\b

ans =

1.3008 - 0.55601
0.4560 - 0.25041
0.1530 - 0.10261
0.0361 0.02741

Note that strictly we have no need to re-enter the values in vector b, assuming that we have not cleared
the memory, reassigned the vector b or quit MATLAB. The answer shows that currents flowing in the
network are complex. This means that there is a phase difference between the applied harmonic voltage
and the currents flowing.

We will now begin a more detailed examination of linear equation systems.

2.2 LINEAR EQUATION SYSTEMS

In general, a linear equation system can be written in matrix form as
Ax=b (2.5)

where A is an n x n matrix of known coefficients, b is a column vector of n» known coefficients and x is
the column vector of n unknowns. We have already seen an example of this type of equation system in
Section 2.1 where the matrix equation (2.2) is the matrix equivalent of the set of linear equations (2.1).

The equation system (2.5) is called homogeneous if b = 0 and inhomogeneous if b # 0. Before
attempting to solve an equation system it is reasonable to ask if it has a solution and if so is it unique?
A linear inhomogeneous equation system may be consistent and have one or an infinity of solutions
or be inconsistent and have no solution. This is illustrated in Fig. 2.2 for a system of three equations
in three variables x, x2, and x3. Each equation represents a plane surface in the xi, x2, x3 space.
In Fig. 2.2A the three planes have a common point of intersection. The coordinates of the point of
intersection give the unique solution for the three equations. In Fig. 2.2B the three planes intersect in
a line. Any point on the line of intersection represents a solution so there is no unique solution but an
infinite number of solutions satisfying the three equations. In Fig. 2.2C two of the surfaces are parallel
to each other and therefore they never intersect while in Fig. 2.2D the line of intersection of each pair
of surfaces is different. In both of these cases there is no solution and the equations these surfaces
represent are inconsistent.

2.2 LINEAR EQUATION SYSTEMS 77

FIGURE 2.2

Three intersecting planes representing three equations in three variables. (A) Three plane surfaces intersecting
in a point. (B) Three plane surfaces intersecting in a line. (C) Three plane surfaces, two of which do not
intersect. (D) Three plane surfaces intersecting in three lines.

To obtain an algebraic solution to the inhomogeneous equation system (2.5) we multiply both sides
of (2.5) by a matrix called the inverse of A, denoted by A~!, thus:

A'Ax=A"p (2.6)
where A~ is defined by
ATTA=AA" =1 2.7
and I is the identity matrix. Thus, we obtain
x=A""b (2.8)
The standard algebraic formula for the inverse of A is

A~ =adj(A)/|A] 2.9)

78 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

where |A| is the determinant of A and adj(A) is the adjoint of A. The determinant and the adjoint
of a matrix are defined in Appendix A. Egs. (2.8) and (2.9) are algebraic statements allowing us to
determine x but they do not provide an efficient means of solving the system because computing A~
using (2.9) is extremely inefficient, involving an order (n 4 1)! multiplications where n is the number
of equations. However, (2.9) is theoretically important because it shows that if |A| = 0 then A does not
have an inverse. The matrix A is then said to be singular and a unique solution for x does not exist.
Thus, establishing that |A| is non-zero is one way of showing that an inhomogeneous equation system
is a consistent system with a unique solution. It is shown in Sections 2.6 and 2.7 that (2.5) can be solved
without formally determining the inverse of A.

An important concept in linear algebra is the rank of a matrix. For a square matrix, the rank is the
number of independent rows or columns of the matrix. Independence can be explained as follows. The
rows (or columns) of a matrix can clearly be viewed as a set of vectors. A set of vectors is said to be
linearly independent if none of them can be expressed as a linear combination of any of the others. By
linear combination we mean a sum of scalar multiples of the vectors. For example, the matrix

1 23 [1 2 3] 1 2 3
21 4 |or| [-21 4] |or -2 1 4
-1 3 7 [-1 3 7] —1 3 7

has linearly dependent rows and columns. This is because row 3 —row I —row2 =0 and column3 —
2(column?2) + column 1 = 0. There is only one equation relating the rows and thus there are two
independent rows. Similarly with the columns. Hence, this matrix has a rank of 2. Now consider

1 2 3
2 4 6
36 9

Here row 2 = 2(row 1) and row 3 = 3(row 1). There are two equations relating the rows and hence only
one row is independent so that the matrix has a rank of 1. Note that the number of independent rows
and columns in a square matrix is identical; that is, its row rank and column rank are equal. In general,
matrices may be non-square and the rank of an m x n matrix A is written rank(A). Matrix A is said
to be of full rank if rank(A) = min(m, n); otherwise rank(A) < min(m, n) and A is said to be rank
deficient.

MATLAB provides the function rank which works with both square and non-square matrices to find
the rank of a matrix. In practice, MATLAB determines the rank of a matrix from its singular values; see
Section 2.10. For example, consider the following MATLAB statements:

> D=1[123;347;4-31;-253;1 -7 6]

[l ST~ OC I e
| |

~N O w B

O W =~ W

2.2 LINEAR EQUATION SYSTEMS 79

>> rank(D)

ans =
3

Thus D is of full rank, since its rank is equal to the minimum number of rows or column of D.

A useful operation in linear algebra is the conversion of a matrix to its reduced row echelon form
(RREF). The RREF is defined in Appendix A. In MATLAB we can use the rref function to compute
the RREF of a matrix thus:

>> rref(D)

ans =
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

It is a property of the RREF of a matrix that the number of rows with at least one non-zero element
equals the rank of the matrix. In this example we see that there are three rows in the RREF of the
matrix containing a non-zero element, confirming that the matrix rank is 3. The RREF also allows us
to determine whether a system has a unique solution or not.

We have discussed a number of important concepts relating to the nature of linear equations and
their solutions. We now summarize the equivalencies between these concepts. Let A be an n x n matrix.
If Ax = b is consistent and has a unique solution, then all of the following statements are true:

Ax = 0 has only the trivial solution x = 0.

A is non-singular and det(A) # 0.

The RREF of A is the identity matrix.

A has n linearly independent rows and columns.

A has full rank, that is rank(A) = n.

In contrast, if Ax = b is either inconsistent or consistent but with more than one solution, then all of
the following statements are true:

Ax = 0 has more than one solution.

A is singular and det(A) = 0.

The RREF of A contains at least one zero row.

A has linearly dependent rows and columns.

A is rank deficient, that is rank(A) < n.

So far we have only considered the case where there are as many equations as unknowns. Now we
consider the cases where there are fewer or more equations than the number of unknown variables.

If there are fewer equations than unknowns, then the system is said to be under-determined. The
equation system does not have a unique solution; it is either consistent with an infinity of solutions,
or inconsistent with no solution. These conditions are illustrated by Fig. 2.3. The diagram shows two
plane surfaces in three-dimensional space, representing two equations in three variables. It is seen that

80 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

S2
57
S1

Sl/

FIGURE 2.3

Planes representing an under-determined system of equations. (A) Two plane surfaces intersecting in a line.
(B) Two plane surfaces which do not intersect.

the planes either intersect in a line so that the equations are consistent with an infinity of solutions
represented by the line of intersection, or the surfaces do not intersect and the equations they represent
are inconsistent.

Consider the following system of equations:

X1

1 2 3 4 x2 |
-4 2 -3 7 x3 |
X4

This under-determined system can be rearranged thus:
1 2 X1 n 3 4 x3 | |1
—4 2 b -3 7 X4 I
1 2 X1 _ 1 _ 3 4 X3
—4 2 x | |3 -3 7 X4

Thus, we have reduced this to a system of two equations in two unknowns, provided values are assumed
for x3 and x4. Since x3 and x4 can take an infinity of values, the problem has an infinity of solutions.
If a system has more equations than unknowns, then the system is said to be over-determined.
Fig. 2.4 shows four plane surfaces in three-dimensional space, representing four equations in three
variables. Fig. 2.4A shows all four planes intersecting in a single point so that the system of equations
is consistent with a unique solution. Fig. 2.4B shows all the planes intersecting in a line and this
represents a consistent system with an infinity of solutions. Fig. 2.4D shows planes that represent
an inconsistent system of equations with no solution. In Fig. 2.4C the planes do not intersect in a
single point and so the system of equations is inconsistent. However, in this example the points of
intersection of groups of three planes, (S1, S2, S3), (S1, S2, S4), (S1, S3, S4), and (S2, S3, S4), are
close to each other and a mean point of intersection could be determined and used as an approximate
solution. This example of marginal inconsistency often arises because the coefficients in the equations
are determined experimentally; if the coefficients were known exactly, it is likely that the equations
would be consistent with a unique solution. Rather than accepting that the system is inconsistent, we

or

2.3 OPERATORS \ AND / FOR SOLVING Ax = b 81

N

©) (D)

FIGURE 2.4

Planes representing an over-determined system of equations. (A) Four plane surfaces intersecting in a point.
(B) Four plane surfaces intersecting in a line. (C) Four plane surfaces not intersecting at a single point. Point of
intersection of (S1, S2, S3) and (S1, S2, S4) are visible. (D) Four plane surfaces representing inconsistent
equations.

may ask which solution best satisfies the equations approximately. In Sections 2.11 and 2.12 we deal
with the problem of over-determined and under-determined systems in more detail.

2.3 OPERATORS \ AND /FOR SOLVING Ax=h

The purpose of this section is to introduce the reader to the MATLAB operator \. A detailed discussion
of the algorithms behind its operation will be given in later sections. This operator is a very powerful
one which provides a unified approach to the solution of many categories of linear equation systems.
The operators / and \ perform matrix “division” and have identical effects. Thus, to solve Ax =b we
may write either x=A\b or x’=b"/A". In the latter case the solution x is expressed as a row rather than
a column vector. The algorithm chosen to solve a system of linear equations is dependent on the form
of the matrix A. These cases are outlined as follows:

» if A is a triangular matrix, the system is solved by back or forward substitution alone, described in
Section 2.6.

82 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

» elseif A is a positive definite, square symmetric or Hermitian matrix (see Appendix A.7 for defi-
nitions of these matrices) Cholesky decomposition (described in Section 2.8) is applied. When A
is sparse, Cholesky decomposition is preceded by a symmetric minimum degree preordering (de-
scribed in Section 2.14).

» elseif A is a square matrix, general LU decomposition (described in Section 2.7) is applied. If A
is sparse, this is preceded by a non-symmetric minimum degree preordering (described in Sec-
tion 2.14).

 elseif A is a full non-square matrix, QR decomposition (described in Section 2.9) is applied.

» elseif A is a sparse non-square matrix, it is augmented and then a minimum degree preordering is
applied, followed by sparse Gaussian elimination (described in Section 2.14).

The MATLAB \ operator can also be used to solve AX = B where B and the unknown X are m x n
matrices. This could provide a simple method of finding the inverse of A. If we make B the identity
matrix I then we have

AX =1

and X must be the inverse of A since AA~! = L. Thus, in MATLAB we could determine the inverse of A
by using the statement A\eye(size(A)). Alternatively, MATLAB provides the function inv(A) to find
the inverse of a matrix. It is important to stress that the inverse of a matrix should only be determined
if it is specifically required. If we require the solution of a set of linear equations it is more efficient to
use the operators \ or /.

We now give some example which show how the \ operator works, beginning with the solution of
a system where the system matrix is triangular. The experiment in this case examines the time taken by
the operator \ to solve a system when it is full and then when the same system is converted to triangular
form by zeroing appropriate elements to produce a triangular matrix. The script e4s201, used for this
experiment, is

% eds201.m
disp(’ n full-time full-time/n”3 tri-time tri-time/n*2’);
A=L1;b=11;
for n = 2000:500:6000
A 100*rand(n); b = [l:nl.’;
tic, x = A\b; tl = toc;
tln = 5e9*t1/n"3;
for i = 1:n
for j = i+l:n
ACi,j) = 0;
end
end
tic, x = A\b; t2 = toc;
ton = 1le9*t2/n"2;
fprintf(’%6.0f %9.4f %12.4f %12.4f %11.4f\n’,n,t1,tIn,t2,t2n)

end

The results for a series of randomly generated n x n matrices are as follows:

2.3 OPERATORS \ AND / FOR SOLVING Ax = b 83

n full-time full-time/n”3 tri-time tri-time/n”2
2000 0.3845 0.2403 0.0080 2.0041
2500 0.7833 0.2507 0.0089 1.4182
3000 0.9172 0.1698 0.0122 1.3560
3500 1.3808 0.1610 0.0178 1.4504
4000 2.0325 0.1588 0.0243 1.5215
4500 2.4460 0.1342 0.0277 1.3696
5000 3.5037 0.1401 0.0344 1.3741
5500 4.7222 0.1419 0.0394 1.3016
6000 5.9742 0.1383 0.0556 1.5444

Column 1 of this table gives n, the size of the square matrix. Columns 2 and 4 give the times taken
to solve the full system and the triangular system respectively. Note that the triangular times are much
smaller. Column 3 gives the time divided by n3 and shows that the time take is closely proportional
to n3, whereas Column 5 is multiplied by 10° and divided by n2. We see that the time required to solve
a triangular system is approximately proportional to n>.

We now perform experiments to examine the effects of using the operator \ with positive definite
symmetric systems. This is a more complex problem than those previously discussed and the script
e4s202.m implements this test. It is based on comparing the application of the \ operator to a positive
definite system and a non-positive definite system of equations. We can create a positive define matrix
by letting A = MxM’ where M is any matrix, but in this case M will be a matrix of random numbers, A will
then be a positive define matrix. To generate a non-positive definite system we add a random matrix
to the positive define matrix and we compare the time required to solve the two forms of matrix. The
script for e4s202.m is of the form

% e4s202.m
disp(’ n time-pos time-pos/n*3 time-npos time-b/n*37);
for n = 500:500:5000

A=11; M= 100%randn(n,n);

A= MxM"; b= [1:n].";

tic, x = A\b; tl1 = toc*1000;

tld = t1/n"3;

A = Atrand(size(A));

tic, x = A\b; t2 = toc*1000;

t2d = t2/n"3;

fporintf(*%4.0f %10.4f %14.4e %11.4f %13.4e\n’,n,tl,tld,t2,t2d)
end

The result of running this script is

n time-pos time-pos/n~*3 time-npos time-b/n"3

500 9.9106 7.9285e-08 10.6241 8.4993e-08
1000 46.7403 4.6740e-08 60.0436 6.0044e-08
1500 122.6701 3.6347e-08 164.9225 4.8866e-08
2000 191.2798 2.3910e-08 334.4048 4.1801e-08
2500 374.3233 2.3957e-08 736.9797 4.7167e-08

84 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

3000 619.7430 2.2953e-08 974.7610 3.6102e-08
3500 769.8043 1.7955e-08 1354.9658 3.1603e-08
4000 1040.6866 1.6261e-08 1976.1037 3.0877e-08
4500 1474.6506 1.6183e-08 2518.8017 2.7641e-08
5000 1934.6456 1.5477e-08 3437.0971 2.7497e-08

Column 1 of this table gives n, the size of the matrix. Column 2 gives the time taken multiplied by
1000 for the positive definite matrix and column 4 gives the time taken, again multiplied by 1000, for
the non-positive definite matrix. These results show that the time taken to determine the solution for the
system is somewhat faster for the positive definite system. This is because the operator \ checks to see
if the matrix is positive definite and if so uses the more efficient Cholesky decomposition. Columns 3
and 5 give the times divided by the size of the matrix cubed to illustrate that the processing times are
approximately proportional to 13,

The next test we perform examines how the operator \ succeeds with the very badly conditioned
Hilbert matrix. The test gives the time taken to solve the system and the accuracy of the solution
given by the Euclidean norm of the residuals, that is norm(Ax — b). For the definition of the norm see
Appendix A, Section A.10. In addition the test compares these results for the \ operator with the results
obtained using the inverse, that is x = A~'b. The script e45203.m performs this test.

% e4s203.m
disp(’ n time-slash acc-slash time-inv acc-inv condition’);
for n =4:2:20

A =hilb(n); b = [1l:n].”;

tic, x = A\b; t1 = toc; tl = t1x10000;

nml = norm(b-A*x);

tic, x = inv(A)*b; t2 = toc; t2 = t2x10000;

nm2 = norm(b-A*x);

c = cond(A);

fprintf(’%2.0f %10.4f %10.2e %8.4f %11.2e %11.2e \n’,n,tl,nml,t2,nm2,c)
end

Script e4s203.m produces the following table of results:

n time-slash acc-slash time-inv acc-inv condition
4 0.8389 4.11e-14 0.6961 8.89%e-13 1.55e+04
6 0.4730 2.89%e-12 0.6649 3.74e-10 1.50e+07
8 0.4462 1.89e-10 0.7229 5.60e-07 1.53e+10
10 0.4641 9.81e-09 0.8479 2.97e-04 1.60e+13
12 10.2279 5.66e-07 9.4157 3.42e-01 1.62e+16
14 9.0498 1.33e-05 8.5991 5.33e+01 2.55e+17
16 8.7687 4.57e-05 8.6035 1.01e+03 4.89e+17
18 8.7776 2.25e-05 8.6660 1.92e+02 1.35e+18
20 9.5094 6.91e-05 8.9784 7.04e+01 2.11e+18

This output has been edited to remove warnings about the ill-conditioning of the matrix for n >= 10.
Column 1 gives the size of the matrix. Columns 2 and 3 give the time taken multiplied by 10,000 and

2.4 ACCURACY OF SOLUTIONS AND ILL-CONDITIONING 85

the accuracy when using the \ operator, respectively. Columns 4 and 5 give the same information when
using the inv function. Column 6 gives the condition number of the system matrix. When the condition
number is large, the matrix is nearly singular and the equations are ill-conditioned. Ill-conditioning is
fully described in Section 2.4.

The results in the preceding table demonstrate convincingly the superiority of the \ operator over the
inv function for solving a system of linear equations. It is considerably more accurate than using matrix
inversion. However, it should be noted that the accuracy falls off as the matrix becomes increasingly
ill-conditioned.

The MATLAB operator \ can also be used to solve under- and over-determined systems. In this case
the operator \ uses a least squares approximation, discussed in detail in Section 2.12.

2.4 ACCURACY OF SOLUTIONS AND ILL-CONDITIONING

‘We now consider factors which affect the accuracy of the solution of Ax = b and how any inaccuracies
can be detected. A further discussion on the accuracy of the solution of this equation system is given
in Appendix B, Section B.3. We begin with the following examples.

Example 2.1. Consider the following MATLAB statements:
>> A =[3.021 2.714 6.913;1.031 -4.273 1.121;5.084 -5.832 9.155]
3.0210 2.7140 6.9130
1.0310 -4.2730 1.1210
5.0840 -5.8320 9.1550
>> b = [12.648 -2.121 8.4071.”
b =
12.6480
-2.1210
8.4070
>> A\b
ans =
1.0000
1.0000

1.0000

This result is correct and easily verified by substitution into the original equations.

86 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Example 2.2. This example is obtained from Example 2.1 with A(2,2) changed from —4.2730 to
—4.2750 thus:

>> A(2,2) = -4.2750

3.0210 2.7140 6.9130
1.0310 -4.2750 1.1210
5.0840 -5.8320 9.1550

>> A\Db

ans =
-1.7403
0.6851
2.3212

Here we have a solution which is very different from that of Example 2.1, even though the only change
in the equation system is less than 0.1% in coefficient a(2,2).

The two examples just shown have dramatically different solutions because the coefficient matrix A
is ill-conditioned. Ill-conditioning can be interpreted graphically by representing each of the equation
systems by three plane surfaces, in the manner shown in Fig. 2.2. In an ill-conditioned system at least
two of the surfaces will be almost parallel so that the point of intersection of the surfaces will be very
sensitive to small changes in slope, caused by small changes in coefficient values.

A system of equations is said to be ill-conditioned if a relatively small change in the elements of the
coefficient matrix A causes a relatively large change in the solution. Conversely, a system of equations
is said to be well-conditioned if a relatively small change in the elements of the coefficient matrix A
causes a relatively small change in the solution. Clearly, we require a measure of the condition of a
system of equations. We know that a system of equations without a solution — the very worst condition
possible — has a coefficient matrix with a determinant of zero. It is therefore tempting to think that
the size of the determinant of A can be used as a measure of condition. However, if Ax =b and A
is an n x n diagonal matrix with each element on the leading diagonal equal to s, then A is perfectly
conditioned, regardless of the value of s. But the determinant of A in this case is s”. Thus, the size of
the determinant of A is not a suitable measure of condition because in this example it changes with s
even though the condition of the system is constant.

Two of the functions MATLAB provides to estimate the condition of a matrix are cond and rcond.
The function cond is a sophisticated function and is based on singular value decomposition, discussed
in Section 2.10. For a perfect condition cond is unity but gives a large value for a matrix which is ill-
conditioned. The function rcond is less reliable but usually faster. This function gives a value between
zero and one. The smaller the value, the worse the conditioning. The reciprocal of rcond is usually of
the same order of magnitude as cond. We now illustrate these points with two examples.

2.4 ACCURACY OF SOLUTIONS AND ILL-CONDITIONING 87

Example 2.3. Tllustration of a perfectly conditioned system:

>> A = diag([20 20 201)

20 0 0
20
0 0 20

>> [det(A) rcond(A) cond(A)]
ans =
8000 1 1
Example 2.4. Tllustration of a badly conditioned system:

> A=1[123;456;7 8 9.0000017;
>> format short e
>> [det(A) rcond(A) 1/rcond(A) cond(A)]

ans =
-3.0000e-06 6.9444e-09 1.4400e+08 1.0109e+08

Note that the reciprocal of the rcond value is close to the value of cond. Using the MATLAB
functions cond and rcond we now investigate the condition number of the Hilbert matrix (defined
in Problem 2.1), using the script e4s204 . m:

% e4s204.m Hilbert matrix test.

disp(”’ n cond rcond logl0(cond)’)
for n =4:2:20
A= hilb(n);

fprintf(’%5.0f %16.4e’ ,n,cond(A));
fprintf(’%16.4e %10.2f\n’,rcond(A),Togl0(cond(A)));
end

Running script e4s204.m gives

n cond rcond 1ogl0(cond)
n cond rcond 1ogl0(cond)
4 1.5514e+04 3.5242e-05 4.19
6 1.4951e+07 3.4399e-08 7.17
8 1.5258e+10 2.9522e-11 10.18
10 1.6025e+13 2.8285e-14 13.20
12 1.6212e+16 2.5334e-17 16.21
14 2.5515e+17 6.9286e-19 17.41
16 4.8875e+17 1.3275e-18 17.69
18 1.3500e+18 2.5084e-19 18.13
20 2.1065e+18 1.2761e-19 18.32

88 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

This shows that the Hilbert matrix is ill-conditioned even for relatively small values of n, the size of the
matrix. The last column of the output of e4s204.m gives the value of log;, of the condition number of
the appropriate Hilbert matrix. This gives a rule of thumb estimate of the number of significant figures
lost in solving an equation system with this matrix or inverting the matrix.

The Hilbert matrix of order n was generated in the preceding script using the MATLAB function
hilb(n). Other important matrices with interesting structure and properties, such as the Hadamard ma-
trix and the Wilkinson matrix can be obtained using, in these cases the MATLAB function hadamard(n)
and wilkinson(n) where n is the required size of the matrix. In addition, many other interesting ma-
trices can be accessed using the gallery function. In almost every case, we can choose the size of
the matrix and in many cases we can also choose other parameters within the matrix. Example calls
are

gallery(’hanowa’,6,4)
gallery(’cauchy’,6)

gallery(’forsythe’,6,8)

The next section begins the detailed examination of one of the algorithms used by the \ operator.

2.5 ELEMENTARY ROW OPERATIONS

We now examine the operations that can usefully be carried out on each equation of a system of
equations. Such a system will have the form

anxi+apxs+...+apx, =b
ax1x2 +apxy+...+ayx, =b

A1 Xy + AnoXxa + ...+ appxy, = by,

or in matrix notation

Ax=Db
where
ail ap... A by X1
a1 axp... ay by X2
A= b= X =
Anl dp2... dpn by Xn

A is called the coefficient matrix. Any operation performed on an equation must be applied to both its
left and right sides. With this in mind it is helpful to combine the coefficient matrix A with the right

2.6 SOLUTION OF Ax = b BY GAUSSIAN ELIMINATION 89

side vector b thus:

an ap... ap b

ay ap... ay b
A:

apl Qpa... dun by

This new matrix is called the augmented matrix and we will write it as [A b]. We have chosen to adopt
this notation because it is consistent with MATLAB notation for combining A and b. Note that if A is
an n X n matrix, then the augmented matrix is an n x (n + 1) matrix. Each row of the augmented matrix
holds all the coefficients of an equation and any operation must be applied to every element in the row.
The three elementary row operations described in 1, 2, and 3 can be applied to individual equations in
a system without altering the solution of the equation system. They are:

1. Interchange the position of any two rows (that is any two equations).
2. Multiply a row (that is an equation) by a non-zero scalar.
3. Replace a row by the sum of the row and a scalar multiple of another row.

These elementary row operations can be used to solve some important problems in linear algebra and
we now discuss an application of them.

2.6 SOLUTION OF Ax = b BY GAUSSIAN ELIMINATION

Gaussian elimination is an efficient way to solve equation systems, particularly those with a non-
symmetric coefficient matrix having a relatively small number of zero elements. The method depends
entirely on using the three elementary row operations, described in Section 2.5. Essentially the proce-
dure is to form the augmented matrix for the system and then reduce the coefficient matrix part to an
upper triangular form. To illustrate the systematic use of the elementary row operations we consider
the application of Gaussian elimination to solve the following equation system:

3 6 97n 3
2 G+p) 2 ||xl=| 4 (2.10)
-3 4 —11 | |x3 -5

where the value of p is known. Table 2.1 shows the sequence of operations, beginning at Stage 1 with
the augmented matrix. In Stage 1 the element in the first column of the first row (enclosed in a box in
the table) is designated the pivot. We wish to make the elements of column 1 in rows 2 and 3 zero. To
achieve this, we divide row 1 by the pivot and then add or subtract a suitable multiple of the modified
row 1 to or from rows 2 and 3. The result of this is shown in Stage 2 of the table. We then select the
next pivot. This is the element in the second column of the new second row, which in Stage 2 is equal
to p. If p is large, this does not present a problem, but if p is small, then numerical problems may
arise because we will be dividing all the elements of the new row 2 by this small quantity p. If p is
small then we are in effect multiplying the pivot by a large number. This not only multiplies the pivot
element by this value but also amplifies any rounding error in the element by the same amount. If p

90 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Table 2.1 Gaussian elimination used to transform an augmented
matrix to upper triangular form

Al a3 6 9 3 Stage 1:

A2 2 (“4+p 2 4 Initial matrix
A3 -3 —4 —11 =5

Al 3 6 3 Stage 2: Reduce
B2=A2-2(A1)/3 | O p —4 2 col 1 of row
B3=A3+3(A1)/3| O 2 -2 -2 2 & 3 to zero
Al 3 6 9 3 Stage 3:

B3 0 -2 -2 Interchange

B2 0 p —4 2 rows 2 & 3

Al 3 6 9 3 Stage 4: Reduce
B3 0 2 -2 -2 col 2 of row
C3=B2-p(B3)/2| 0 0 [=4Fp] 2+p)|3tozero

is zero, then we have an impossible situation because we cannot divide by zero. This difficulty is not
related to ill-conditioning; indeed this particular equation system is quite well conditioned when p is
zero. To circumvent these problems the usual procedure is to interchange the row in question with the
row containing the element of largest modulus in the column below the pivot. In this way we provide
a new and larger pivot. This procedure is called partial pivoting. If we assume in this case that p < 2,
then we interchange rows 2 and 3 as shown in Stage 3 of the table to replace p by 2 as the pivot. From
row 3 we now subtract row 2 divided by the pivot and multiplied by a coefficient in order to make the
element of column 2, row 3, zero. Thus, in Stage 4 of the table it can be seen that the original coefficient
matrix has been reduced to an upper triangular matrix. If, for example, p = 0, we obtain

3x1 +6x2 +9x3 =3 (2.11)
2xp —2x3=-2 (2.12)
—4x3=2 (2.13)

We can obtain the values of the unknowns x1, x», and x3 by a process called back substitution. We
solve the equations in reversed order. Thus, from (2.13), x3 = —0.5. From (2.12), knowing x3, we have
x3 = —1.5. Finally from (2.11), knowing x; and x3, we have x; =5.5.

It can be shown that the determinant of a matrix can be evaluated from the product of the elements
on the main diagonal provided at Stage 3 in Table 2.1. This product must be multiplied by (—1)"
where m is the number of row interchanges used. For example, in the preceding problem, with p =0,
one row interchange is used so that m = 1 and the determinant of the coefficient matrix is given by
3x2x(=4) x (=) =24.

A method for solving a linear equation system that is closely related to Gaussian elimination is
Gauss—Jordan elimination. The method uses the same elementary row operations but differs from Gaus-
sian elimination because elements both below and above the leading diagonal are reduced to zero. This
means that back substitution is avoided. For example, solving system (2.10) with p = 0 leads to the

2.7 LU DECOMPOSITION 91

following augmented matrix:

30 0 165
02 0 =30
00 —4 20

Thus x; =16.5/3=5.5,xo=-3/2=—1.5,andx3 =2/ —4=-0.5.

Gaussian elimination requires order n3/3 multiplications followed by back substitution requiring
order n? multiplications. Gauss—Jordan elimination requires order n3 /2 multiplications. Thus, for large
systems of equations (say n > 10), Gauss—Jordan elimination requires approximately 50% more oper-
ations than Gaussian elimination.

2.7 LU DECOMPOSITION

LU decomposition (or factorization) is a similar process to Gaussian elimination and is equivalent in
terms of elementary row operations. The matrix A can be decomposed so that

A=LU (2.14)

where L is a lower triangular matrix with a leading diagonal of ones and U is an upper triangular
matrix. Matrix A may be real or complex. Compared with Gaussian elimination, LU decomposition
has a particular advantage when the equation system we wish to solve, Ax = b, has more than one
right side or when the right sides are not known in advance. This is because the factors L and U are
obtained explicitly and they can be used for any right sides as they arise without recalculating L. and U.
Gaussian elimination does not determine L explicitly but rather forms L~'b so that all right sides must
be known when the equation is solved.

The major steps required to solve an equation system by LU decomposition are as follows. Since
A =LU, then Ax = b becomes

LUx=b

where b is not restricted to a single column. Letting y = Ux leads to
Ly=b

Because L is a lower triangular matrix this equation is solved efficiently by forward substitution. To
find x we then solve

Ux=y

Because U is an upper triangular matrix, this equation can also be solved efficiently by back substitu-
tion.

We now illustrate the LU decomposition process by solving (2.10) with p = 1. We are not con-
cerned with b and we do not form an augmented matrix. We proceed exactly as with Gaussian
elimination, see Table 2.1, except that we keep a record of the elementary row operations performed at
the ith stage in T®) and place the results of these operations in a matrix U®) rather than over-writing A.

92 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

We begin with the matrix

36 9
A=| 2 5 2 (2.15)
-3 —4 —11

Following the same operations as used in Table 2.1, we will create a matrix U!) with zeros below the
leading diagonal in the first column using the following elementary row operations:

row 2 of UV = row 2 of A — 2(row 1 of A)/3 (2.16)

and
row 3 of U = row 3 of A + 3(row 1 of A)/3 (2.17)

Now A can be expressed as the product TV UM as follows:

3 6 9 1 00 36 9
2 5 2 =123 10 01 -4
-3 -4 -11 -1 0 1 0 2 -2

Note that row 1 of A and row 1 of U") are identical. Thus row 1 of T} has a unit entry in column 1
and zero elsewhere. The remaining rows of TM are determined from (2.16) and (2.17). For example,
row 2 of TV is derived by rearranging (2.16); thus:

row 2 of A = row 2 of UD — 2(row 1 of A)/3 (2.18)

or
row 2 of A = 2(row 1 of U")/3 + row 2 of UV (2.19)

since row 1 of UM is identical to row 1 of A. Hence row 2 of T is [2/310].

We now move to the next stage of the decomposition process. In order to bring the largest element
of column 2 in U) onto the leading diagonal we must interchange rows 2 and 3. Thus U'" becomes
the product T@U® as follows:

36 9 1 00 36 9
01 -4 (=0 01 0 2 -2
0 2 -2 010 01 -4

Finally, to complete the process of obtaining an upper triangular matrix we make
row 3 of U= row 3 of U? — (row 2 of U?)/2

Hence, U@ becomes the product TOU as follows:

36 9 1 0 0 36 9
02 =2 |=]0 1 0 0 2 =2
01 —4 0 1/2 1 0 0 -3

2.7 LU DECOMPOSITION 93

Thus A = TOTATOU, implying that L = TOTAT® as follows:

1 00 1 00 1 00 1 00
2/3 1 0 00 1 0 1 0 |=]|23 1/2 1
-1 0 1 010 0 12 1 -1 10

Note that owing to the row interchanges L is not strictly a lower triangular matrix but it can be made
so by interchanging rows.

MATLAB implements LU factorization by using the function 1u and may produce a matrix that is
not strictly a lower triangular matrix. However, a permutation matrix P may be produced, if required,
such that LU = PA with L lower triangular.

We now show how the MATLAB function 1u solves the example based on the matrix given in
(2.15):

>> A=1[3629;252;-3 -4 -111]

2
-4 -11

To obtain the L and U matrices, we must use that MATLAB facility of assigning two parameters simul-
taneously as follows:

>> [L1 Ul = Tu(A)

L1 =
1.0000 0 0
0.6667 0.5000 1.0000
-1.0000 1.0000 0
U =

3.0000 6.0000 9.0000
0 2.0000 -2.0000
0 0 -3.0000

Note that the L1 matrix is not in lower triangular form, although its true form can easily be deduced by
interchanging rows 2 and 3 to form a triangle. To obtain a true lower triangular matrix we must assign
three parameters as follows:

>> [L U PI = Tu(A)

1.0000 0 0
-1.0000 1.0000 0
0.6667 0.5000 1.0000

94 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

U =
3.0000 6.0000 9.0000
0 2.0000 -2.0000
0 0 -3.0000
p =
1 0 0
0 0 1
0 1 0

In the preceding output, P is the permutation matrix such that LxU = PxA or P’ xLxU = A. Thus P’ L is
equal to L1.

The MATLAB operator \ determines the solution of Ax = b using LU factorization. As an example
of an equation system with multiple right sides we solve AX = B where

3 4 -5 1 3
A= 6 -3 4 andB=| 9 5
8 9 -2 9 4

Performing LU decomposition such that LU = A gives

0.375 —-0.064 1 8 9 -2
L= 0.750 1 0 andU=| 0 -9.75 5.5
1 0 0 0 0 -—3.897
Thus LY = B is given by
0375 —0.064 1 il v 13
0.750 1 0 Y1 Yy (=] 9 5
1 0 0 ¥ y3 9 4

We note that implicitly we have two systems of equations which when separated can be written:

yi1 1 Y12 3
L| yu = 9 andL| y» |=]| 5
y31 9 y32 4

In this example, L is not strictly a lower triangular matrix owing to the reordering of the rows. However,
the solution of this equation is still found by forward substitution. For example, 1y;; = b3 =9, so that
¥11 =9. Then 0.75y11 + 1y21 = b1 =9. Hence y21 = 2.25, etc. The complete Y matrix is

9.000 4.000
Y= 2.250 2.000
—2.231 1.628

2.8 CHOLESKY DECOMPOSITION 95

Finally solving UX =Y by back substitution gives

1.165 0.891
X=| 0.092 -0.441
0.572 —-0.418

The MATLAB function det determines the determinant of a matrix using LU factorization as follows.
Since A = LU then |A| = |L| |UJ. The elements of the leading diagonal of L are all ones so that |L| = 1.
Since U is upper triangular, its determinant is the product of the elements of its leading diagonal. Thus,
taking account of row interchanges the appropriately signed product of the diagonal elements of U
gives the determinant.

2.8 CHOLESKY DECOMPOSITION

Cholesky decomposition or factorization is a form of triangular decomposition that can only be applied
to either a positive definite symmetric matrix or a positive definite Hermitian matrix. A symmetric
matrix A is said to be positive definite if x' Ax > 0 for any non-zero x. Similarly, if A is Hermitian,
then x"Ax > 0. A more useful definition of a positive definite matrix is one that has all eigenvalues
greater than zero. The eigenvalue problem is discussed in Section 2.15. If A is symmetric or Hermitian,
we can write

A=P'P (or A =P"P when A is Hermitian) (2.20)

where P is an upper triangular matrix. The algorithm computes P row by row by equating coefficients
of each side of (2.20). Thus p11, p12, P13s ---» P22, P23, -.. are determined in sequence, ending with py,,.
Coefficients on the leading diagonal of P are computed from expressions that involve determining a

square root. For example,
— 2
P22 =4/022 — P|»

A property of positive definite matrices is that the term under the square root is always positive and
so the square root will be real. Furthermore, row interchanges are not required because the dominant
coefficients will always be on the main diagonal. The whole process requires only about half as many
multiplications as LU decomposition. Cholesky factorization is implemented for positive definite sym-
metric matrices in MATLAB by the function chol. For example, consider the Cholesky factorization of
the following positive definite Hermitian matrix:

>> A =1[2 -1 031 20;00 3]
A =
2.0000 + 0.00001 0.0000 - 1.00001 0.0000 + 0.00001

0.0000 + 1.00001 2.0000 + 0.00001 0.0000 + 0.00001
0.0000 + 0.00001 0.0000 + 0.00001 3.0000 + 0.00001

>> P = chol(A)

96 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

p =
1.4142 + 0.00001 0.0000 - 0.70711 0.0000 + 0.00001
0.0000 + 0.00001 1.2247 + 0.0000i 0.0000 + 0.00001
0.0000 + 0.00001 0.0000 + 0.00001 1.7321 + 0.00001

When the operator \ detects a symmetric positive definite or Hermitian positive definite system matrix,
it solves Ax = b using the following sequence of operations. A is factorized into PP, y is set to Px;
then PTy =b. The algorithm solves for y by forward substitution since PT is a lower triangular matrix.
Then x can be determined from y by backward substitution since P is an upper triangular matrix. We
can illustrate the steps in this process by the following example:

2 3 4 2
A=| 3 6 7 |andb=| 4
4 7 10 8

Then by Cholesky factorization

1.414 2.121 2.828
P= 0 1.225 0.817
0 0 1.155

Now since PTy = b solving for y by forward substitution gives

1.414
y=| 0.817
2.887
Finally solving Px =y by back substitution gives
-2.5
x=| —1.0
2.5

We now compare the performance of the operator \ with the function chol. Clearly, their perfor-
mance should be similar in the case of a positive definite matrix. To generate a symmetric positive
definite matrix in script e4s205.m, we multiply a matrix by its transpose:

% e4s205.m
disp(” n time-backslash time-chol’);
for n = 1000:100:2000

A=1[1; M= 100xrandn(n,n);

A= MxM"; b = [1:n].";

tic, x = A\b; tl = toc;

tic, R = chol(A);

v = R.’\b; x = R\b;

2.9 QR DECOMPOSITION 97

t2 = toc;
fporintf(*%4.0f %14.4f %13.4f \n’,n,tl1,t2)
end

Running script e4s205.m gives

n time-backslash time-chol
1000 0.0320 0.0232
1100 0.0388 0.0246
1200 0.0447 0.0271
1300 0.0603 0.0341
1400 0.0650 0.0475
1500 0.0723 0.0420
1600 0.0723 0.0521
1700 0.0965 0.0552
1800 0.1142 0.0679
1900 0.1312 0.0825
2000 0.1538 0.1107

The similarity in performance of the function chol and the operator \ is borne out in the preceding
table. In this table, column 1 gives the size of the matrix and column 2 gives the time taken using the \
operator. Column 3 gives the time taken using Cholesky decomposition to solve the same problem.

Cholesky factorization can be applied to a symmetric matrix which is not positive definite but the
process does not possess the numerical stability of the positive definite case. Furthermore, one or more
rows in P may be purely imaginary. For example,

1 2 3 1 2 3
IfA=| 2 -5 9 |[thenP=| 0 31 —
3 9 4 0 0 2

This is not implemented in MATLAB.

2.9 QR DECOMPOSITION

We have seen how a square matrix can be decomposed or factorized into the product of a lower and an
upper triangular matrix by the use of elementary row operations. An alternative decomposition of A is
into an upper triangular matrix and an orthogonal matrix if A is real, or into an upper triangular matrix
and a unitary matrix if A is complex. This is called QR decomposition. Thus

A=QR

where R is the upper triangular matrix and Q is the orthogonal, or the unitary matrix. If Q is orthogonal,
Q' =QT, and if Q is unitary, Q—! = Q". The preceding properties are very useful.

98 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

There are several procedures which provide QR decomposition; here we present Householder’s
method. To decompose a real matrix, Householder’s method begins by defining a matrix P thus:

P=I-2ww' (2.21)

where w is a column vector and P is symmetrical matrix. Provided wlw =1, Pisalso orthogonal. The
orthogonality can easily be verified by expanding the product PTP = PP as follows:

PP — (I - 2wa) (I _ 2wa)
=1—4ww' + dww' (WWT)

=1—dww' + 4w (WTW) wl =1

since wlw = 1.

To decompose A into QR, we begin by forming the vector w; from the coefficients of the first
column of A as follows:

T
w, =i [(arn —s1) az1 aszr ... apl

where

172
1

n
2
|=————ands; == a-
o A/2s1(s1 —ar) ng il

By substituting for p; and s; in wj it can be verified that the necessary orthogonality condition,
wlw; = 1, is satisfied. Substituting w; into (2.21) we generate an orthogonal matrix P(.
The matrix AV is now created from the product P(V A Tt can easily be verified that all elements in

the first column of A1) are zero except for the element on the leading diagonal which is equal to s;.

Thus,
L e
o + - +
AD=pA=| :
o + - +
0 + - +

In the matrix AV, + indicates a non-zero element.
‘We now begin the second stage of the orthogonalization process by forming w, from the coefficients
of the second column of A() thus:

1 n oa 1
W) = o [0 (“52) - S2> ay, agy-- '“22)]

2.9 QR DECOMPOSITION 99

where a;; are the coefficients of A and

) 1/2
1
— — (1,2
= 5 and 5o =+ Z(ajz)
257(s2 — a5y) j=2
Then the orthogonal matrix P is generated from
P? =1- 2wzw;

The matrix A® is then created from the product P@ AWM as follows:
s+ e+
0 s - +

A —pOAD) —pOPpDA —

o o0 - +
o o0 --- +

Note that A® has zero elements in its first two columns except for the elements on and above the
leading diagonal. We can continue this process n — 1 times until we obtain an upper triangular matrix R.
Thus,

R=pP" D p@pha (2.22)

Note that since P is orthogonal, the product P*~1 . P@PWD s also orthogonal.
We wish to determine the orthogonal matrix Q such that A = QR. Thus R=Q 'A or R = Q'A.
Hence, from (2.22),

Q' =P~V p@pD

Apart from the signs associated with the columns of Q and the rows of R, the decomposition is unique.
These signs are dependent on whether the positive or negative square root is taken in determining
51, 52, etc. Complete decomposition of the matrix requires 21> /3 multiplications and n square roots.
To illustrate this procedure consider the decomposition of the matrix

4 =2 7
A=| 6 2 -3
3 4 4

Thus,
51 =+/4%+ 62 +32=7.8102

_ 1 _
M= amioncasion=s = 0-1296

WI =0.1296[(4 — 7.8102) 6 3] =[—-0.4939 0.7777 0.3889]

100 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Using (2.21) we generate P() and hence A(!) thus:

0.5121 0.7682 0.3841
PO = 0.7682 —0.2097 —0.6049
0.3841 —0.6049 0.6976

7.8102 2.0486 2.8168
AD —pDA — 0 —4.3753 3.5873
0 0.8123 7.2936

Note that we have reduced the elements of the first column of A" below the leading diagonal to zero.
We continue with the second stage thus:

52 =~/—4.37532 + 0.81232 = 4.4501

j— 1 _
M= Zrmnaasoaany — 01128

w-lz— =0.1128[0 (—4.3753 —4.4501) 0.8123] =[0 —0.9958 0.0917]

1 0 0
P®=| 0 —0.9832 0.1825
0 0.1825 0.9832
7.8102 2.0486 2.8168
R=A® =pPAD = 0 4.4501 —2.1956
0 0 7.8259

Note that we have now reduced the first two columns of A below the leading diagonal to zero. This
completes the process to determine the upper triangular matrix R. Finally, we determine the orthogonal
matrix Q as follows:

. [05121 —06852 05179

_ (p@ph)' _
Q_(P(P) —| 07682 0.0958 —0.6330
03841 07220 0.5754

It is not necessary for the reader to carry out the preceding calculations since MATLAB provides the
function qr to carry out this decomposition. For example,

>> A= [4-27:62 -3:3 4 4]
A =

4 -2 7

6 2

3 4

>> [Q RI = qr(A)

2.10 SINGULAR VALUE DECOMPOSITION 101

Q =
-0.5121 0.6852 0.5179
-0.7682 -0.0958 -0.6330
-0.3841 -0.7220 0.5754
R =

-7.8102 -2.0486 -2.8168
0 -4.4501 2.1956
0 0 7.8259

~nNo

Note that the matrices Q and R in the MATLAB output are the negative of the hand calculations of Q
and R above. This is not significant since their product is equal to A, and in the multiplication, the
signs cancel.

One advantage of QR decomposition is that it can be applied to non-square matrices, decomposing
an m X n matrix into an m X m orthogonal matrix and an m X n upper triangular matrix. Note that if
m > n, the decomposition is not unique.

2.10 SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of an m x n matrix A is given by
A=USV' (or A=USV" if A is complex) (2.23)

where U is an orthogonal m x m matrix and V is an orthogonal #n x n matrix. If A is complex then U
and V are unitary matrices. In all cases S is a real diagonal m x n matrix. The elements of the leading
diagonal of this matrix are called the singular values of A. Normally they are arranged in decreasing
value so that s; > s > ... > s5,,. Thus,

sy 0 0 7]
52 ... 0
S=| 0 O Sn
0 0 0
L 0 O 0

The singular values are the non-negative square roots of the eigenvalues of ATA. Because ATA is
symmetric or Hermitian these eigenvalues are real and non-negative so that the singular values are

102 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

also real and non-negative. Algorithms for computing the SVD of a matrix are given by Golub and
Van Loan (1989).

The SVD of a matrix has several important applications. In Section 2.4, we introduced the reduced
row echelon form of a matrix and explained how the MATLAB function rref gave information from
which the rank of a matrix can be deduced. However, rank can be more effectively determined from
the SVD of a matrix since its rank is equal to the number of its non-zero singular values. Thus, for a
5 x 5 matrix of rank 3, s4 and s5 would be zero. In practice, rather than counting the non-zero singular
values, MATLAB determines rank from the SVD by counting the number of singular values greater
than some tolerance value. This is a more realistic approach to determining rank than counting any
non-zero value, however small.

To illustrate how singular value decomposition helps us to examine the properties of a matrix we
will use the MATLAB function svd to carry out a singular value decomposition and compare it with
the function rref. Consider the following example in which a Vandermonde matrix is created using
the MATLAB function vander. The Vandermonde matrix is known to be ill-conditioned. SVD allows
us to examine the nature of this ill-conditioning. In particular a zero or a very small singular value
indicates rank deficiency and this example shows that the singular values are becoming relatively close
to this condition. In addition SVD allows us to compute the condition number of the matrix. In fact,
the MATLAB function cond uses SVD to compute the condition number and this gives the same values
as obtained by dividing the largest singular value by the smallest singular value. Additionally, the
Euclidean norm of the matrix is supplied by the first singular value. Comparing the SVD with the
RREF process in the following script, we see that the result of using the MATLAB functions rref
and rank give the rank of this special Vandermonde matrix as 5 but tells us nothing else. There is no
warning that the matrix is badly conditioned.

>> ¢ =1[11.01 1.02 1.03 1.047;
>> V' = vander(c)

.0000
.0406
.0824
.1255
.1699

.0000
.0303
.0612
.0927
.1249

.0000
.0201
.0404
.0609
.0816

.0000
.0100
.0200
.0300
.0400

.0000
.0000
.0000
.0000
.0000

R = = T S
e e e i
e e S S Y
e =
R T = T =

>> format Tong
>> s = svd(V)

.210367051037899
.101918335876689
.000699698839445
.000002352380295
.000000003294983

o O O O o1

>> norm(V)

ans =
5.210367051037898

>> cond(V)

ans =
1.581303244929480e+09

>> s(1)/s(b)

ans =
1.581303244929480e+09

>> rank(V)

ans =
5

>> rref(V)

ans =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2.10 SINGULAR VALUE DECOMPOSITION

103

The following example is very similar to the preceding one but the Vandermonde matrix has now
been generated to be rank deficient. The smallest singular value, although not zero, is zero to machine
precision and rank returns the value of 4.

>> c¢=1[11.011.021.03 1.03];

>> V = vander(c)

\/ =
1.0000 1.0000 1.0000
1.0406 1.0303 1.0201
1.0824 1.0612 1.0404
1.1255 1.0927 1.0609
1.1255 1.0927 1.0609

>> format long e
>> s = svd(V)

— o b e

.0000
.0100
.0200
.0300
.0300

— o b e

.0000
.0000
.0000
.0000
.0000

104 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

5.187797954424026e+00
8.336322098941423e-02
3.997349250041025e-04
8.462129966394409e-07
1.261104176071465e-23

>> format short

>> rank(V)
ans =
4
>> rref(V)
ans =
1.0000 0 0 0 -0.9424
0 1.0000 0 0 3.8262
0 0 1.0000 0 -5.8251
0 0 0 1.0000 3.9414
0 0 0 0 0
>> cond(V)
ans =
4.1137e+23

The rank function does allow the user to vary the tolerance using a second parameter, that is
rank(A,tol) where tol gives the tolerance for acceptance of the singular values of A to be taken
as non-zero. However, tolerance should be used with care since the rank function counts the number of
singular values greater than tolerance and this gives the rank of the matrix. If tolerance is very small,
that is, smaller than the machine precision, the rank may be miscounted.

2.11 THE PSEUDO-INVERSE

Here we discuss the pseudo-inverse and in Section 2.12 we apply it to solve over- and under-determined
systems.
If A is an m X n rectangular matrix, then the system

Ax=b (2.24)

cannot be solved by inverting A, since A is not a square matrix. Assuming an equation system with
more equations than variables, that is m > n, then by pre-multiplying (2.24) by AT we can convert the

2.11 THE PSEUDO-INVERSE 105

system matrix to a square matrix as follows:
ATAx=ATb

The product ATA is square and, provided it is non-singular, it can be inverted to give the solution to
(2.24) thus:

X = (ATA)_l ATb (2.25)
Let
At = (ATA>7] AT (2.26)

The matrix A7 is called the Moore—Penrose pseudo-inverse of A or just the pseudo inverse. Thus, the
solution of (2.24) is

x=(AT)b (2.27)

This definition of the pseudo-inverse, AT, requires A to have full rank. If A is full rank and m > n,
then rank(A) = n. Now rank(ATA) = rank(A) and hence rank(ATA) = n. Since ATAisann x n array,
ATA is automatically full rank and At is then a unique m x n array. If A is rank deficient, then ATA is
rank deficient and cannot be inverted.

If A is square and non-singular, then AT = A1, If A is complex then

At = (AHA)_1 AH (2.28)

where A™ is the conjugate transpose, described in Appendix A, Section A.6. The product ATA has
a condition number which is the square of the condition number of A. This has implications for the
computations involved in AT,

It can be shown that the pseudo-inverse A has the following properties:

1. AADHA =A,
2. (ADHAAN) =AT,
3. (AM)A and A(A™) are symmetrical matrices.

We must now consider the situation that occurs when A of (2.24) is an m x n array with m < n,
that is an equation system with more variables than equations. If A is a full rank, then rank(A) = m.
Now rank(ATA) = rank(A) and hence rank(ATA) = m. Since ATA is an n x n matrix, ATA is rank

deficient and cannot be inverted, even though A is of full rank. We can avoid this problem by recasting
(2.24) as follows:

Ax = (AAT) (AAT)_l b
and hence, multiplying by A~!

x=AT (AAT)_1 b

106 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Thus,
X = (A+) b

where AT = AT(AAT)’1 and is the pseudo-inverse. Note that AATisanm x m array with rank m and
can thus be inverted.

Example 2.5. Consider the following matrix:

[N
W AN L N
— J O W

Computing the pseudo-inverse of A using a MATLAB implementation of (2.26) we have

> A=1T[1223;459;567;-23171;
>> rank(A)

ans =
3

‘We note that A is full rank. Thus,

>> A_plus = inv(A. *A)*xA.”’

A_plus =
-0.0747 -0.1467 0.2500 -0.2057
-0.0378 -0.2039 0.2500 0.1983
0.0858 0.2795 -0.2500 -0.0231

The MATLAB function pinv provides this result directly and with greater accuracy.

AxA_plus*A

ans =
1.0000 2.0000 3.0000
4.0000 5.0000 9.0000
5.0000 6.0000 7.0000
-2.0000 3.0000 1.0000

>> AxA_plus

ans =
0.1070 0.2841 0.0000 0.1218
0.2841 0.9096 0.0000 -0.0387
0.0000 0.0000 1.0000 -0.0000
0.1218 -0.0387 -0.0000 0.9834

2.11 THE PSEUDO-INVERSE 107

>> A_plus*A

ans =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
-0.0000 -0.0000 1.0000

Note that these calculations verify that AxA_plus=A equals A and that both AxA_plus and A_plus=A are
symmetrical.

It has been shown that if A is rank deficient, then (2.26) cannot be used to determine the pseudo-
inverse of A. This doesn’t mean that the pseudo-inverse does not exist; it always exists but we must
use a different method to evaluate it. When A is rank deficient, or close to rank deficient, AT is best
calculated from the singular value decomposition (SVD) of A. If A is real, the SVD of A is Usv'’
where U is an orthogonal m x m matrix and V is an orthogonal n x n matrix and S is an n X m matrix
of singular values. Thus, the SVD of AT is VSTUT so that

ATA = (vSTUT)(USVT) = VSTSV since UTU =1
Hence,

At =(vSTSVH~lvsTUT = v-T(8Ts)~!v-1vsTuT 2.29)
=V(STS)-IsTuT
‘We note that because of orthogonality VV' =TIand hence VVIV-T=Vv-T.

Since V is an m x m matrix, U is an n x n matrix and S is an n X m matrix, then (2.29) is con-
formable, that is matrix multiplication is possible; see Appendix A, Section A.5. In this situation,
however, STS cannot be inverted because of the very small or zero singular values. To deal with this
problem we take only the non-zero singular values of the matrix so that S is an r x r matrix where
r is the rank of A. To make the multiplications of (2.29) conformable (that is, possible) we take the
first columns of V and the first » rows of UT, that is the first » columns of U. This is illustrated in
Example 2.6 where the pseudo-inverse of A is determined.

Example 2.6. Consider the following rank deficient matrix:

1 2 3
4 5 9
A= 7 11 18
-2 1
7 1

Using MATLAB, we have

108 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

>> A=1[123;459;7 11 18;-2 3 1;7 1 8]

A =
1 2 3
5
11 18
- 3 1
1 8
>> rank(A)
ans =
2

Since A has a rank of 2 and is thus rank deficient. Hence we cannot use (2.26) to determine its pseudo-
inverse. We now find the SVD of A as follows

>> [U S V] = svd(A)

U =
-0.1381 0.0839 -0.1198 0.4305 -0.8799
-0.4115 0.0215 0.9092 0.0489 -0.0333
-0.8258 0.2732 -0.3607 -0.3341 0.0413
-0.0524 0.5650 -0.0599 0.7077 0.4165
-0.3563 -0.7737 -0.1588 0.4469 0.2224

S =
26.8394 0 0

0 6.1358 0

0 0 0.0000

0 0 0

0 0 0
v =

-0.3709 -0.7274 0.5774
-0.4445 0.6849 0.5774
-0.8154 -0.0425 -0.5774

We now select the two significant singular values for use in the subsequent computation:

>> SS = S(1:2,1:2)

SS =
26.8394 0
0 6.1358

To make the multiplication conformable we use only the first two columns of U and V thus:

V(:,1:2)*%inv(SS. *SS)*SS."xU(:,1:2)."

>> A_plus =

A_plus =
-0.0080
0.0117
0.0036

0.
0.
0.

0031
0092
0124

-0.
0.
0.

2.12 OVER- AND UNDER-DETERMINED SYSTEMS

0210
0442
0232

-0
0
-0

.0663
.0639
.0023

0.0966
-0.0805
0.0162

109

This result can be obtained directly using the pinv function which is based on the singular value
decomposition of G.

>> AxA_plus

ans =
0.0261
0.0586
0.1369
0.0546
-0.0157

>> A_plus*A

ans =
0.6667
-0.3333
0.3333

Note that AxA_plus and A_plusxA are symmetric.

O O O o o

-0.
0.
0.

.0586
.1698
.3457
.0337
.1300

3333
6667
3333

0.
0.
0.

o O O O O

3333
3333
6667

.0546
.0337
L1977
.3220
.4185

-0.0157
0.1300
0.0829

-0.4185
0.7256

In Section 2.12, we will apply these methods to solve over- and under-determined systems and
discuss the meaning of the solution.

2.12 OVER- AND UNDER-DETERMINED SYSTEMS

We will begin by examining examples of over-determined systems, that is, systems of equations in
which there are more equations than unknown variables.

Although over-determined systems may have a unique solution, most often we are concerned with
equation systems that are generated from experimental data which can lead to a relatively small degree
of inconsistency between the equations. For example, consider the following over-determined system

of linear equations:

x1+x3 =198
2.05x1 —xp =0.95
3.06x1 +x, =3.98
—1.02x1 +2x2 =0.92
4.08x1 —x2=2.90

(2.30)

110 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

x1

FIGURE 2.5
Plot of an inconsistent equation system (2.30).

Fig. 2.5 shows that (2.30) is such a system; the lines do not intersect in a point, although there is a point
that nearly satisfies all the equations.

We would like to choose the best of all possible solutions of (2.30) in the region defined by the
intersections. One criterion for doing this is that the chosen solution should minimize the sum of
squares of the residual errors (or residuals) of the equations. For example, consider the equation system
(2.30). Letting 7y, ..., 5 be the residuals, then

X1 +x2—1.98=r;

2.05)61 — X2 — 0.95 = rn
3.06x1 +xp —3.98=r3
—1.02x1 +2x,—0.92=ry
4.08x1 —x2 —2.90=rs5

In this case the sum of the residuals squared is given by
5
S = Z r? (2.31)
i=1

We wish to minimize S and we can do this by making

s

0, k=1,2
X

Now

2.12 OVER- AND UNDER-DETERMINED SYSTEMS 111

and thus

5

a .
Yoot —0, k=1,2 (2.32)
i=1 8Xk

It can be shown that minimizing the sum of the squares of the residuals using (2.32) gives an identical
solution to that given by the pseudo-inverse method for solving the equation system.

When solving a set of over-determined equations, determining the pseudo-inverse of the system
matrix is only part of the process and normally we do not require this interim result. The MATLAB
operator \ solves over-determined systems automatically. Thus, the operator may be used to solve any
linear equation system.

In the following example, we compare the results obtained using the operator \ and using the
pseudo-inverse for solving (2.30). The MATLAB script e4s206.m follows:

% e4s206.m

A=1T[11;2.05 -1;3.06 1;-1.02 2;4.08 -11;
b [1.98;0.95;3.98;0.92;2.907;

X = pinv(A)*b

norm_pinv = norm(Axx-b)

x = A\b

norm_op = norm(A*x-b)

Running script e4s206.m gives the following numeric output:

0.9631
0.9885

norm_pinv =
0.1064

0.9631
0.9885

norm_op =
0.1064

Here, both the MATLAB operator \ and the function pinv have provided the same “best fit” solution for
the inconsistent set of equations. Fig. 2.6 shows the region where these equations intersect in greater
detail than Fig. 2.5. The symbol “+” indicates the MATLAB solution which can be seen to lie in this
region. The norm of Ax — b is the square root of the sum of the squares of the residuals and provides
a measure of how well the equations are satisfied.

112 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

1.05

0.9 0.95 1 1.05 1.1
x1

FIGURE 2.6

Plot of inconsistent equation system (2.30) showing the region of intersection of the equations, where +
indicates “best” solution.

The MATLAB operator \ does not solve an over-determined system by using the pseudo-inverse,
as given in (2.26). Instead, it solves (2.24) directly by QR decomposition. QR decomposition can
be applied to both square and rectangular matrices providing the number of rows is greater than the
number of columns. For example, applying the MATLAB function qr to solve the over-determined
system (2.30) we have

>> A [11;2.05 -1;3.06 1;-1.02 2;4.08 -11;
>> b [1.98 0.95 3.98 0.92 2.90].";
>> [Q R] = qr(A)

Q:
-0.1761 0.4123 -0.7157 -0.2339 -0.4818
-0.3610 -0.2702 0.0998 0.6751 -0.5753
-0.5388 0.5083 0.5991 -0.2780 -0.1230
0.1796 0.6839 -0.0615 0.6363 0.3021
-0.7184 -0.1756 -0.3394 0.0857 0.5749
R =
-5.6792 0.7237
0 2.7343
0 0
0 0
0 0

In the equation Ax = b we have replaced A by QR so that QRx = b. Let Rx =y. Thus, we have
y = Qb= Qb since Q is orthogonal. Once y is determined we can efficiently determine x by back
substitution since R is upper triangular. Thus, continuing the previous example,

2.12 OVER- AND UNDER-DETERMINED SYSTEMS 113

-4.7542
.7029
.0212
-0.0942
.0446

I
O O O NN b

Using the second row of R and the second row of y we can determine x;. From the first row of R and
the first row of y we can determine x| since x, is known. Thus,

—5.6792x1 + 0.7237x7 = —4.7542
2.7343x, =2.7029

gives x1 = 0.9631 and x, = 0.9885, as before. The MATLAB operator \ implements this sequence of
operations.

We now consider a case where the coefficient matrix of the over-determined system is rank defi-
cient. The following example is rank deficient and represents a system of parallel lines.

x1 4+ 2x2 =1.00
X1+ 2x, =1.03
X1+ 2x, =0.97
X1 +2x,=1.01

In MATLAB this becomes

> A =1T[12;12;1 2;1 2]
A =

1 2

1 2

1 2

1 2

>> b =1[111.030.97 1.0171.”

b:
1.0000
1.0300
0.9700
1.0100

>> y = A\b

Warning: Rank deficient, rank =1, tol = 3.552714e-015.

114 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

y =

0

0.5012

>> norm(y)
ans =

0.5012

The user is warned that this system is rank deficient. We have solved the system using the \ operator
and now solve it using the pinv function as follows:

>> x = pinv(A)*b

0.2005

0.4010
>> norm(x)
ans =

0.4483

We see that when the pinv function and \ operator are applied to rank deficient systems the pinv
function gives the solution with the smallest Euclidean norm; see Appendix A, Section A.10. Clearly
there is no unique solution to this system since it represents a set of parallel lines.

We now turn to the problem of under-determined systems. Here there is insufficient information to
determine a unique solution. For example, consider the equation system

X1+ 2x +3x3+4x4 =1
—S5x14+3x4+2x3+Tx4=2
Expressing these equations in MATLAB we have

>> A [1234;-532771;
>> b [12].7;
>> x1 = A\b

x1 =
-0.0370
0
0
0.2593

>> x2 = pinv(A)*b

2.12 OVER- AND UNDER-DETERMINED SYSTEMS 115

X2 =
-0.0780
0.0787
0.0729
0.1755

‘We calculate the norms:
>> norm(x1)

ans =
0.2619

>> norm(x2)

ans =
0.2199

The first solution vector, x1, is a solution which satisfies the system; the second solution vector, x2,
satisfies the system of equations but also gives the solution with the minimum norm.

The definition of the Euclidean or 2-norm of a vector is the square root of the sum of the squares
of the elements of the vector; see Appendix A, Section A.10. The shortest distance between a point in
space and the origin is given by Pythagoras’s theorem as the square root of the sum of squares of the
coordinates of the point. Thus, the Euclidean norm of a vector which is a point on a line, surface, or
hypersurface may be interpreted geometrically as the distance between this point and the origin. The
vector with the minimum norm must be the point on the line, surface, or hypersurface which is closest
to the origin. It can be shown that the line joining this vector to the origin must be perpendicular to the
line, surface, or hypersurface.

Giving the minimum norm solution has the advantage that, whereas there are an infinite number of
solutions to an under-determined problem, there is only one minimum norm solution. This provides a
standard result.

To complete the discussion of over- and under-determined systems we consider the use of the
1sgnonneg function which solves the least squares problem with a non-negative solution. This solves
the problem of finding a solution x to the linear equation system

Ax =b, subjectto x>0
where A and b must be real. This is equivalent to the problem of finding the vector x that minimizes
norm(Ax — b) subject to x > 0.

We can call the MATLAB function 1sgnonneg for a specific problem using the statement

x = Isgnonneg(A,b)

116 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

where A corresponds to A in our definition and b to b. The solution is given by x. Consider the example
which follows. Solve

X

X2 B 7
BT e
x4

X5

— O

subject to x; > 0, where i =1, 2, ..., 5. In MATLAB this becomes

> A=[11110;12301171;
>> b =1[7 12]1.7;

Solving this system gives

>> x = lsgnonneg(A,b)

o w b~ O o

We can also solve this using \ but this will not ensure non-negative values for x.

>> x2 = A\b
X2 =

0

0

4.0000

3.0000

0

In this case, we do obtain a non-negative solution but this is fortuitous and cannot be guaranteed.
The following example illustrates how the 1sqnonneg function forces a non-negative solution which
best satisfies the equations:

3.0501 4.8913 2.5
32311 —32379 |[x]_ | 25
1.6068 7.4565 [xz }_ 0.5 2.33)
24860 —0.9815 25

>> A = [3.0501 4.8913;3.2311 -3.2379; 1.6068 7.4565;2.4860 -0.9815];

>> b =1[2.52.50.52.5].";

We can compute the solution using \ or 1sqnonneg function thus:

2.13 ITERATIVE METHODS 117

>> x1 = A\b

x1l =
0.8307
-0.0684

>> x2 = Tsgnonneg(A,b)
X2 =

0.7971
>> norm(A*x1-b)

ans =
0.7040

>> norm(Axx2-b)

ans =
0.9428

Thus, the best fit is given by using the operator \, but if we require all components of the solution to be
non-negative, then we must use the 1sqnonneg function.

2.13 ITERATIVE METHODS

Except in special circumstances, it is unlikely that any function or script developed by the user will
outperform a function or operator that is an integral part of MATLAB. We cannot expect to develop a
function that will determine the solution of Ax = b more efficiently than by using the MATLAB oper-
ation A\b. However, we describe iterative methods here for the sake of completeness. These methods
are attractive if A is diagonally dominant.

Iterative methods of solution are developed as follows. We begin with a system of linear equations

anxi+ apxat+ ... 4aipxn =b
ayxi+ axnxy+ ... +aux, =b
amx1+ apx2+ ... +amxp =by

These can be rearranged to give

118 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

x1 = (b1 —aipx2 — a13x3 — ... — aXx,) /ai
x2 = (b2 — ax1x1 — a3x3 — ... — axuX,) /axn

(2.34)
Xn = (bn —apl1X1 —ap2X2 — ... — an,n—lxn—l) /ann

If we assume initial values for x;, where i = 1, ..., n, and substitute these values into the right side of
the preceding equations, we may determine new values for the x; from (2.34). The iterative process is
continued by substituting these values of x; into the right side of the equations, etc. There are several
variants of the process. For example, we can use old values of x; in the right side of the equations to
determine all the new values of x; in the left side of the equation. This is called Jacobi or simultaneous
iteration. Alternatively, we may use a new value of x; in the right side of the equation as soon as it is
determined, to obtain the other values of x; in the right side. For example, once a new value of x is
determined from the first equation of (2.34), it is used in the second equation, together with the old
X3, ..., X, to determine x,. This is called Gauss—Seidel or cyclic iteration.
The conditions for convergence for this type of iteration are

n
laii| >> Z |aij| for i=1,2,....n
j=1. j#i
Thus, these iterative methods are only guaranteed to work when the coefficient matrix is diagonally

dominant. An iterative method based on conjugate gradients for the solution of systems of linear equa-
tions is discussed in Chapter 9.

2.14 SPARSE MATRICES

Sparse matrices arise in many problems of science and engineering — for example, in linear program-
ming and the analysis of structures. Indeed, most large matrices that arise in the analysis of physical
systems are sparse and the recognition of this fact and its efficient exploitation makes the solution of
linear systems with millions of coefficients feasible. The aim of this section is to give a brief descrip-
tion of the extensive sparse matrix facilities available in MATLAB and to give practical illustrations of
their value through examples. For background information on how MATLAB implements the concept
of sparsity, see Gilbert et al. (1992).

It is difficult to give a simple quantitative answer to the question: when is a matrix sparse? A matrix
is sparse if it contains a high proportion of zero elements. However, this is significant only if the sparsity
is of such an extent that we can utilize this feature to reduce the computation time and storage facilities
required for operations used on such matrices. One major way in which time can be saved in dealing
with sparse matrices is to avoid unnecessary operations on zero elements.

MATLAB does not automatically treat a matrix as sparse and the sparsity features of MATLAB
are not introduced until invoked. Thus, the user determines whether a matrix is in the sparse class
or the full class. If the user considers a matrix to be sparse and wants to use this fact to advantage,
the matrix must first be converted to sparse form. This is achieved by using the function sparse.
Thus B = sparse(A) converts the matrix A to sparse form and assigns it to B and MATLAB operations

2.14 SPARSE MATRICES 119

on B will take account of this sparsity. If we wish to return this matrix to full form, we simply use
C = ful1(B). However, the sparse function can also be used directly to generate sparse matrices.

It is important to note that binary operators =, +, -, /, and \ produce sparse results if both operands
are sparse. Thus, the property of sparsity may survive a long sequence of matrix operations. In addition
such functions as cho1(A) and Tu(A) produce sparse results if the matrix A is sparse. However, in mixed
cases, where one operand is sparse and the other is full, the result is generally a full matrix. Thus, the
property of sparsity may be inadvertently lost. Notice in particular that eye (n) is not in the sparse class
of matrices in MATLAB but a sparse identity matrix can be created using speye(n). Thus, the latter
should be used in manipulations with sparse matrices.

We will now introduce some of the key MATLAB functions for dealing with sparse matrices, de-
scribe their use and, where appropriate, give examples of their application. The simplest MATLAB
function which helps in dealing with sparsity is the function nnz(a) which provides the number of
non-zero elements in a given matrix a, regardless of whether it is sparse or full. A function which en-
ables us to examine whether a given matrix has been defined or has been propagated as sparse is the
function issparse(a) which returns the value 1 if the matrix a is sparse or O if it is not sparse. The
function spy(a) allows the user to view the structure of a given matrix a by displaying symbolically
only its non-zero elements; see Fig. 2.7 later in the chapter for examples.

Before we can illustrate the action of these and other functions, it is useful to generate some sparse
matrices. This is easily done using a different form of the sparse function. This time the function is
supplied with the location of the non-zero entries in the matrix, the value of these entries, the size of
the sparse matrix and the space allocated for the non-zero entries. This function call takes the form
sparse(i, j, nzvals, m, n, nzmax). This generates an m x n matrix and allocates the non-zero
values in the vector nzvals to the positions in the matrix given by the vectors i and j. The row position
is given by i and the column position by j. Space is allocated for nzmax non-zeros. Since all but one
parameter is optional, there are many forms of this function. We cannot give examples of all these
forms but the following cases illustrate its use.

>> colpos = [1212534345];

>> rowpos =[1122244555];

>> value = [12 -4 7 3 -8 -13 11 2 7 -47;
>> A = sparse(rowpos,colpos,value,5,5)

These statements give the following output:

A =
(1,1) 12
(2,1) 7
(1,2) -4
(2,2) 3
(4,3) -13
(5,3) 2
(4,4) 11
(5,4) 7
(2,5) -8
(5,5) -4

120 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

We see that a 5 x 5 sparse matrix with 10 non-zero elements has been generated with the required
coefficient values in the required positions. This sparse matrix can be converted to a full matrix as
follows:

>> B = full(A)

B =
12 -4 0 0 0
7 3 0 0 -8
0 0 0 0 0
0 0 -13 11 0
0 0 2 7 -4

This is the equivalent full matrix. Now the following statements test to see if the matrices A and B are
in the sparse class and give the number of non-zeros they contain.

>> [issparse(A) issparse(B) nnz(A) nnz(B)]

ans =
1 0 10 10

Clearly, these functions give the expected results. Since A is a member of the class of sparse matrices,
the value of issparse(A) is 1. However, although B looks sparse, it is not sfored as a sparse matrix
and hence is not in the class sparse within the MATLAB environment. The next example shows how
to generate a large 10,000 x 10,000 sparse matrix and compares the time required to solve a linear
system of equations involving this sparse matrix with the time required for the equivalent full matrix.
This is provided in script e4s207 .m.

% e4s207.m Generates a sparse triple diagonal matrix
n = 10000;

rowpos = 2:n; colpos = l:n-1;

values = 2%ones(1l,n-1);

0ffdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(l:n,l:n,4%xones(l,n),n,n);

A = A+Offdiag+0ffdiag.’;

%generate full matrix

B = full(A);

%generate arbitrary right side for system of equations
rhs = [1:n].”;

tic, x = A\rhs; fl toc;

tic, x = B\rhs; f2 = toc;

fprintf(’Time to solve sparse matrix = %8.5f\n’,f1);
fprintf(’Time to solve full matrix = %8.5f\n’,f2);

Script e4s207 .m provides the results

Time to solve sparse matrix = 0.00078
Time to solve full matrix = 9.66697

2.14 SPARSE MATRICES 121

In this example there is a massive reduction in the time taken to solve the system when using the sparse
class of matrix. We now perform a similar exercise, this time to determine the 1u decomposition of a
10,000 x 10,000 matrix, using script e4s208:

% e4s208.m

n = 10000;

offdiag = sparse(2:n,1:n-1,2xones(1,n-1),n,n);
A = sparse(l:n,l:n,4%ones(1l,n),n,n);

A = A+offdiag+offdiag’;

%generate full matrix

B = full(A);

%generate arbitrary right side for system of equations
rhs = [1:n]";

tic, Tul = Tu(A); fl = toc;

tic, TuZ2z = 1u(B); f2 = toc;

fprintf(’Time for sparse LU = %8.4f\n’,fl);
fprintf(’Time for full LU = %8.4f\n’,f2);

The time taken to solve the systems using script e4s208 are

Time for sparse LU = 0.0051
Time for full LU 14.9198

Again this provides a considerable reduction in the time taken.
An alternative way to generate sparse matrices is to use the functions sprandn and sprandsym.
These provide random sparse matrices and random sparse symmetric matrices respectively. The call

A = sprandn(m,n,d)

produces an m x n random matrix with normally distributed non-zero entries of density d. The density
is the proportion of the non-zero entries to the total number of entries in the matrix. Thus d must be in
the range O to 1. To produce a symmetric random matrix with normally distributed non-zero entries of
density d, we use

A = sprandsys(n,d)
Examples of calls of these functions are given by

>> A = sprandn(5,5,0.25)

A =
(2,1) -0.4326
(3,3) -1.6656
(5,3) -1.1465
(4,4) 0.1253
(5,4) 1.1909
(4,5) 0.2877

122 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

>> B = full(A)

B =
0 0 0 0 0
-0.4326 0 0 0 0
0 0 -1.6656 0 0
0 0 0 0.1253 0.2877
0 0 -1.1465 1.1909 0

>> As = sprandsym(5,0.25)

As =
(3,1) 0.3273
(1,3) 0.3273
(5,3) 0.1746
(5,4) -0.0376
(3,5) 0.1746
(4,5) -0.0376
(5,5) 1.1892
>> Bs = full(As)
Bs =
0 0 0.3273 0 0
0 0 0 0 0
0.3273 0 0 0 0.1746
0 0 0 0 -0.0376
0 0 0.1746 -0.0376 1.1892

An alternative call for sprandsym is given by
A = sprandsym(n,density,r)

If r is a scalar, then this produces a random sparse symmetric matrix with a condition number equal
to 1/r. Remarkably, if r is a vector of length n, a random sparse matrix with eigenvalues equal to the
elements of r is produced. Eigenvalues are discussed in Section 2.15. A positive definite matrix has
all its eigenvalues positive and consequently such a matrix can be generated by choosing each of the
n elements of r to be positive. An example of this form of call is

>> Apd = sprandsym(6,0.4,[1 2.5 6 9 2 4.3])

Apd =
(1,1) 1.0058
(2,1) -0.0294
(4,1) -0.0879

2.14 SPARSE MATRICES 123

(1,2) -0.0294
(2,2) 8.3477
(4,2) -1.9540
(3,3) 5.4937
(5,3) -1.3300
(1,4) -0.0879
(2,4) -1.9540
(4,4) 3.1465
(3,5) -1.3300
(5,5) 2.5063
(6,6) 4.3000

>> Bpd = full(Apd)

Bpd =
1.0058 -0.0294 0 -0.0879 0 0
-0.0294 8.3477 0 -1.9540 0 0
0 0 5.4937 0 -1.3300 0
-0.0879 -1.9540 0 3.1465 0 0
0 0 -1.3300 0 2.5063 0
0 0 0 0 0 4.3000

This provides an important method for generating test matrices with required properties since, by
providing a list of eigenvalues with a range of values, we can produce positive definite matrices that
are very badly conditioned.

We now examine further the value of using sparsity. The reasons for the very high level of improve-
ment in computing efficiency when using the \ operator, illustrated in the example at the beginning
of this section, are complex. The process includes a special preordering of the columns of the matrix.
This special preordering, called minimum degree ordering, is used in the case of the \ operator. This
preordering takes different forms depending on whether the matrix is symmetric or non-symmetric.
The aim of any preordering is to reduce the amount of fill-in from any subsequent matrix operations.
Fill-in is the introduction of additional non-zero elements.

We can examine this preordering process using the spy function and the function symamd which
implements symmetric minimum degree ordering in MATLAB. The function is automatically applied
when working on matrices which belong to the class of sparse matrices for the standard functions and
operators of MATLAB. However, if we are required to use this preordering in non-standard applications,
then we may use the symmmd function. The following examples illustrate the use of this function.

We first consider the simple process of multiplication applied to a full and a sparse matrix. The
sparse multiplication uses the minimum degree ordering. The following script e4s209.m generates a
sparse matrix, obtains a minimum degree ordering for it and then examines the result of multiplying the
matrix by itself transposed. This is compared with the same operations carried out on the full matrix,
and the time required for each operation is compared.

% e4s209.m
% generate a sparse matrix

124 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

n = 5000;

offdiag = sparse(2:n,1l:n-1,2%ones(1l,n-1),n,n);
offdiag2 = sparse(4:n,1:n-3,3%ones(1l,n-3),n,n);
offdiag3 = sparse(n-5:n,1:6,7xones(1,6),n,n);

A = sparse(l:n,l:n,4%ones(1l,n),n,n);
A+offdiag+offdiag’+offdiag2+offdiag2’+offdiag3+offdiag3’;
A= AxA.7;

% generate full matrix

B = full(A);

m_order = symamd(A);

tic

>
Il

spmult = A(m_order,m_order)*A(m_order,m_order).";
flsp = toc;

tic, fulmult = BxB.’; flful = toc;

fprintf(’Time for sparse mult = %6.4f\n’,flsp)
fprintf(’Time for full mult = %6.4f\n’,f1ful)

Running this script e4s209 . m results in the following output:

Time for sparse mult = 0.0073
Time for full mult = 3.2559

We now perform a similar experiment to that of e4s209.m, but for a more complex numerical
process than multiplication. In the script that follows we examine LU decomposition. We consider
the result of using a minimum degree ordering on the LU decomposition process by comparing the
performance of the 1u function with and without preordering. This is illustrated in script e4s210.m.

% eds210.m

% generate a sparse matrix

n = 100;

offdiag = sparse(2:n,1:n-1,2%ones(1l,n-1),n,n);
offdiag?2 = sparse(4:n,1:n-3,3%ones(1,n-3),n,n);
offdiag3 = sparse(n-5:n,1:6,7*ones(1,6),n,n);

A = sparse(l:n,l:n,4%xones(l,n),n,n);

A = Atoffdiagtoffdiag +toffdiag2+offdiag2’ +offdiag3+offdiag3’;
A= AxA.7;

Al = flipud(A);

A = A+AL;

nl = nnz(A)

B = full(A); %generate full matrix
m_order = symamd(A);

lud = Tu(A(m_order,m_order));

n2 = nnz(lud)

fullu = Tu(B);

n3 = nnz(fullu)

subplot(2,2,1), spy(A,’ k’);

Original matrix

50
100 8 k.
0 50 100
nz =2096
LU decomp, unordered mtx

2.14 SPARSE MATRICES 125

Ordered Matrix

50

100 ==
0 50 100
nz = 2096
LU decomp, ordered mtx

0

0

50

100 =" 100 5=
0 50 100 0 50 100
nz = 4465 nz = 1307

FIGURE 2.7

Effect of minimum degree ordering on LU decomposition. The spy function shows the matrix, the ordered
matrix, and LU decomposition with and without preordering.

title(’0riginal matrix’)

subplot(2,2,2), spy(A(m_order,m_order),’k”)
title(’0Ordered Matrix’)

subplot(2,2,3), spy(fullu,’k”)

title(’LU decomposition,unordered matrix’)
subplot(2,2,4), spy(lud,’k”)

title(’LU decomposition, ordered matrix’)

Running script e4s210.m gives

nl =

2096
n2 =

1307
n3 =

4723

As expected, by using a sparse operation we achieve a reduction in the time taken to determine the LU
decomposition. Fig. 2.7 shows the original matrix with 2096 non-zero elements, the reordered matrix
(which has the same number of non-zeros), and the LU decomposition structure both with and without

126 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

minimum degree ordering. Notice that the number of non-zeros in the LU matrices with preordering is
1307 and without is 4465. Thus, there is a large increase in the number of non-zero elements in the LU
matrices without preordering. In contrast, LU decomposition of the preordered matrix has produced
fewer non-zeros than the original matrix. The reduction of fill-in is an important feature of sparse
numerical processes and may ultimately lead to great savings in computational effort. Note that if the
size of the matrices are increased from 100 x 100 to 3000 x 3000 then the output from e4s210 is

nl =

65896
n2 =

34657
n3 =

510266

Time for sparse Tu = 0.0131
Time for full 1u 0.8313

Here we obtain a more substantial reduction by using sparse operations.

The MATLAB function symamd provides a minimum degree ordering for symmetric matrices. For
non-symmetric matrices MATLAB provides the function colmmd which gives the column minimum de-
gree ordering for non-symmetric matrices. An alternative ordering, which is used to reduce bandwidth,
is the reverse Cuthill-MacGee ordering. This is implemented in MATLAB by the function symrcm. The
execution of the statement p = symrcm(A) provides the permutation vector p to produce the required
preordering and A(p,p) is the reordered matrix.

We have shown that in general taking account of sparsity will provide savings in floating-point
operations. However, these savings fall off as the matrices on which we are operating become less
sparse as script e4s211.m illustrates.

% eds211.m
n = 1000; b = 1:n;
disp(’ density time_sparse time_full’);
for density = 0.004:0.003:0.039
A = sprandsym(n,density)+0.1xspeye(n);
density = density+1/n;
tic, x = A\b’; fl toc;
B = full(A);
tic, y = B\b’; f2 = toc;
fprintf(’%10.4f %12.4f %12.4f\n’ ,density,fl,f2);

end

In script e4s211 a diagonal of elements has been added to the randomly generated sparse matrix. This
is done to ensure that each row of the matrix contains a non-zero element; otherwise the matrix may
be singular. Adding this diagonal modifies the density. If the original n x n matrix has a density of d,
then, assuming that this matrix has only zeros on the diagonal, the modified density is d + 1/n.

2.14 SPARSE MATRICES

density time_sparse time_full
0.0050 0.0204 0.1907
0.0080 0.0329 0.1318
0.0110 0.0508 0.1332
0.0140 0.0744 0.1399
0.0170 0.0892 0.1351
0.0200 0.1064 0.1372
0.0230 0.1179 0.1348
0.0260 0.1317 0.1381
0.0290 0.1444 0.1372
0.0320 0.1516 0.1369
0.0350 0.1789 0.1404
0.0380 0.1627 0.1450

127

This output shows that the advantage of using a sparse class of matrix diminishes as the density in-

creases.

Another application where sparsity is important is in solving the least squares problem. This
problem is known to be ill-conditioned and hence any saving in computational effort is particularly
beneficial. This is directly implemented by using A\b where A is non-square and sparse. To illustrate
the use of the \ operator with sparse matrices and compare its performance when no account is taken

of sparsity we use script e4s212.m:

% eds?212.m

% generate a sparse triple diagonal matrix

n = 2000;

rowpos = 2:n; colpos = l:n-1;

values = ones(l,n-1);

offdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(l:n,l:n,4%xones(l,n),n,n);

A = Atoffdiag+offdiag’;

%Now generate a sparse least squares system

Als = A(:,1:n/2);

%generate full matrix

Cf1 = full(Als);

rhs = 1l:n;

tic, x = Als\rhs’; fl = toc;

tic, x Cfl\rhs’; f2 = toc;

fprintf(’Time for sparse least squares solve = %8.4f\n
fprintf(’Time for full Tleast squares solve %8.4f\n

Script e4s212.m provides the following results

Time for sparse least squares solve = 0.0027
Time for full least squares solve = 0.9444

Again we see the advantage of using sparsity.

T, D)
T,f2)

128 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

’—>q1 ’—>413

Ground L»
9

FIGURE 2.8
Mass-spring system with three degrees of freedom.

We have not covered all aspects of sparsity or described all the related functions. However, we
hope this section provides a helpful introduction to this difficult but important and valuable feature of
MATLAB.

2.15 THE EIGENVALUE PROBLEM

Eigenvalue problems arise in many branches of science and engineering. For example, the vibration
characteristics of structures are determined from the solution of an algebraic eigenvalue problem. Here,
we consider a particular example of a system of masses and springs shown in Fig. 2.8. The equations
of motion for this system are

mig1 + (ki +ka 4+ ka) g1 — kogo — kaq3 =0
maga — kaqy + (ko +k3) g2 — kagz =0 (2.35)
m3q3 — kaqr — k3qa + (k3 + ka) g3 =0
where m1, my, and m3 are the system masses and k1, ..., k4 are the spring stiffnesses. If we assume a
harmonic solution for each coordinate, then ¢; (f) = u; exp(jwt) where j = +/—1, fori =1, 2, and 3.
Hence d2q; /dt? = —w?u; exp(ywt). Substituting in (2.35) and canceling the common factor exp(jwt)
gives
—a)2m1u1 + (k1 +ky +ka)uy — kpur — kquz =0
—w2m2u2 —kyuy + (kp + k3)upy — ksuz =0 (2.36)
—w2m3u3 —kquy — k3up + (k3 + kg)uz =0

If m; = 10 kg, my = 20 kg, m3 = 30 kg, k; = 10 kN/m, kp = 20 kN/m, k3 = 25 kN/m, and k4 =
15 kN/m, then (2.36) becomes

—@?10u; + 45,0001 — 20,0001, — 15,000u3 =0
—®?20u; — 20,0001 + 45,0001, — 25,000u3 =0
—?30u; — 15,000u1 — 25,000u3 4 40,000u3 = 0

2.15 THE EIGENVALUE PROBLEM 129

This can be expressed in matrix notation as

—»’Mu +Ku=0 (2.37)
where
10 0 0 45 —20 -15
M=| 0 20 0 |kgandK=| —20 45 —25 | kN/m (2.38)
0 0 30 —15 =25 40

Eq. (2.37) can be rearranged in a variety of ways. For example, it can be written

1

Mu = AKu where A = 5

(2.39)
1)

This is an algebraic eigenvalue problem and solving it determines values for the eigenvectors u and the
eigenvalues, .. MATLAB provides a function eig to solve the eigenvalue problem and to illustrate its
use we apply it to the solution of (2.37).

>> M [10 0 0;0 20 0;0 0 301;
>> K 1000%[45 -20 -15;-20 45 -25;-15 -25 401;
>> lambda = eig(M,K).”’

lambda =
0.0002 0.0004 0.0073

>> omega = sqrt(l./lambda)

omega =
72.2165 52.2551 11.7268

This result tells us that the system of Fig. 2.8 vibrates with natural frequencies 11.72, 52.25, and
72.21 rad/s. In this example we have chosen not to determine u, the eigenvectors. We will discuss
further the use of the function eig in Section 2.17.

Having provided an example of an eigenvalue problem, we consider the standard form of this
problem thus:

Ax = AXx (2.40)

This equation is an algebraic eigenvalue problem where A is a given n x n matrix of coefficients, X is
an unknown column vector of n elements and X is an unknown scalar. Eq. (2.40) can alternatively be
written as

(A—ADx=0 (2.41)

Our aim is to discover the values of x, called the characteristic vectors or eigenvectors, and the corre-
sponding values of A, called the characteristic values or eigenvalues. The values of X that satisfy (2.41)
are given by the roots of the equation

IA—AI =0 (2.42)

130 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

These values of A are such that (A — AI) is singular. Since (2.41) is a homogeneous equation system,
non-trivial solutions exist for these values of A. Evaluation of the determinant (2.42) leads to an nth
degree polynomial in A which is called the characteristic polynomial. This characteristic polynomial
has n roots, some of which may be repeated, giving the n values of A. In MATLAB we can create
the coefficients of the characteristic polynomial using the function poly, and the roots of the resulting
characteristic polynomial can be found using the function roots. For example,

1 2 3
A=|4 5 -6
7 -8 9

then we have

>> A=1[123;45 -6;7 -891;
>> p = poly(A)
p =

1.0000 -15.0000 -18.0000 360.0000

Hence the characteristic equation is A3 — 154> — 18 4 360 = 0. To find the roots of this equation we
use the statement

>> roots(p).’

ans =
14.5343 -4.7494 5.2152

We can verify this result using the function ei g, thus:

>> eig(A).”’

ans =
-4.7494 5.2152 14.5343

Having obtained the eigenvalues we can substitute back into (2.41) to obtain linear equations for the
characteristic vectors thus:

A—-1Dx=0fori=1,2,...,n (2.43)

This homogeneous system provides n non-trivial solutions for x. However, the use of (2.42) and (2.43)
is not a practical means of solving eigenvalue problems.

If A is a symmetric real matrix or a Hermitian matrix, (such that A = AH), then its eigenvalues are
real, but not necessarily positive, and the corresponding eigenvectors are real if A is real and symmetric,
and complex if A is Hermitian. For such a system, if A;, x; and A ;, x; satisfy the eigenvalue problem
and A; and A ; are distinct, then

xXx;=0i#j (2.44)

2.15 THE EIGENVALUE PROBLEM 131

and
xTAX; =0i#j (2.45)

Egs. (2.44) and (2.45) are called the orthogonality relationships. If A is real and symmetric, then in
(2.44) and (2.45) we take the transpose of the vectors denoted by (T), rather than the complex conjugate
transpose denoted by (M. 1fi = j, thenin general XlH x; and le Ax; are non-zero. The vector x; includes
an arbitrary scalar multiplier because the vector multiplies both sides of (2.40). Hence the product le X;
must be arbitrary. However, if the arbitrary scalar multiplier is adjusted so that XIH x; = 1 then the vectors
are said to be normalized. In fact, the MATLAB function eig normalizes the eigenvectors, so that

H

x,x;=1fori=1,2,...,n (2.46)

When the vectors are normalized so that (2.46) is valid, then
xAx; = 2; for i=1,2,..,n (2.47)

Note that the eigenvectors are orthogonal, that is (2.44) and (2.45) are valid, then they are orthogonal
irrespective of whether or not the eigenvectors are normalized according to (2.46).

Sometimes the eigenvalues are not distinct and the eigenvectors associated with these equal or re-
peated eigenvalues are not necessarily orthogonal. If A; = A ; and the other eigenvalues, A, are distinct,
then

H
x 'x; =0
i S k=1,2, on, ki, k] (2.48)

H —_
xjxk_O

For consistency, we can choose to make lex j =0. When A; = A}, the eigenvectors x; and X; are not
unique and a linear combination of them, (axX; + yX;) where « and y are arbitrary constants, also
satisfies the eigenvalue problem.

We can combine all the eigensolutions into a single matrix equation by placing all the normalized
eigenvectors into a single matrix, X and the eigenvalues in a diagonal matrix, D thus:

X=[x1 x2 ... X, | (2.49)
A 0o ... 0
0 X ... 0

p=| = (2.50)
0 0 ... I

If A is an Hermitian matrix, then X is a unitary matrix, that is X" =X~ Its determinant is either
41 or —1 and its eigenvalues are complex but lie on a unit circle in the complex plane, that is their
amplitudes all equal one but their phases differ. If A is an n x n real symmetric matrix, then X is an
orthogonal matrix, that is X" = X!, The determinant of X is +1 and its eigenvalues are complex
conjugate pairs if # is even, or complex conjugate pairs plus one real eigenvalue if # is odd. Again, all
the eigenvalues have an absolute value of one and thus lie on a unit circle in the complex plane.

132 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

The n solutions (2.49) and (2.50) satisfy the eigenvalue problem (2.40). Assembling all the eigen-
solutions into one equation, we have:

AX=XD (2.51)
Using similar reasoning to that above, and substituting (2.49) and (2.50) in (2.46) gives
xHx =1 (2.52)
Pre-multiplying (2.51) by XH, and noting the relationship given by (2.52) we have:
X"AX =D (2.53)

Example 2.7. Determine the eigenvalues of the Hermitian matrix

A_] 1H00 242
“l2-2 3400

Using MATLAB function eig we can determine both the eigenvalues and eigenvectors of this matrix as
follows:

>> A =[1 2;2 31+jx[0 2;-2 01;
>> [X,D] = eig(A)

X =

0.5774 + 0.57741 0.4082 + 0.40821
-0.5774 + 0.00001 0.8165 + 0.00001

0 5.0000

where the diagonal elements of D are the eigenvalues and the corresponding eigenvector are given by
X. We can verity, for this problem, the relationships given by (2.52) and (2.53) as follows:

>> X7 xAxX

ans =
-1.0000 + 0.00007 -0.0000 - 0.00001
-0.0000 + 0.00001 5.0000 + 0.00001

>> X7xX
ans =

1.0000 + 0.00007 -0.0000 - 0.00001
-0.0000 + 0.00001 1.0000 + 0.0000i

2.15 THE EIGENVALUE PROBLEM 133

In summary, if A is real, both its eigenvalues and eigenvectors are real, but the eigenvalues are not
necessarily positive. If A is a Hermitian matrix, its eigenvalues are real, but not necessarily positive,
but its eigenvectors are generally complex.

Consider now the case when A is a general complex square matrix (that is, not Hermitian) with a
set of eigenvalues x; and corresponding eigenvalues A;. A pair of related eigenvalue problems exist as
follows:

Ax = Ax (2.54)
and
ATy =By (2.55)

The second eigenvalue problem, (2.55), can be transposed to give
y'A=g8y' (2.56)

The vectors x and y are called the right and left vectors of A, respectively. The equations |A — AI| =0
and IAT — BI| = 0 must have the same solutions for A and 8 because the determinant of a matrix and
the determinant of its transpose are equal. Thus, the eigenvalues of A and AT are identical but the
eigenvectors x and y will, in general, differ from each other. The eigenvalues and eigenvectors of a
non-symmetric real matrix are either real or pairs of complex conjugates. If A;, X;, y; and A}, X, y;
are solutions that satisfy the eigenvalue problems of (2.54) and (2.55) and A; and A ; are distinct, then

YiX;=0 i#j (2.57)

and
VIAX; =0 i#) (2.58)

Egs. (2.57) and (2.58) are called the bi-orthogonal relationships. As with (2.46) and (2.47) if, in these
equations, { = j, then in general yl.Txi and yiTAXi are not zero. The eigenvectors Xx; and y; include
arbitrary scaling factors and so the product of these vectors will also be arbitrary. However, if the
vectors are adjusted so that

lexi =1fori=1,2,...,n (2.59)
then
yIAx; =2; for i=1,2,...,n (2.60)

We cannot, in these circumstances, describe either x; or y; as normalized; the vectors still include an
arbitrary scale factor; only their product can be chosen uniquely.
The eigensolutions can be combined us:

X=[x1 x2 ... x] (2.61)

Y=[yi y2 .. ¥n] (2.62)

134 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

A 0o ... 0
0 A 0

p=| . . 2.63)
0O 0 ... A,

The n solutions (2.61) and (2.63) satisfy the eigenvalue problem (2.54). Assembling all the eigen-
solutions into one equation, we have:

AX = XD (2.64)

Similarly, noting that 8; = A;, the n solutions (2.62) and (2.63) satisfy the eigenvalue problem (2.55).
Assembling all the eigensolutions into one equation, we have:

ATY =YDor Y'A =DY' (2.65)
Using (2.49) and (2.50) we can write (2.59) in matrix form:
Y'X=1I (2.66)
Pre-multiplying (2.64) by Y' and noting the relationship given by (2.66) we have
Y'AX=D (2.67)

In summary, if A is real (but not symmetric) or complex (but not Hermitian) then both its eigenval-
ues and eigenvectors will be complex.

Example 2.8. determine the eigenvalues of the following complex matrix,

Ao 1+21 243
Tl 4—-1 341

>> A= [1 2;4 31+j*[2 3;-1 1]

A =
1.0000 + 2.00001 2.0000 + 3.00001
4.0000 - 1.0000i 3.0000 + 1.00001

>> [X,D] = eig(A)

X =
0.7518 + 0.00001 0.4126 + 0.44731
-0.6068 + 0.25801 0.7935 + 0.00001
D =
-1.6435 + 0.2649i 0.0000 + 0.00001
0.0000 + 0.00001 5.6435 + 2.73511

>> [Y,B] = eig(A.”)

Y =
0.7935 + 0.00001
-0.4126 - 0.44731

B =
-1.6435 + 0.26491
0.0000 + 0.00001

0.6068 - 0.25801
0.7518 + 0.00001

0.0000 + 0.00001
5.6435 + 2.73511

2.15 THE EIGENVALUE PROBLEM

135

Note that the eigenvalues given by B and D are identical but the right and left eigenvalues given by
X and Y are different. We can verify, for this problem, the relationships given by (2.66) and (2.67) as

follows:

>> p =Y. *X
p =
0.9623 + 0.16501

-0.0000 + 0.0000i

>> X(:,1)
>> Y. X

ans =
1.0000 - 0.0000i
-0.0000 + 0.00001

>> Y. xAxX

ans =
-1.6435 + 0.26491
0.0000 - 0.00001

2.15.1 EIGENVALUE DECOMPOSITION

-0.0000 - 0.0000i
0.9623 + 0.16501

-0.0000 - 0.00001
1.0000 + 0.0000i

-0.0000 - 0.0000i
5.6435 + 2.73511

XC:,1)/p(1,1); X(:,2) = X(:,2)/p(2,2);

Consider the eigensolution of a Hermitian (or real symmetric matrix) given by (2.51). Then, post-

multiplying by X! gives

A =XDX!

This is not a particularly useful decomposition of A since it involves a matrix inversion. However, from
(2.52), we have X! = X" and hence

A = XDX"

(2.68)

Thus A has been decomposed into the product of two orthogonal or unitary matrices and a diagonal
matrix. This is useful decomposition. For example, to compute the square of a Hermitian matrix. We

136 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

have
A? = AA = xXDXM)(xpx™)
and thus
A% = XDpIDXH = Xp2x" (2.69)

since X"X = I. Computing D? is trivial since D is diagonal and so each element on the diagonal is
squared. In fact, this result can be generalized to

AP = XDPX" (2.70)
Another useful result is obtained by take in inverse of (2.68) to give
A~ = xpx™) ! =x"Hp-Ix! 2.71)
Since X! =XH, on inverting X = X~H s0 (2.71) becomes
A~ l=xp'x" (2.72)

This is an efficient method of inverting a matrix since inverting the diagonal matrix D is trivial; it
is obtained by taking the reciprocal of each element on the diagonal. Of course, this assumes that the
eigenvalue problem has been solved.

Example 2.9. Egs. (2.68) to (2.72) are illustrated in MATLAB by continuing Example 2.7

>> A= 1[1 2;2 3]+j*[0 2;-2 071;
>> [X D]= eig(A);
>> AA = XxDxX’

AA =
1.0000 + 0.0000i 2.0000 + 2.00001
2.0000 - 2.00001 3.0000 + 0.00001

>> Ainv = Xxinv(D)*X’
Ainv =
-0.6000 + 0.00007 0.4000 + 0.40001
0.4000 - 0.4000i -0.2000 + 0.00001
>> inv(A)
ans =

-0.6000 + 0.00001 0.4000 + 0.40001
0.4000 - 0.40001 -0.2000 + 0.00001

2.15 THE EIGENVALUE PROBLEM 137

Consider the decomposition of a general, complex matrix. By post-multiplying (2.64) by X! we
have

A =XDX! (2.73)

Similarly, pre-multiplying the second expression of (2.65) by YT we have
A=Y DY’ (2.74)

Neither of these are particularly useful transforms since they both require matrix inversion. However,
from (2.66), X~ ! = Y. Substituting in (2.73) gives

A =XDY' (2.75)

This decomposition avoids the need to invert a matrix, but it requires the solution of two eigenvalue
problems for A and AT.

Example 2.10. Consider the matrices of Example 2.8

>> A =[1 2;4 31+j*[2 3;-1 11;

>> [X,D] = eig(A);

>> [Y,B] = eig(A.”);

>> p = Y. *X;

>> X(:,1) = X(:,1)/p(1,1); X(:,2) = X(:,2)/p(2,2);
>> Al = X«Dxinv(X)

Al =
1.0000 + 2.0000i 2.0000 + 3.00001
4.0000 - 1.0000i 3.0000 + 1.00001

>> A2 = dinv (Y.)xDxY.’

A2 =
1.0000 + 2.00001 2.0000 + 3.00001
4.0000 - 1.00001 3.0000 + 1.00001

>> A3 = X*DxY.’

A3 =
1.0000 + 2.0000i 2.0000 + 3.00001
4.0000 - 1.0000i 3.0000 + 1.00001

Eigenvalue decomposition will fail if the matrix being decomposed is defective. A defective matrix
is a square matrix that does not have a full set of linearly independent eigenvectors and consequently
can not be diagonalized. A is a normal matrix if AHA = AA". A normal matrix (which includes
Hermitian and real symmetric matrices as special cases) is never defective.

138 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

2.15.2 COMPARING EIGENVALUE AND SINGULAR VALUE DECOMPOSITION

Eigenvalue decomposition (EVD) can only decompose square matrices whereas singular value de-
composition (SVD) can decompose rectangular or square matrices. There is, however, a relationship
between singular values and eigenvalues. Consider a general, n x m matrix A. The SVD of A is

A=USV' (2.76)
From this SVD we can write
AAT = (UsVT(vsTuT) =ussTu’
because V'V =1 Let the EVD of AAT be
AAT = XDX' (2.77)

Comparing (2.76) and (2.77), we see D = SST and U = X. That is U is equal to the eigenvector of AAT
and SST is equal to the eigenvalues of AAT.
From the SVD of A we can also write

ATA = (vSUHUS'VT) = vsSTvT
since UTU =1 Let the EVD of ATA be
ATA = YDY'

Then V =Y and again D = SS'.

The fact that the eigenvalues of ATA are the square of the non-zero singular values of A has im-
plications for the condition number A. The condition number of AAT is the condition number of A
squared. Thus if A is ill-conditioned, working with ATA will make the ill-conditioning worse. Thus, in
difficult cases singular values are computed more accurately than eigenvalues.

Example 2.11. Determine the eigenvalues and condition number of AAT and the SVD and condition
number of A. Note that A is a 3 x 4 matrix.

> A=1[4-207;-27 -53;0-512 -2];
>> [X,D] = eig(A*A")

X =
0.0620 0.9979 -0.0163
0.8321 -0.0607 -0.5512
0.5511 -0.0206 0.8342

D =
20.0386 0 0
0 69.1435 0

0 0 239.8179

>> [U,S,V] = svd
U:
-0.0163 0.
-0.5512 -0.
0.8342 -0.
S =
15.4861
0 8
0
V:
0.0670 0.
-0.5164 -0.
0.8244 0.
-0.2219 0.
>> S%S7
ans =
239.8179
0 69.
0
>> cond(A)
ans =
3.4595

>> cond(AxA”)

ans =
11.9678

(A)

9979
0607
0206

.3153

4947
2787
0068
8231

1435

.0620

.8321

.5511

L4764

0.3164

0.6580

20.

.5478
.4084

0386

-0.8067
-0.4719
-0.1423

0.3261

2.15 THE EIGENVALUE PROBLEM

139

We note that S is equal to D (but the eigenvalues are listed in a different order) and the condition
number of AAT is the square of the condition number of A.

There is a special case when A is a square, symmetric, positive definite matrix, illustrated in the

following example.

Example 2.12. The matrix A is square and symmetric. Determining its eigensolution we have

>> A =1[4 -20;-27 -5;

>> [X,D] = eig(A

)

0 -5 127;

140 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

X =
-0.7055 -0.7022 0.0957
-0.6312 0.5611 -0.5355
-0.3224 0.4382 0.8391

D =
2.2107 0 0
0 5.5980 0
0 0 15.1913

Since all the eigenvalues of the square matrix A are positive, it must be a positive definite matrix.
Determining its SVD we have

>> [U,S,V] = svd(A)

U =
-0.0957 -0.7022 0.7055
0.5355 0.5611 0.6312
-0.8391 0.4382 0.3224

S =
15.1913 0 0
0 5.5980 0
0 0 2.2107

V =

-0.0957 -0.7022 0.7055
0.5355 0.5611 0.6312
-0.8391 0.4382 0.3224

This example has illustrated the fact that the eigenvalues and singular values of a square, sym-
metrical, positive definite matrix are identical. Because the eigenvalue and singular values have been
computed in different orders it isn’t immediately obvious that X is equivalent to V. However, if we
rearrange X so that it becomes equal to [—x3 X2 —X1] then X does equal V. Note that the columns
of X have been reordered in line with the order of the singular values, and two columns have been
multiplied by —1. Recall that each eigenvector can be multiplied by a constant, in this case —1, and
still be a solution to the eigenvalue problem.

2.16 ITERATIVE METHODS FOR SOLVING THE EIGENVALUE PROBLEM

The first of two simple iterative procedures described here determines the dominant or largest eigen-
value. The method, which is called the power method or matrix iteration, can be used on both sym-
metric and non-symmetric matrices. However, for a non-symmetric matrix the user must be alert to

2.16 ITERATIVE METHODS FOR SOLVING THE EIGENVALUE PROBLEM 141

the possibility that there is not a single real dominant eigenvalue value but a complex conjugate pair.
Under these conditions simple iteration does not converge.

Consider the eigenvalue problem defined by (2.40) and let the vector ug be an initial trial solution.
The vector ug is an unknown linear combination of all the eigenvectors of the system provided they are
linearly independent. Thus:

n
uyg = ZO(,‘ X; (2'78)
i=1

where «; are unknown coefficients and x; are the unknown eigenvectors. Let the iterative scheme be
u; =Aug, wz =Auy, ..., u, =Au, (2.79)

Substituting (2.78) into the sequence (2.79) we have

n n
u; = E o AX; = E a;AiX; since AX; = A;X;
i=1

i=1
n n
u = ZO&,‘MAX,‘ = Zai)\izxi
i=1 i=1
................................. (2.80)

n n
-1
u, = E Ol,‘)uf Ax; = E Ol,')»ipX,‘
i=1 i=1

The final equation can be rearranged, thus:

n A\ P
u, =" |:a1X1+Zai <A_ll> xii| (2.81)
i=2

It is the accepted convention that the n eigenvalues, A; of a matrix are numbered such that

A1l > [A2] > ... > |An]

&l

tends to zero as p tends to infinity for i =2, 3, ..., n. As p becomes large, we have from (2.81)

Hence

u, = Aax (2.82)

Thus u, becomes proportional to x; and the ratio between corresponding components of u, and u,_;
tends to Aq.

The algorithm, often referred to as the Power Method, is not usually implemented exactly as de-
scribed previously because problems could arise due to numeric overflows. Usually, after each iteration,

142 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

the resulting trial vector is normalized by dividing it by its largest element, thereby reducing the largest
element in the vector to unity. This can be expressed mathematically as

vy =Au,
S 1 v p=0,1,2,... (2.83)
pri= max(v,)) ©

where max(v)) is the element of v, with the maximum modulus. The pair of Egs. (2.83) are iterated
until convergence is achieved. This modification to the algorithm does not affect the rate of conver-
gence of the iteration. In addition to preventing the build up of very large numbers, the modification
described before has the added advantage that it is now much easier to decide at what stage the iter-
ation should be terminated. Post-multiplying the coefficient matrix A by one of its eigenvectors gives
the eigenvector multiplied by the corresponding eigenvalue. Thus, when we stop the iteration because
u, 1 is sufficiently close to u,, to ensure convergence, max(v,) will be an estimate of the eigenvalue.

The rate of convergence of the iteration is primarily dependent on the distribution of the eigenval-
ues; the smaller the ratios |A; /11| where i =2, 3, ..., n, the faster the convergence.

The following MATLAB function eigit implements the iterative method to find the dominant eigen-
value and the associated eigenvector.

function [Tam u iter] = eigit(A,tol)

% Solves EVP to determine dominant eigensolution by the power method
% Sample call: [lam u iterJ]=eigit(A,tol)

% A is a square matrix, tol is the accuracy

% lam is the dominant eigenvalue, u is the associated vector

% iter is the number of iterations required

[nn]=size(A);

err = 100xtol;

u0 = ones(n,1l); iter = 0;

while err>tol

v = Axu0;
ul = (1/max(v))*v;
err = max(abs(ul-u0));
ubd = ul; iter = iter+l;
end
u=ul; Tam = max(v);

We now apply the power method to find the dominant eigenvalue and corresponding vector for
following eigenvalue problem.

1 2 3 X1 X1
2 5 =6 ||xn|=r|x (2.84)
3 —6 9 X3 X3

>> A=1[123;25 -6;3 -6 91;
>> [Tam u iterations] = eigit(A,le-8)

2.16 ITERATIVE METHODS FOR SOLVING THE EIGENVALUE PROBLEM 143

lam =
13.4627

0.1319
-0.6778
1.0000

iterations =
18

The dominant eigenvalue, to eight decimal places, is 13.46269899.
The power method can also be used to determine the smallest eigenvalue of a system. The eigen-
value problem Ax = Ax can be rearranged to give

A7 lx=(1/0)x

Here the iterations will converge to the largest value of 1/A, that is, the smallest value of L. However,
as a general rule, matrix inversion should be avoided, particularly in large systems.

We have seen that direct iteration of Ax = Ax leads to the largest or dominant eigenvalue. A second
iterative procedure, called inverse iteration, provides a powerful method of determining subdominant
eigensolutions. Consider again the eigenvalue problem of (2.40). Subtracting ux from both sides of
this equation we have

A—pDx=(h—wx (2.85)

A—uD 'x= (ﬁ)x (2.86)

Consider the iterative scheme that begins with a trial vector ug. Then using the equivalent of (2.83) to
(2.86) we have

Ve = (A —uD)~luy
1 s=0,1,2,... (2.87)
Ugy4] = <)Vs

max(vy)

Iteration will lead to the largest value of 1/(A —), that is the smallest value of (A —). The smallest
value of (A —) implies that the value of A will be the eigenvalue closest to i and u will have converged
to the eigenvector x corresponding to this particular eigenvalue. Thus, by a suitable choice of u, we
have a procedure for finding subdominant eigensolutions.

144 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

Iteration is terminated when w1 is sufficiently close to ug. When convergence is complete

—— =max (vg)
I

A —
Thus, the value of A nearest to p is given by
1
A=p4+—- (2.88)
max (V)

The rate of convergence is fast, provided the chosen value of u is close to an eigenvalue. If u is equal
to an eigenvalue, then (A — ul) is singular. In practice this seldom presents difficulties because it is
unlikely that © would be chosen, by chance, to exactly equal an eigenvalue. However, if A — ul is
singular then we have confirmation that the eigenvalue is known to a very high precision. The corre-
sponding eigenvector can then be obtained by changing 1 by adding a small quantity and iterating to
determine the eigenvector.

Although inverse iteration can be used to find the eigensolutions of a system about which we have
no previous knowledge, it is more usual to use inverse iteration to refine the approximate eigensolution
obtained by some other technique. In practice (A — uD~!is not formed explicitly; instead, (A — uI)
is usually decomposed into the product of a lower and an upper triangular matrix; explicit matrix
inversion is avoided and is replaced by two efficient substitution procedures. In the simple MATLAB
implementation of this procedure shown next, the operator \ is used to avoid matrix inversion.

function [Tam u iter] = eiginv(A,mu,tol)
% Determines eigenvalue of A closest to mu with a tolerance tol.
% Sample call: [lam u] = eiginv(A,mu,tol)
% lam is the eigenvalue and u the corresponding eigenvector.
[n,n] = size(A);
err = 100*tol;
B = A-muxeye(n,n);
u0 = ones(n,1);
iter = 0;
while err>tol
v = B\u0; f = 1/max(v);
ul = fxv;
err = max(abs(ul-u0));
uld = ul; iter = iter+l;
end
u = ul; lam = mu+f;

We now apply this function to find the eigenvalue of (2.84) nearest to 4 and the corresponding eigen-
vector.

> A=1[123;25 -6;3 -6 91;

>> [Tam u iterations] = eiginv(A,4,1e-8)

Tam =
4.1283

2.17 SOLUTION OF THE GENERAL EIGENVALUE PROBLEM 145

1.0000
0.8737
0.4603

iterations =
6

The eigenvalue closest to 4 is 4.12827017 to eight decimal places. The functions eigit and eiginv
should be used with care when solving large-scale eigenvalue problems since convergence is not always
guaranteed and in adverse circumstances may be slow.

2.17 SOLUTION OF THE GENERAL EIGENVALUE PROBLEM

There are many algorithms available to solve the eigenvalue problem. The method chosen is influenced
by many factors such as the form and size of the eigenvalue problem, whether or not it is symmetric,
whether it is real or complex, whether or not only the eigenvalues are required, whether all or only
some of the eigenvalues and vectors are required.

We now describe the algorithms that are generally used to solve eigenvalue problems. The alterna-
tive approaches are as follows.

If A is a general matrix, it is first reduced to Hessenberg form using Householder’s transfor-
mation method. A Hessenberg matrix has zeros everywhere below the diagonal except for the first
sub-diagonal. If A is a symmetric matrix the transform creates a tridiagonal matrix. Then the eigen-
values and eigenvectors of the real upper Hessenberg matrix are found by the iterative application
of the QR procedure. The QR procedure involves decomposing the Hessenberg matrix into an upper
triangular matrix and a unitary matrix.

The following script, e4s213.m uses the MATLAB function hess to convert the original matrix to
a Hessenberg matrix, followed by the iterative application of the QR decomposition using MATLAB
function qr to determine the eigenvalues of a symmetric matrix. Note that in this script we have iterated
10 times, rather than use a formal test for convergence since the purpose of the script is merely to
illustrate the functioning of the iterative application of the QR procedure.

% eds213.m
A=[5411;4511; 1142;11247;
H1 = hess(A);
for i = 1:10
[Q R] = qr(H1);
H2 = R+xQ; HI = HZ;
p = diag(Hl)’;
fprintf(’%2.0f %8.4f %8.4f,1,p(1),p(2))
fprintf(’%8.4f %8.4f\n’,p(3),p(4))
end

Running script e4s213.m gives

146 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

1 1.0000 8.3636 6.2420 2.3944
2 1.0000 9.4940 5.4433 2.0627
3 1.0000 9.8646 5.1255 2.0099
4 1.0000 9.9655 5.0329 2.0016
5 1.0000 9.9913 5.0084 2.0003
6 1.0000 9.9978 5.0021 2.0000
7 1.0000 9.9995 5.0005 2.0000
8 1.0000 9.9999 5.0001 2.0000
9 1.0000 10.0000 5.0000 2.0000
10 1.0000 10.0000 5.0000 2.0000

The iteration converges to the values 1, 10, 5, and 2 which are the correct. This QR iteration could be
applied directly to the full matrix A but in general it would be inefficient. We have not given details of
how the eigenvectors are computed.

When the arguments in the MATLAB function eig are two real or complex matrices, the QZ algo-
rithm is used instead of the QR algorithm. The QZ algorithm (Golub and Van Loan, 1989) has been
modified to deal with the complex case. When eig is called using a single complex matrix A then the
algorithm works by applying the QZ algorithm to eig(A,eye(size(A))). The QZ algorithm begins by
noting that there exists a unitary Q and Z such that Q"AZ = T and Q"BZ = S and hence both T and
S are both upper triangular. This is called generalized Schur decomposition. Providing sk is not zero
then the eigenvalues are computed from the ratio #x/skx, where k = 1,2, ..., n. The script e4s214.m
demonstrates that the ratios of the diagonal elements of the T and S matrices give the required eigen-
values.

% eds214.m

A [10+27 1 2;1-3i 2 -1;1 1 21;
B [12-27 -2;4 5 6;7+31 9 97;
[TSQZV]=qz(A,B);

ril diag(T)./diag(S)

r2 eig(A,B)

Running script e4s214.m gives

rl =
1.6154 + 2.7252i
-0.4882 - 1.36801
0.1518 + 0.0193i
re =

1.6154 + 2.7252i
-0.4882 - 1.36801
0.1518 + 0.01931

Schur decomposition is closely related to the eigenvalue problem. The MATLAB function schur(a)
produces an upper triangular matrix T with real eigenvalues on its diagonal and complex eigenvalues
in 2 x 2 blocks on the diagonal. The matrix A decomposed to give

A =vuTtUH

2.17 SOLUTION OF THE GENERAL EIGENVALUE PROBLEM 147

where U is a unitary matrix such that UNU = I. The output of the script e4s215 shows the similarity
between Schur decomposition given by the MATLAB function schur and the eigenvalues determined
using eig, of a given matrix.

% e4s215.m
A [4 -503;04 -3 -5;5-340;30547;
T = schur(A), Tam = eig(A)

Running script e4s215 gives

T =
12.0000 0.0000 -0.0000 -0.0000
0 1.0000 -5.0000 -0.0000
0 5.0000 1.0000 -0.0000
0 0 0 2.0000
lTam =
12.0000 + 0.0000i
1.0000 + 5.00001
1.0000 - 5.00001
2.0000 + 0.00001

We can readily identify the four eigenvalues in the matrix T. The real parts of the eigenvalues lie on the
diagonal of T and any non-zero elements in the sub- and super-diagonal of T are the imaginary parts
of the eigenvalues. The script e4s216.m compares the performance of the eig function when solving
various classes of problem.

% eds216.m
disp(’ reall realsyml real?2 realsym?2 compl comp2’)
for n = 100:50:500

A = rand(n); C = rand(n);

S = A+Cxi;

T = rand(n)+i*xrand(n);

tic, [U,V] = eig(A); fl = toc;

B=A+A."; D = C+C.";

tic, [U,V] = eig(B); f2 = toc;

tic, [U,V] eig(A,C); f3 toc;

tic, [U,V] = eig(B,D); f4 = toc;

tic, [U,V] = eig(S); f5 = toc;

tic, [U,V] = eig(S,T); f6 = toc;

fprintf(*%12.3f %10.3f %10.3f %10.3f %10.3f %10.3f\n’,f1,f2,f3,f4,f5,f6);

end

This script, e4s216.m gives the time taken (in seconds) to carry out the various operations. The output
is as follows:

148 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

reall realsyml real? realsym? compl comp?
0.188 0.002 0.027 0.019 0.033 0.142
0.053 0.009 0.060 0.107 0.148 0.190
0.196 0.011 0.138 0.120 0.151 0.209
0.100 0.011 0.153 0.151 0.182 0.276
0.127 0.013 0.244 0.249 0.236 0.423
0.162 0.021 0.391 0.375 0.338 0.709
0.202 0.027 0.653 0.635 0.463 1.066
0.253 0.038 0.886 0.913 0.610 1.696
0.300 0.046 1.250 1.270 0.792 2.220

Note that each row is for a different size of n x n matrix, from 100 to 500 in steps of 50.

In some circumstances not all the eigenvalues and eigenvectors are required. For example, in a com-
plex engineering structure, modeled with many hundreds of degrees of freedom, we may only require
the first 15 eigenvalues, giving the natural frequencies of the model, and the corresponding eigenvec-
tors. MATLAB provides the function eigs which finds a selected number of eigenvalues, such as those
with the largest amplitude, the largest or smallest real or imaginary part, etc. This function is partic-
ularly useful when seeking a small number of eigenvalues of very large sparse matrices. Eigenvalue
reduction algorithms are used to reduce the size of eigenvalue problem (for example, Guyan, 1965) but
still allow selected eigenvalues to be computed to an acceptable level of accuracy.

MATLAB also includes the facility to find the eigenvalues of a sparse matrix. The script e4s217.m
compares the number of floating-point operations required to find the eigenvalues of a matrix treated as
sparse with the number of floating-point operations required to find the eigenvalues of the correspond-
ing full matrix.

% eds217.m

% generate a sparse triple diagonal matrix

n = 4000;

rowpos = 2:n; colpos = l:n-1;

values = ones(l,n-1);

offdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(l:n,l:n,4%ones(1,n),n,n);

A = A+offdiag+offdiag.’;

% generate full matrix

B = full(A);

tic, eig(A); sptim = toc;

tic, eig(B); futim toc;

fprintf(’Time for sparse eigen solve = %8.6f\n’,sptim)
fprintf(’Time for full eigen solve %8.6f\n", futim)

The results from running script e4s217.m are

Time for sparse eigen solve = 0.511121
Time for full eigen solve 0.591209

Clearly a significant saving in time.

2.18 THE GOOGLE ‘PAGERANK" ALGORITHM 149

2.18 THE GOOGLE ‘PAGERANK’ ALGORITHM

An interesting application of eigenvalue analysis is the Google algorithm for determining the most
important pages found in a web search.

Search engines use crawlers to continuously search the web, finding new pages and adding them
to the vast index of pages. When you undertake a web search, the search engine looks at the index
and finds the pages containing the key words used in your search. For example, a Google search for
“eigenvalue” finds about 1,670,000 results in 0.54 seconds. The next step is to decide in what order
to present these pages: clearly the most relevant pages should be shown first. Different search engines
use different ways of ranking the pages. What makes the Google search engine particularly attractive
is the ‘PageRank’ algorithm that decides which are the most important pages. The Google ‘PageRank’
algorithm was first described by Brin and Page (1998).

The pages containing the key search words can be viewed as a network where a large number of
nodes, representing topics or pages, are connected by edges. Such a network is often called a graph.
Certain nodes have more connections than others, depending on their importance and relevance. A node
which has many other node connections pointing to it, and thus referencing it, may be considered
more important than others with fewer references. When searching on the web for specific information
amongst the huge numbers of items, it would clearly be useful to rank the pages in terms of their
relevance to the user, since this is what the user requires. The Google algorithm provides an objective
and efficient page ranking process. It ranks the pages by relevance based on the number of citations a
page receives, assigns a page rank to each page, and lists the pages in order of relevance to the user.
A key feature of page rank is that a page has high rank if many other pages of high rank point to it, so
it is not only the issue of the number of pages which point to a page, the rank of these pages is also
important.

So how can an algorithm be built to implement this process? First a model of the network of
potentially interesting pages must be devised and then we must produce an objective mathematical
process to establish the required page ranking in numerical form. From our previous discussion it is
clear the model of the pages could be a connected network or graph and this is the approach adopted.
Since we wish to use a numerical process we must then represent the graph numerically. This can be
achieved by representing the graph as a matrix.

If we think of the matrix having elements at positions (i, j) where i is the row number of the matrix
and j is the column of the matrix then the elements of A may be denoted by A;;. In our model of the
internet, we may define the elements of the matrix as the probabilities that information will be sent
from page j to page i. We can set the probability values for each node i which has a connection to
node j, to 1/n; assuming each node j has n; outward pointing connections to other nodes i. If there
is no connection to any other node then the probability is of course zero. Thus the sum of probabilities
in each column must equal 1 and probabilities lie in the range zero to one. Such a matrix is a column
stochastic matrix, defined as one whose elements are less than or equal to one and the columns of
which sum to 1. A stochastic matrix has some specific properties, one of which is that its largest or
dominant eigenvalue is equal to one.

The question now arises, how can we use this model of the internet to rank the internet pages? It
can be shown that the dominant eigenvector of the stochastic matrix A which we have used to model
the internet links provides the page ranking we require. The numerical ordering of the individual values
of the eigenvector rank the relevance of the specific page on the web to the searcher; the largest being

150 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

FIGURE 2.9
Connections of different strengths between five pages of the internet.

the most relevant and the smallest being the least relevant. However, this dominant eigenvector of
the stochastic matrix A is not unique. To ensure uniqueness the Google matrix G was introduced as
follows:

G:aA+(l—a)UPTwher60§a<l

where U is a matrix of 1s and P is sometimes called a personalization vector such that P > 0 and
|IP|| = 1. This may be taken as the initial probabilities each given by 1/n where n is the size of
the matrix. This matrix, G, the Google matrix, provides a unique dominant eigenvector and is also
stochastic. The Google page rank vector r may now be defined by the equations:

Gr=r wherer >0 and ||r|| =1

This is the standard eigenvalue problem, see (2.40), with the dominant eigenvalue equal to one.

The Google page rank vector r may now be used to rank the internet pages and display them in
order, largest value first and then in decreasing order of magnitude. The final question is: how can we
find the dominant eigenvector of G? Fortunately it can be found by using the relatively simple power
method, as described in Section 2.16. In the description of the power method in Section 2.16 it is
explained that in order to avoid a numeric overflow caused by effectively multiplying the eigenvector
by the eigenvalue raised to a power equal to the number of iterations performed, the iteration algorithm
must be modified as described by (2.83). This is implemented in the function eigit. In determining
the eigensolution of a stochastic matrix, since the dominant eigenvalue is close to and tending to unity,
this difficulty does not arise and the algorithm can be simplified.

In fact, since we iterate the equations r = Gry,j,; and r;.;,; = 1 this iteration is effectively r =
GPryriq1, where p is suitably large. Thus irrespective of 1,4 the product GPr;,;4; is the same, but
scaled differently. This is because every column of G” is identical.

Consider the graph shown in Fig. 2.9. The graph representing the connections between five scientific
papers on the internet with various links connecting each node. Then this diagram may be represented
by the stochastic matrix:

Then the Google matrix is

0.0300
0.3133
0.3133
0.3133
0.0300

1/3
1/3
1/3

0.0300
0.0300
0.0300
0.8800
0.0300

SO = O OO

1/2

1/2

0.0300
0.4550
0.0300
0.4550
0.0300

0.0300
0.0300
0.0300
0.0300
0.8800

2.19 SUMMARY

0.4550
0.4550
0.0300
0.0300
0.0300

I
151

(2.89)

(2.90)

Note that the sum of each column is one and for each element G;; in the matrix the condition 0 <

Gij < 1is satisfied. Then G0 is

0.1468
0.2188
0.0716
0.2880
0.2748

Ifr,i=[11111]" then

0.1468
0.2188
0.0716
0.2880
0.2748

0.1468
0.2188
0.0716
0.2880
0.2748

0.1468
0.2188
0.0716
0.2880
0.2748

0.1468
0.2188
0.0716
0.2880
0.2748

G %;yi01 = [0.7340 1.0940 0.3580 1.4400 1.3740]

In contrast, suppose ryjq; =[1 —1 1 —1 1]T then

Gr,, 0 = [0.1468 0.2188 0.0716 0.2880 0.2748]

In both cases, the vectors can be normalized to give

r =[0.5097 0.7598 0.2486 1.0000 0.9542]

Thus the most important web location or paper is number 4, closely followed by number 5.
To implement these procedures as a formal algorithm a test must be included to determine if the

procedure has converged to a sufficiently accurate estimate for r.

(2.91)

2.19 SUMMARY

We have described many of the important algorithms related to computational matrix algebra and
shown how the power of MATLAB can be used to illustrate the application of these algorithms in a
revealing way. We have shown how to solve over- and under-determined systems and eigenvalue prob-
lems. We have drawn the attention of the reader to the importance of sparsity in linear systems and

152

CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

demonstrated its significance. The scripts provided should help readers to develop their own applica-

tions.

In Chapter 10, we show how the symbolic toolbox can be usefully applied to solve some problems
in linear algebra.

2.20 PROBLEMS

2.1,

2.2.

2.3.

2.4.

An n x n Hilbert matrix, A, is defined by
aij=1/G+j—Dfori,j=1,2, ..., n
Find the inverse of A and the inverse of ATA for n = 5. Then, noting that
ATA) ' =A- 1A T

find the inverse of ATA using this result for values of n =3, 4, ..., 6. Compare the accuracy
of the two results by using the inverse Hilbert function invhilb to find the exact inverse using
ATA T =A"1A YT, Hinr: Compute norm(P — R) and norm(Q — R) where P = (ATA)!
and Q = A~ (A~1)T and R is the exact value of Q.

Find the condition number of ATA where A is an n x n Hilbert matrix, defined in Problem 2.1,
forn =3, 4, ..., 6. How do these results relate to the results of Problem 2.1?

It can be proved that the series (I — A l'=TI+A+A%Z+ A3+ ..., where A is an n x n matrix,
converges if the eigenvalues of A are all less than unity. The following n x n matrix satisfies
this condition if a + 2b < 1 and a and b are positive:

a b 0 0 0 0
b a b 0 0 O
0 0 O b a b
0 0 O 0 b a

Experiment with this matrix for various values of n, a, and b to illustrate that the series converges
under the condition stated.
Use the function eig to find the eigenvalues of the following matrix:

2 3 6
2 3 -4
6 11 4

Then use the rref function on the matrix (A — AI), taking A equal to any of the eigenvalues.
Solve the resulting equations by hand to obtain the eigenvector of the matrix. Hint: Note that
an eigenvector is the solution of (A — AI)x = 0 for A equal to specific eigenvalues. Assume an
arbitrary value for x3.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12,

2.20 PROBLEMS

153

For the system given in Problem 2.3, find the eigenvalues, assuming both full and sparse forms

with n =10: 10 : 30. Compare your results with the exact solution given by

M=a+2bcostkn/(n+ 1)}, k=1,2,...

Find the solution of the over-determined system that follows using pinv, qr, and the \ operator.

2.0 -=3.0
1.9 -=3.0
21 =29

2.0
2.2
2.0

6.1 2.1 =3.0

=30 50

Write a script to generate an n x n matrix E, where E = {1/(n 4+ 1)}C where

2.1

Cij=i(n—i+1)
=Cij—1—1

=Cji

ifi=j
if j>i
if j<i

1.01
1.01
0.98
4.94
4.10

Having generated E for n = 5, solve Ex = b where b= [1: n]" by

(a) using the \ operator;

(b) using the 1u function and solving Ux =y and Ly =b.
Determine the inverse of E of Problem 2.7 for n = 20 and 50. Compare with the exact in-
verse which is a matrix with 2 along the main diagonal and —1 along the upper and lower

sub-diagonals and zero elsewhere.

Determine the eigenvalues of E defined in Problem 2.7 for n = 20 and 50. The exact eigenvalues

for this system are given by Ay = 1/[2 — 2cos {kw/(n 4+ 1)}] where k =1, ..., n.

Determine the condition number of E of Problem 2.7 using the MATLAB function cond, for
n =20 and 50. Compare your results with the theoretical expression for the condition number

which is 4n? /2.

Find the eigenvalues and the left and right eigenvectors using the MATLAB function eig for the

matrix

A=

For the following matrix A, using eigit, eiginv, determine:

a. the largest eigenvalue
b. the eigenvalue nearest 100
c. the smallest eigenvalue

122
40

32
31

8
—4
18

41
170
26
22
28

-1
4
-5

40
25
172

-5
-2
—7

26
14

106
—1

25
24

165

154

2.13.

2.14.

2.15.

2.16.

CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS
Given that
1 2 2 2 0 1
A=| 5 6 -2 |andB=| 4 -5 1
I -1 0 1 0 0
and defining C by
A B
e=[a X

verify using eig that the eigenvalues of C are given by a combination of the eigenvalues of
A+Band A —B.
Write a MATLAB script to generate the matrix

B n n—1 n—2 ... 2 17
n—1 n—-1 n-2 ... 2 1
n—-2 n—-2 n-2 ... 2 1
A=
2 2 2 ... 21
L 1 1 1 ... 1 1]

Taking n = 5 and n = 50 and using the MATLAB function eig, find the largest and smallest
eigenvalues.
The eigenvalues of this matrix are given by the formula

1 Qi—DHr] '
AM=—=|1—cos ——— ,i=1,2 ...n
2 2n +1

Verify your results are correct using this formula.
Taking n = 10, find the eigenvalues of the matrix

1 0 0 0 1 7]
010 0 2
0 0 1 0 3
A:
00 0 ... 1 n—1
L1 2 3 n—1 n |

using eig. As an alternative, find the eigenvalues of A by first generating the characteristic
polynomial using poly for the matrix A and then using roots to find the roots of the resulting
polynomial. What conclusions do you draw from these results?

For the matrix given in Problem 2.12, use eig to find the eigenvalues. Then find the eigenvalues
of A by first generating the characteristic polynomial for A using poly and then using roots to
find the roots of the resulting polynomial. Use sort to compare the results of the two approaches.
What conclusions do you draw from these results?

2.20 PROBLEMS

155

2.17. For the matrix given in Problem 2.14, taking n = 10, show that the trace is equal to the sum of
the eigenvalues and the determinant is equal to the product of the eigenvalues. Use the MATLAB

2.18.

2.19.

2.20.

functions det, trace, and eig.

The matrix A is defined as follows:

r 2 -1 0 o0 0
—1 2 -1 0 0
0 -1 2 -1 0
A= . .
0 0 -1 2 -1

L 0 O 0 -1 2

The condition number, ¢, for this matrix is given by ¢ = pn? where n is the size of the matrix
and p and g are constants. By computing the condition number for the matrix A forn =5:5:50
using the MATLAB function cond, fit the function pn? to the set of results you produce. Hint:
Take logs of both sides of the equation for ¢ and solve the system of over-determined equations
using the \ operator.

An approximation for the inverse of (I — A) where I is an n X n unit matrix and A isann X n
matrix is given by

AI—A)'"=T+A+AZ+ A+ ..

This series only converges and the approximation is valid only if the maximum eigenvalue of A
is less than 1. Write a MATLAB function invapprox(A,k) which obtains an approximation to
(I — A)~! using k terms of the given series. The function must find all eigenvalues of A using
the MATLAB function eig. If the largest eigenvalue is greater than one then a message will be
output indicating the method fails. Otherwise the function will compute an approximation to
(I — A)~! using k terms of the series expansion given. Taking k = 4, test the function on the
matrices:

02 03 O 1.0 03 O
03 02 03 [and | 03 1.0 03
0 03 02 0 03 1.0

Use the norm function to compare the accuracy of the inverse of the matrix (I — A) found using
the MATLAB inv function and the function invapprox(A,k) fork =4, 8, 16.

The system of equations Ax = b, where A is a matrix of m rows and n columns, X is an n
element column vector, b an m element column vector, is said to be under-determined if n > m.
The direct use of the MATLAB inv function to solve this system fails since the matrix A is not
square. However, multiplying both sides of the equation by AT gives:

ATAx=ATb

ATAisa square matrix and the MATLAB inv function can now be used to solve the system.
Write a MATLAB function to use this result to solve under-determined systems. The function
should allow the input of the b vector and the A matrix, form the necessary matrix products

156 CHAPTER 2 LINEAR EQUATIONS AND EIGENSYSTEMS

2.21.

2.22,

and use the MATLAB inv function to solve the system. The accuracy of the solution should be
checked by using the MATLAB norm function to measure the difference between Ax and b. The
function must also include the direct use of the MATLAB \ symbol to solve the same under-
determined linear system, again include a check on the accuracy of the solution by using the
MATLAB norm function to measure the difference between Ax and b. The function should take
the form udsys (A, b) and return the solutions given by the different methods and the norms pro-
duced by the two methods. Test your program by using it to solve the under-determined system
of linear equations Ax = b where:

1 -2 -5 3 —-10
A‘[3 4 2 -7 } andb_[20}
What conclusions do you draw regarding the two methods by comparing the norms that the two
methods produce?

An orthogonal matrix A is defined as a square matrix such that the product of the matrix and its
transpose equals the unit matrix or

AAT =1

Use MATLARB to verify that the following matrices are orthogonal:

1 1 1
V3o T2
N I T
11 1
VN v

. cos(m/3) sin(mw/3)
| —sin(n/3) cos(w/3)

Write MATLAB scripts to implement both the Gauss—Seidel and the Jacobi method and use them
to solve, with an accuracy of 0.000005, the equation system Ax = b where the elements of A
are

ajj =—4

ajj=2if i — j|=1

ajj=0if [i — j| >2wherei, j=1,2,...,10
and

b =[234..11]

Use initial values x; =0, where i =1, 2, ..., 10. (You might also like to experiment with other
initial values.) Check your results by solving the system using the MATLAB \ operator.

CHAPTER

SOLUTION OF NON-LINEAR
EQUATIONS

Abstract

The problem of solving non-linear equations arises frequently and naturally from the study of a wide
range of practical problems. The problem may involve one or a system of non-linear equations in many
variables. In this chapter, general methods of solving non-linear equations are presented, together with
specific methods for polynomial equations.

3.1 INTRODUCTION

To illustrate our discussion and provide a practical insight into the solution of non-linear equations
we shall consider an equation described by Armstrong and Kulesza (1981). These authors report a
problem which arises from the study of resistive mixer circuits. Given an applied current and voltage,
itis necessary to find the current flowing in part of the circuit. This leads to a simple non-linear equation
which after some manipulation may be expressed in the form

x —exp(—x/c) =0 orequivalently x =exp(—x/c) 3.

Here c is a given constant and x is the variable we wish to determine. The solution of such equations is
not obvious but Armstrong and Kulesza provide an approximate solution based on a series expansion
which gives a reasonably accurate solution for a large range of values of c. This approximation is given
in terms of ¢ by

x =cul[l —log, {(1 4+ c)u}/(1 +u)] (3.2)

where u = log,(1 + 1/c). This is an interesting and useful result since it is reasonably accurate for
values of ¢ in the five-decade range [1073,100] and gives a relatively efficient way of finding the
solutions of a whole family of equations generated by varying c. Although this result is useful for this
particular equation, when we attempt to use this type of ad hoc approach for the general solution of
non-linear equations, there are significant drawbacks. These are

1. Ad hoc approaches to the solutions of equations are rarely as successful as this example in finding
a formula for the solution of a given equation, usually it is impossible to obtain such formu-
lae.

2. Even when they exist, such formulae require considerable time and ingenuity to develop.

3. We may require greater accuracy than any ad hoc formula can provide.

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00012-9 1 57
Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-812256-3.00012-9

158 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

1.1 +to

0.9 +o

value

o 0.8 +0
0.7 +0
0.6 +0

0.5-— ‘ : :
0.4 0.45 05 0.55 0.6

root x value

FIGURE 3.1

Solution of x = exp(—x/c). Results from the function fzero are indicated by o and those from the Armstrong
and Kulesza formula by +.

To illustrate point 3 consider Fig. 3.1 which is generated by the MATLAB script e4s301.m. This figure
shows the results obtained using the formula (3.2) together with the results using the MATLAB function
fzero to solve the same non-linear equation (3.1).

% e4s301.m
ro="[1;ve=101;x=11;
c=20.5:0.1:1.1; u = Tog(l+l./c);
X = c.*xu.*(1-Tog((1+c).*u)./(1+u));
% solve equation using MATLAB function fzero
i=20;
options = optimset(’TolFun’,0.00005);
for cl = 0.5:0.1:1.1

i=i+1;

ro(i) = fzero(@(x) x-exp(-x/cl),l,options);
end
plot(x,c,’+")
axis([0.4 0.6 0.5 1.2])
hold on
plot(ro,c,’0”)
xlabel(’Root x value’), ylabel(’c value’)
hold off

The function fzero is discussed in detail in Section 3.10. Note that the call of fzero takes the form
fzero(@(x) x-exp(-x/cl),1,options). This gives an accuracy of 0.00005 for the roots and uses an
initial approximation 1. The function fzero provides the root with up to 16-digit accuracy, if required,
whereas the formula (3.2) of Armstrong and Kulesza, although faster, gives the result to one or two
decimal places only. In fact, the method of Armstrong and Kulesza becomes more accurate for large
values of c.

From the preceding discussion, we conclude that, although occasionally ingenious alternatives may
be available, in the vast majority of cases we must use algorithms which provide, with reasonable

3.2 THE NATURE OF SOLUTIONS TO NON-LINEAR EQUATIONS 159

100 15
1
sof|] 0.5
z ~ 0
0 0.5
-1

[e R R B R R) 5 10 15 20
X X

FIGURE 3.2 FIGURE 3.3

Plot of the function f(x) = (x — 1)3(x +2)%(x — 3). Plot of f(x) = exp(—x/10) sin(10x).

computational effort, the solutions of general problems to any specified accuracy. Before describing
the nature of these algorithms in detail, we consider different types of equations and the general nature
of their solutions.

3.2 THE NATURE OF SOLUTIONS TO NON-LINEAR EQUATIONS

We illustrate the nature of the solutions to non-linear equations by considering two equations which
we wish to solve for the variable x.

(@) (x = D3(x +2)*(x — 3) =0, —that s,
x0—2x0 —8x* 4+ 14x3 +11x2 —28x +12=0
(b) exp(—x/10)sin(10x) =0

The first equation is a special type of non-linear equation known as a polynomial equation since it in-
volves only integer powers of the variable x and no other function. Such polynomial equations have the
important characteristic that they have n roots where » is the degree of the polynomial. In this example
the highest power of x, and hence the degree of the polynomial, is six. The solutions of a polynomial
may be complex or real, separate or coincident. Fig. 3.2 illustrates the nature of the solutions of this
equation. Although there must be six roots, three are coincident at x = 1 and two are coincident at
x = —2. There is also a single root at x = 3. Coincident roots may present difficulties for some algo-
rithms, as do roots which are very close together so it is important to appreciate their existence. The
user may require a particular root of the equation or all the roots. In the case of polynomial equations,
special algorithms exist to find all the roots simultaneously.

The example (b) is a non-linear equation involving transcendental functions. The task of finding all
the roots of this class of non-linear equation is a daunting one, since the number of roots may not be
known or there may be an infinity of roots. This situation is illustrated by Fig. 3.3 which shows the
graph of the second equation for x in the range [0, 20]. If we extended the range of x, more roots would
be revealed.

We now consider some simple algorithms to find a specific root of a given non-linear equation.

160 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

3.3 THE BISECTION ALGORITHM

This simple algorithm assumes that an initial interval is known in which a root of the equation f(x) =0
lies and then proceeds to reduce this interval until the required accuracy is achieved for the root. This
algorithm is mentioned only briefly since it is not in practice used by itself but in conjunction with
other algorithms to improve their reliability. The algorithm may be described by

input interval in which the root lies
while interval too large
(1) Bisect the current interval in which the root lies.
(2) Determine in which half of the interval the root lies.
end
display root

The principles on which this algorithm is based are simple. Given an initial interval in which a specific
root lies, the algorithm will provide an improved approximation for the root. However, the requirement
that an interval be known is sometimes difficult to achieve, and although the algorithm is reliable it is
extremely slow.

Alternative algorithms have been developed which converge more rapidly; this chapter is concerned
with describing some of the most important of these. All the algorithms we consider are iterative in
character, — that is they proceed by repeating the same sequence of steps until the root approximation
is accurate enough to satisfy the user. We now consider the general form of an iterative method, the
nature of the convergence of such methods and the problems they encounter.

3.4 ITERATIVE OR FIXED POINT METHODS

We wish to solve the general equation f(x) = 0; however, to illustrate iterative methods clearly we
consider a simple example. Suppose we wish to solve the quadratic

P—x—1=0 (3.3)

This equation can be solved by using the standard formula for solving quadratics but we take a different
approach. Rearrange (3.3) as follows:

x=14+1/x
Then rewrite it in iterative form using subscripts as follows:

Xrp1=1+1/x, for r=0,1,2, ... (3.4)

Assuming we have an initial approximation xg to the root we are seeking, we can proceed from one
approximation to another using this formula. The iterates we obtain in this way may or may not con-
verge to the solution of the original equation. This is not the only iterative procedure for attempting to
solve (3.3); we can generate two others from (3.3) as follows:

Xpp1=x2—1 for r=0,1,2, ... (3.5)

3.5 THE CONVERGENCE OF ITERATIVE METHODS 161

Table 3.1 Difference between exact root and
iterate for x2 —x —1=0

Iteration (3.4) | Iteration (3.5) Iteration (3.6)

—0.1180 1.3820 0.1140
0.0486 6.3820 0.0349
—0.0180 61.3820 0.0107
0.0070 3966.3820 0.0033
—0.0026 | 15,745,021.3820 0.0010
and
Xrp1=+/x+1 for r=0,1,2, ... 3.6)

Starting from the same initial approximation, these iterative procedures may or may not converge to
the same root. Table 3.1 shows what happens when we use the initial approximation xo = 2 with the
iterative procedures (3.4), (3.5), and (3.6). It shows that iterations (3.4) and (3.6) converge but (3.5)
does not.

Note that when the root is reached no further improvement is possible and the point remains fixed.
Hence the roots of the equation are the fixed points of the iteration. To remove the unpredictability of
this approach we must be able to find general conditions which determine when such iterative schemes
converge, when they do not and the nature of this convergence.

3.5 THE CONVERGENCE OF ITERATIVE METHODS

The procedure described in Section 3.4 can be applied to any equation f(x) = 0 and has the general
form

Xr41=8x) forr=0,1,2, ... (3.7)

It is not our purpose to give the details of the derivation of convergence conditions for this form of iter-
ation, but to point out some of the difficulties which may arise in using them even when this condition
is satisfied. The detailed derivation is given in many text books; see, for example, Lindfield and Penny
(1989). It can be shown that the approximate relation between the current error ¢, at the (r + 1)th
iteration and the previous error ¢, is given by

Ery1 = 8rg/(tr)

where ¢, is a point lying between the exact root and the current approximation to the root. Thus, the
error will be decreasing if the absolute value of the derivative at these points is less than 1. However,
this does not guarantee convergence from all starting points and the initial approximation must be
sufficiently close to the root for convergence to occur.

In the case of the specific iterative procedures (3.4) and (3.5), Table 3.2 shows how the values of
the derivatives of the corresponding g(x) vary with the values of the approximations to x,. This table
provides numerical evidence for the theoretical assertion in the case of iterations (3.4) and (3.5).

162 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

Table 3.2 Values of the derivatives for iterations given
by (3.4) and (3.5)

Iteration (3.4) Derivative | Iteration (3.5) Derivative

—0.1180 —0.44 1.3820 6.00
0.0486 —0.36 6.3820 16.00
—0.0180 -0.39 61.3820 126.00
0.0070 —0.38 3966.3820 7936.00

However, the concept of convergence is more complex than this. We need to give some answer to
the crucial question: if an iterative procedure converges, how can we classify the rate of convergence?
We do not derive this result but refer the reader to Lindfield and Penny (1989) and state the answer
to the question. Suppose all derivatives of the function g(x) of order 1 to p — 1 are zero at the exact
root a. Then the relation between the current error ¢, at the (r + 1)th iteration and the previous error
&, is given by

&1 = ()P gV (1) / p! (3.8)

where 7, lies between the exact root and the current approximation to the root and g‘”) denotes the
pth derivative of g. The importance of this result is that it means the current error is proportional to
the pth power of the previous error and clearly, on the basis of the reasonable assumption that the
errors are much smaller than 1, the higher the value of p, the faster the convergence. Such methods
are said to have pth-order convergence. In general it is cumbersome to derive iterative methods of
order higher than two or three and second-order methods, where the current error is proportional to
the square of the previous error, have proved very satisfactory in practice for solving a wide range
of non-linear equations. Note that if the current error is proportional to the previous error it is called
linear convergence and if the current error is proportional to the square of the previous error it is
called quadratic convergence. This provides a convenient classification for the convergence of iterative
methods but avoids the difficult questions: for what range of starting values will the process converge
and how sensitive is convergence to changes in the starting values?

3.6 RANGES FOR CONVERGENCE AND CHAOTIC BEHAVIOR

We illustrate some of the problems of convergence by considering a specific example which highlights
some of the difficulties. Short (1992) examined the behavior of the iterative process

X1 = =050 —6x2 +9x, —6) for r=0,1,2, ...
for solving the equation (x — 1)(x — 2)(x — 3) = 0. This iterative procedure clearly has the form

Xr+1 =g(xr)7 rZOa 1727"'

3.6 RANGES FOR CONVERGENCE AND CHAOTIC BEHAVIOR 163

g(x)

FIGURE 3.4

Iterates in the solution of (x — 1)(x — 2)(x — 3) = 0 from close but different starting points.

and it is easy to verify that it has the following properties:
g’ (1)=0 and g"(1)#0

§@)#0
§'3)=0 and g"(3)#0

Thus, by taking p = 2 in result (3.8), we can expect, for appropriate starting values, quadratic con-
vergence for the roots at x = 1 and x = 3 but at best linear convergence for the root at x = 2. The
major problem is, however, to determine the ranges of initial approximation which will converge to the
different roots. This is not an easy task but one simple way of doing this is to draw a graph of y = x
and y = g(x). The points of intersection provide the roots. The line y = x has a slope of 1, and points
where the slope of g(x) is less than this provide a range of initial approximations which converge to
one or other of the roots.

This graphical analysis shows that points within the range 1 to 1.43 (approximately) converge to the
root 1 and points in the range 2.57 (approximately) to 3 converge to the root 3. This is the obvious part
of the analysis. However, Short demonstrates that there are many other ranges of convergence for this
iterative procedure, many of them very narrow indeed, which lead to chaotic behavior in the iterative
process. He demonstrates for example, that taking x¢o = 4.236067968 will converge to the root x =3
whereas taking xo = 4.236067970 converges to the root x = 1, a remarkable change for such a small
variation in the initial approximation. This should serve as a warning to the reader that the study of
convergence properties is in general not an easy task.

Fig. 3.4 illustrates this point quite strikingly. It shows the graph of x and the graph of g(x) where

glx)= —0.5(X3 —6x>+9x — 6)

The x line intersects with g(x) to give the roots of the original equation. The graph also shows iterates
starting from x¢ = 4.236067968, indicated by o, and iterates starting from x = 4.236067970, indicated
by +. The starting points are so close they are of course superimposed on the graph. However, the
iterates soon take their separate paths to converge on different roots of the equation. The path indicated

164 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

by o converges to the root x = 1 and the path indicated by + converges to the root x = 3. The sequence
of numbers on the graph shows the last nine iterates. The point referenced by zero is in fact all the
points which are initially very close together. This is a remarkable example and users should verify
these phenomena for themselves by running the following MATLAB script:

% e4s302.m

x =0.75:0.1:4.5;

g = -0.5%(x."3-6%x.72+9%x-6);

plot(x,qg)

axis([.75,4.5,-1,41)

hold on, plot(x,x)

xlabel(’x’), ylabel(’g(x)’), grid on
ch=1["0","+"1;

num =1[’0’,’1",’2",’3",’4",°’5",°6",77",’8",°9"1;

ty = 0;
for x1 = [4.236067970 4.236067968]
ty = ty+l;
for i =1:19
x2 = -0.5%(x173-6xx1"2+9xx1-6);
% First ten points very close, so represent by ’0’
if i==10
text(4.25,-0.2,°0")
elseif i>10
text(x1,x2+0.1,num(i-9))
end
plot(xl,x2,ch(ty))
x1 = x2;
end
end
hold off

It is interesting to note that the iterative form
Xr+1 =x,2 +c¢ for r=0,1,2,...

demonstrates strikingly chaotic behavior when the iterates are plotted in the complex plane and for
complex ranges of values for c.

We now return to the more mundane task of developing algorithms that work in general for the
solution of non-linear equations. In the next section we shall consider a simple method of order 2.

3.7 NEWTON’'S METHOD

This method for the solution of the equation f(x) = 0 is based on the simple geometric properties of
the tangent to the curve f(x). The method requires some initial approximation to the root and that the

3.7 NEWTON'S METHOD 165

S

X0

X2 X

FIGURE 3.5
Geometric interpretation of Newton’s method.

derivative of f(x) exists in the range of interest. Fig. 3.5 illustrates the operation of the method. The
diagram shows the tangent to the curve at the current approximation xg. This tangent strikes the x-axis
at x1 and provides us with an improved approximation to the root. Similarly, the tangent at x; gives the
improved approximation x».

The process is repeated until some convergence criterion is satisfied. It is easy to translate this
geometrical procedure into a numerical method for finding the root since the tangent of the angle
between the x-axis and the tangent equals

f(x0)/(x1 = x0)

and the slope of this tangent itself equals f/(xg), the derivative of f(x) at xo. So we have the equation

J'(x0) = f(x0)/(x1 — x0)
Thus the improved approximation, x1, is given by

x1=x0 — f(x0)/f (x0)
This may be written in iterative form as

X1 =% — f(x)/f (x,) where r=0,1,2,... (3.9
We note that this method is of the general iterative form
Xr+1 =g(x;) where r=0,1,2,...

Consequently, the discussion of Section 3.5 applies to it. On computing g’(a), where a is the exact root,
we find it is zero. However, g”(a) is in general non-zero so the method is of order 2 and we expect
convergence to be quadratic. For a sufficiently close initial approximation, convergence to the root will
be rapid.

A MATLAB function frnewton is supplied for Newton’s method. The function that forms the left
side of the equation we wish to solve and its derivative must be supplied by the user as functions; these

166 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

become the first and second parameters of the function. The third parameter is an initial approximation
to the root. The convergence criterion used is that the difference between successive approximations to
the root is less than a small preset value. This value must be supplied by the user and is given as the
fourth parameter of the function fnewton

function [res, it] = fnewton(func,dfunc,x,tol)
% Finds a root of f(x) = 0 using Newton’s method.
% Example call: [res, it] = fnewton(func,dfunc,x,tol)
% The user defined function func is the function f(x),
% The user defined function dfunc is df/dx.
% x is an initial starting value, tol is required accuracy.
it = 0; x0 = x;
d = feval(func,x0)/feval(dfunc,x0);
while abs(d) > tol
x1 = x0-d; it = it+l; x0 = x1;
d = feval(func,x0)/feval(dfunc,x0);
end
res = x0;

We will now find a root of the equation
X% —10x% +29x —20=0

To use Newton’s method we must define the function and its derivative thus:

>> f = @(x) x."3-10%x.72+29*x-20;
>> df = @(x) 3*x.72-20%x+29;

We may call the function fnewton as follows:

>> [x,it] = fnewton(f,df,7,0.00005)

The progress of the iterations when solving x> — 10x? 4 29x — 20 = 0 by Newton’s method is shown
in Fig. 3.6.

Table 3.3 gives numerical results for this problem when Newton’s method is used to seek a root,
starting the iteration at —2. The second column of the table gives the current error ¢, by subtracting
the known exact root from the current iterate. The third column contains the value of 2¢,41/ 83. This
value tends to a constant as the process proceeds. From theoretical considerations, this value should
approach the second derivative of the right side of the Newton iterative formula. This follows from
(3.8) with p =2. The final column contains the value of the second-order derivative of g(x) calculated
as follows. From (3.9) we have g(x) =x — f(x)/f’(x). Thus, on differentiating g(x), we have

g =1-[{f' WP = /&L @F =) f@)/Lf @)

3.7 NEWTON'S METHOD 167

100

50f

1(x)

=50
0

FIGURE 3.6
Plot of x3 — 10x% 4 29x — 20 = 0 with the iterates of Newton’s method shown by o.

Table 3.3 Newton’s method to solve x3 — 10x2 +
29x — 20 = 0 with an initial approximation of —2

Approximate

x value errore, | 2e,41/ s% Second derivative of g
—2.000000 | 3.000000 | —0.320988 —0.395062
—0.444444 | 1.444444 | —0.513956 —0.589028
0.463836 | 0.536164 | —0.792621 —0.845260
0.886072 | 0.113928 | —1.060275 —1.076987
0.993119 | 0.006881 | —1.159637 —1.160775
0.999973 | 0.000027 | —1.166639 —1.166643
1.000000 | 0.000000 | —1.166639 —1.166667

On differentiating again,

&' @) = @Y))+ £) 10} = 2 el)Y fl/Lf o1t

Putting x = a, where a is the exact root, since f(a) = 0, we have

§'@=0 and g"(@)= f"(@)/f (a) (3.10)

Thus, we have a value for the second derivative of g(x) when x = a. We note that as x approaches the
root, the final column of Table 3.3, which uses this formula, gives an increasingly accurate approxima-
tion to the second derivative of g(x). The table thus verifies our theoretical expectations.

We can find complex roots using Newton’s method, providing our initial approximation is complex.
For example, consider

cos(x) —x =0. (3.11)

This equation has only one real root which is x = 0.7391, but it has an infinity of complex roots. Fig. 3.7
shows the distribution of the roots of (3.11) in the complex plane in the range —30 < Re(x) < 30.
Working with complex values presents no additional difficulty in the MATLAB environment since

168 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

10 20r
5P, . 10+
* % " . % *
e x e
2 0 * 2 0
g * g
% x * * T *o*
75, 7]07
,10 720
=30 —20 -10 0 10 20 30 =10 0 10 20 30
real(x) real(x)
FIGURE 3.7 FIGURE 3.8
Plot showing the complex roots of cos(x) —x =0. Plot of the iterates for five complex initial

approximations for the solution of cos(x) —x =0
using Newton’s method. Each iterate is shown by o.

MATLAB implements complex arithmetic and so we can use the function fnewton without modifi-
cation to deal with these cases.

Fig. 3.8 illustrates the fact that it is difficult to predict which root we will find from a given starting
value. This figure shows that the starting values 15 + ;10, 15.2 4+ 710, 15.4 4 ;10, 15.8 + 710, and
16 + 710, which are close together, lead to a sequence of iterations which converge to very different
roots. In one case the complete trajectory is not shown because the complex part of the intermediate
iterates is well outside the range of the graph.

Newton’s method requires the first derivative of f(x) to be supplied by the user. To make the
procedure more self-contained we can use a standard approximation to the first derivative which takes
the form

f1e) = {f () = f oD}/ (e = xp—1) (3.12)

Substituting this result in (3.9) gives the new procedure for calculating the improvements to x as

Xryt = [0 f () — X f Q- D1/ Lf () — f (r—1)] (3.13)

This method does not require the calculation of the first derivative of f(x) but does require that we
know two initial approximations to the root, xo and x;. Geometrically, we have simply approximated
the slope of the tangent to the curve by the slope of a secant. For this reason the method is known as the
secant method. The convergence of this method is slower than Newton’s method. Another procedure
similar to the secant method is called regula falsi. In this method two values of x which enclose the
root are chosen to start the next iteration rather than the most recent pair of x values as in the secant
method.

Newton’s method and the secant method work well on a wide range of problems. However, for
problems where the roots of an equation are close together or equal, the convergence may be slow. We
now consider a simple adjustment to Newton’s method which provides good convergence even with
multiple roots.

3.8 SCHRODER'S METHOD 169

3.8 SCHRODER’S METHOD

In Section 3.2 we described how coincident roots present significant problems for most algorithms. In
the case of Newton’s method its performance is no longer quadratic for finding a coincident root and
the procedure must be modified if it is to maintain this property. The iteration for Schroder’s method
for finding multiple roots has a form similar to that of Newton’s method given in (3.9) except for the
inclusion of a multiplying factor m. Thus,

X1 =Xy —mf(x,)/f (x,) wherer =0,1,2,... (3.14)

Here m is an integer equal to the multiplicity of the root to which we are trying to converge. Since the
user may not know the value of m, it may have to be found experimentally.

It can be verified by some simple but lengthy algebraic manipulation that for a function f(x) with
multiple roots at x = a, g’(a) = 0. Here g(x) is the right side of (3.14) and a is the exact root. This
modification is sufficient to preserve the quadratic convergence of Newton’s method

A MATLAB function for Schroder’s method, schroder, is provided as follows:

function [res, it] = schroder(func,dfunc,m,x,tol)
% Finds a multiple root of f(x) = 0 using Schroder’s method.
% Example call: [res, it] = schroder(func,dfunc,m,x,tol)
5 The user defined function func is the function f(x),
5 The user defined function dfunc is df/dx.
% x is an initial starting value, tol is required accuracy.
% function has a root of multiplicity m.
» x 1s a starting value, tol is required accuracy.
it = 0; x0 = x;
d = feval(func,x0)/feval(dfunc,x0);
while abs(d)>tol
x1 = x0-mxd; it = it+l; x0 = x1;
d = feval(func,x0)/feval(dfunc,x0);
end

res = x0;

We will now use the function schroder to solve f(x) = (e™* — x)? = 0. In this case we must set the
multiplying factor m to 2. We write functions for f and its derivative df and call the function schroder
as follows:

>> f = @(x) (exp(-x)-x)."2;
>> df = @(x) 2x(exp(-x)-x).*(-exp(-x)-1);
>> [x, it] = schroder(f,df,2,-2,0.00005)

0.5671

170 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

It is interesting to note that Newton’s method took 17 iterations to solve this problem in contrast to the
5 required by Schroder’s method.

When a function f(x) is known to have repeated roots, an alternative to Schroder’s approach is to
apply Newton’s method to the function f(x)/f’(x) rather than to the function f(x) itself. It can be
easily shown by direct differentiation that if f(x) has a root of any multiplicity then f(x)/f’(x) will
have the same root but with multiplicity 1. Thus, the algorithm has the iterative form (3.9) but modified
by replacing f(x) with f(x)/f’(x). The advantage of this approach is that the user does not have to
know the multiplicity of the root which is to be found. The considerable disadvantage is that both the
first- and second-order derivatives must be supplied by the user.

3.9 NUMERICAL PROBLEMS

We now consider the following problems which arise in solving single-variable non-linear equations:

1. Finding good initial approximations.

2. Tll-conditioned functions.

3. Deciding on the most suitable convergence criteria.
4. Discontinuities in the equation to be solved.

These problems are now examined in detail:

1. Finding an initial approximation can be difficult for some non-linear equations and a graph can be a
considerable help in supplying such a value. The advantage of working in a MATLAB environment
is that the script for the graph of the function can easily be generated and input can be taken from it
directly. The function plotapp that is defined here finds an approximation to the root of a function
supplied by the user in the range given by the parameters rangelow and rangeup using a step given
by interval.

function approx = plotapp(func,rangelow,interval,rangeup)

% Plots a function and allows the user to approximate a

% particular root using the cursor.

% Example call: approx = plotapp(func,rangelow,interval,rangeup)
% Plots the user defined function func in the range rangelow to
% rangeup using a step given by interval. Returns approx to root.
approx = [1;

x = rangelow:interval:rangeup;

plot(x,feval(func,x))

hold on, xlabel(’x’), ylabel("f(x)")

title(’ *x Place cursor close to root and click mouse *x *)

grid on

% Use ginput to get approximation from graph using mouse

approx = ginput(1);

fprintf(’Approximate root is %8.2f\n’,approx(1l)), hold off

The script e4s303.m shows how this function may be used with the MATLAB function fzero to
find a root of x — cos(x) =0.

3.10 THE MATLAB FUNCTION fzero AND COMPARATIVE STUDIES 171

% e4s303.m

g = @(x) x-cos(x);

approx = plotapp(g,-2,0.1,2);

% Use this approximation and fzero to find exact root
options = optimset(’TolFun’,0.00005);

root = fzero(g,approx(1l),options);

fprintf(’Exact root is %8.5f\n’,root)

Fig. 3.9 gives the graph of x — cos(x) = 0 generated by plotapp and shows the cross-hairs cursor
generated by the ginput function close to the root. The call ginput (1) means only one point is
taken. The cursor can be positioned over the intersection of the curve with the f(x) = 0 line. This
provides a useful initial approximation, the accuracy of which depends on the scale of the graph.
In this example an initial approximation was found to be 0.74 and the more exact value was found
using fzero to be 0.73909.

2. Tll-conditioning in a non-linear equation means that small changes in the coefficients of the equation
lead to unexpectedly large errors in the solutions. An interesting example of a very ill-conditioned
polynomial is Wilkinson’s polynomial. The MATLAB function poly(v) generates the coefficients
of a polynomial, beginning with the coefficient of the highest power, with roots which are equal to
the elements of the vector v. Thus, poly(1:n) generates the coefficients of the polynomial with the
roots 1, 2, ..., n which is Wilkinson’s polynomial of degree n — 1.

3. In the design of any numerical algorithm for the solution of non-linear equations the termination
criterion is particularly important. There are two major indicators of convergence: the difference
between successive iterates and the value of the function at the current iterate. Taken separately
these indicators may be misleading. For example, some non-linear functions are such that small
changes in the independent variable value may lead to large changes in the function value. In this
case it may be better to monitor both indicators.

4. The function f(x) =sin(1/x) is particularly difficult to plot, and sin(1/x) = 0 is very difficult to
solve since it has an infinite number of roots, all clustered between 1 and —1. The function has a
discontinuity at x = 0. Fig. 3.10 attempts to illustrate the behavior of this function. In fact, the graph
shown does not truly represent the function and this plotting problem is discussed in more detail in
Chapter 4. Near a discontinuity the function changes rapidly for small changes in the independent
variable and some algorithms may have problems with this.

All the preceding points emphasize that algorithms for solving non-linear equations to be not only
fast and efficient but robust as well. The next algorithm combines these properties and is relatively
undemanding on the user.

3.10 THE MATLAB FUNCTION fzero AND COMPARATIVE STUDIES

Some problems may present particular difficulties for algorithms which in general work well. For
example, algorithms which have fast ultimate convergence may initially diverge. One way to improve
the reliability of an algorithm is to ensure that at each stage the root is confined to a known interval
and the method of bisection, introduced in Section 3.3, may be used to provide an interval in which the

172 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

** Place cursor close to root and click mouse ** 1

3
2 0.5
5 > 0
~_,ﬂ,///////// -
-1
-2 . - i -1 .
-2 ! 0 1 2 -1 -0.5 0 0.5 1
X X
FIGURE 3.9 FIGURE 3.10

The cursor is shown close to the position of the root. Plot of graph f(x) = sin(1/x). This plot is spurious in
the range +0.2.

root lies. Thus, a method which combines bisection with a rapidly convergent procedure may be able
to provide both rapid and reliable convergence.

The method of Brent combines inverse quadratic interpolation with bisection to provide a powerful
method that has been found to be successful on a wide range of difficult problems. The method is
easily implemented and a detailed description of the algorithm may be found in Brent (1971). Similar
algorithms of comparable efficiency have been developed by Dekker (1969).

Experience with Brent’s algorithm has shown it to be both reliable and efficient on a wide range of
problems. A variation of this method is directly available in MATLAB and is called fzero. It may be
used as follows:

x = fzero(’ funcname’,x0,options);

where funcname is replaced by the name of any system function such as cos, sin, etc., or the name
of a function predefined by the user. The initial approximation is x0. The accuracy of the solution is
set by options using the optimset. For example, in the script e4s304, optimset sets the accuracy to
0.00005.

Only the first two parameters need be given and so an alternative call of this function is given by

x = fzero(’funcname’,x0);

To plot the function (e* — cos(x))3 and then determine some roots of (e* — cos(x))3 = 0 with
tolerance 0.00005, initial approximations of 1.65 and —3 and no trace of the iterations, we use fzero
in script e4s304.m:

% e4s304.m

f = @(x) (exp(x)-cos(x))."3;

x = -4:0.02:0.5;

plot(x,f(x)), grid on

xlabel ("x”), ylabel("f(x)’);
title(’f(x) = (exp(x)-cos(x)).”3")
options = optimset(’TolFun’,0.00005);

3.11 METHODS FOR FINDING ALL THE ROOTS OF A POLYNOMIAL 173

Table 3.4 Solution of equations (1) through (4) with the same starting
point x = —2 and accuracy = 0.00005

Function 1 2 3 4
fnewton Fail | 0.999795831 Fail | —1.352673831
fzero | —0.318309886 | 1.000000000 | —1.570796327 | —1.352678708

root = fzero(f,1.65,options);

fprintf(’A root of this equation is %6.4f\n’,root)
root = fzero(f,-3,0.00005);

fprintf(’A root of this equation is %6.4f\n’,root)

The output and plot generated by this script are not given. However, the script is provided for reader
experimentation.

Before we deal with the problem of finding many roots of a polynomial equation simultaneously, we
present a comparative study of the MATLAB function fzero with the function fnewton. The following
functions are considered:

I.sin(1/x) =0

2.(x—1)°=0

3.x —tanx =0

4. cos{(x>+5)/(x*+ 1)} =0
The results of these comparative studies are given in Table 3.4. We see that fnewton is less reliable
than fzero and that fzero produces more accurate answers.

3.11 METHODS FOR FINDING ALL THE ROOTS OF A POLYNOMIAL

The problem of solving polynomial equations is a special one in that these equations contain only com-
binations of integer powers of x and no other functions. Because of their special structure, algorithms
have been developed to find all of the roots of a polynomial equation simultaneously. The function
roots is provided in MATLAB. This function sets up the companion matrix for the polynomial and
determines its eigenvalues, which can be shown to be the roots of the polynomial. For a description of
the companion matrix, see Appendix A.

In the following sections, we describe the methods of Bairstow and Laguerre but do not give a
detailed theoretical justification of them. We provide a MATLAB function for Bairstow’s method.

3.11.1 BAIRSTOW’S METHOD

Consider the polynomial
apx" +aix" '+ ax" 2+ ... 4a,=0 (3.15)

Since this is a polynomial equation of degree n, it has n roots. A common approach for locating the
roots of a polynomial is to find all its quadratic factors. These will have the form

X2+ ux +v (3.16)

174 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

where u and v are the constants we wish to determine. Once all the quadratic factors are found it is
easy to solve the quadratics to find all the roots of the equation. We now outline the major steps used
in Bairstow’s method for finding these quadratic factors.

If R(x) is the remainder after the division of polynomial (3.15) by the quadratic factor (3.16), then
there will clearly exist constants bg, by, b2, ... such that the equality (3.17) holds

24 ux +v)box"" 2+ bix" 3 4 byx" 4+ ...+ by_2) + R(x)

(3.17)
=x"+ax" V+ax"2+... +a,
where aq is set at 1 and R(x) will have the form rx + s. To ensure that xZ + ux + v is an exact factor of
the polynomial (3.15), the remainder R(x) must be zero. For this to be true both r and s must be zero
and we must adjust # and v until this is true. Thus since both » and s depend on u and v, the problem
reduces to solving the simultaneous equations

r(u,v)=0
s(u,v)=0

To solve these equations we use an iterative method which assumes some initial approximations u
and vg. Then we require improved approximations #| and vy where u; = ug 4+ Aug and vi = vo+ Avg
such that

r(uy,v1) =0
s(uy,v1) =0

or r and s are as close to zero as possible.
Now we wish to find the changes Aug and Avg which will result in this improvement. Conse-
quently, we must expand the two equations

r(up + Aug, vo + Avg) =0
s(ug + Aug, vg + Avg) =0

using a Taylor’s series expansion and neglecting higher powers of Aug and Avg. This leads to two
approximating linear equations for Aug and Avg:

r(ug, vo) + (0r/ou)oAug + (9r/0v)gAvy =0

(3.18)
s(uo, vo) + (ds/0u)oAug + (3s/0v)gAvg =0

The subscript 0 denotes that the partial derivatives are calculated at the point u#¢, vg. Once the correc-
tions are found, the iteration can be repeated until r and s are sufficiently close to zero. The method we
have used here is a two-variable form of Newton’s method which will be described in Section 3.12.
Clearly, this method requires the first-order partial derivatives of r and s with respect to # and v.
The form of these is not obvious; however, they may be determined using recurrence relations derived
from equating coefficients in (3.17) and then differentiating them. The details of this derivation are
not given here but a clear description of the process is given by Froberg (1969). Once the quadratic
factor is found, the same process is applied to the residual polynomial with the coefficients b; to obtain

3.11 METHODS FOR FINDING ALL THE ROOTS OF A POLYNOMIAL

175

the remaining quadratic factors. The details of this derivation are not provided here but a MATLAB

function bairstow follows.

function [rts,it] = bairstow(a,n,tol)

% Bairstow’s method for finding the roots of a polynomial of degree n.

% Example call: [rts,it] = bairstow(a,n,tol)

% a is a row vector of REAL coefficients so that the
% polynomial is x*n+a(l)xx"(n-1)+a(2)*x"(n-2)+...+a(n).
% The accuracy to which the polynomial is satisfied is given by tol.

% The output is produced as an (n x 2) matrix rts.

% Cols 1 & 2 of rts contain the real & imag part of root respectively.

% The number of iterations taken is given by it.
it =1;
while n>2
%Initialise for this loop
u=1;v=1; st =1;
while st>tol
b(1) = a(l)-u; b(2) = a(2)-b(1)xu-v;
for k = 3:n
b(k) = a(k)-b(k-1)xu-b(k-2)*v;
end
c(l) = b(1)-u; c(2) = b(2)-c(l)*u-v;
for k = 3:n-1
c(k) = b(k)-c(k-1)*u-c(k-2)*v;
end
%calculate change in u and v
cl = c(n-1); bl = b(n); cb = c(n-1)xb(n-1);
c2 = c(n-2)xc(n-2); bc = b(n-1)*c(n-2);
if n>3, ¢l = clxc(n-3); bl = bl*c(n-3); end
dn = cl-c2;
du = (bl-bc)/dn; dv = (cb-c(n-2)*b(n))/dn;
U = utdu; v = v+dv;
st = norm([du dv]); it = it+l;
end
[rl,r2,iml,im2] = solveq(u,v,n,a);
rts(n,1:2) = [rl iml]; rts(n-1,1:2) = [r2 im2];
n=mn-2;
a(l:n) = b(l:n);
end
% Solve last quadratic or Tinear equation
u=a(l); v=a(2);
[rl,r2,iml,im2] = solveq(u,v,n,a);
rts(n,1:2) = [rl iml];
if n==
rts(n-1,1:2) = [r2 im2];

176 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

function [rl,r2,iml,im2] = solveq(u,v,n,a);

% Solves x"2 + ux + v =0 (n~=1) or x +a(l) =0 (n=1).
% Example call: [rl,r2,iml,im2] = solveq(u,v,n,a)

% rl, r2 are real parts of the roots,

% iml, im2 are the imaginary parts of the roots.

% Called by function bairstow.

if n==
rl =-a(l); iml = 0; r2 = 0; im2 = 0;
else
d = uxu-4*v;
if d<0
d = -d;
iml = sqrt(d)/2; rl = -u/2; r2 =rl; im2 = -iml;
elseif d>0
rl = (-u+sqrt(d))/2; iml = 0; r2 = (-u-sqrt(d))/2; im2 = 0;
else
rl = -u/2; iml = 0; r2 = -u/2; im2 = 0;
end
end

Note that the MATLAB function solveq is nested within the function bairstow. The function is not
stored separately and so it can only be accessed by bairstow. We may now use bairstow to solve the
specific polynomial equation

2 —3x* —10x3 + 10x% + 44x + 48 =0

In this case we take the coefficient vector as ¢ where ¢ = [-3 -10 10 44 487 and if we require accu-
racy of four decimal places we take tol as 0.00005. The script e4s305.m uses bairstow to solve the
given polynomial.

% e4s305.m

c =10[-3 -10 10 44 487;

[rts, it] = bairstow(c,5,0.00005);

for i = 1:5
fprintf(’\nroot%3.0f Real part=%7.4f",1,rts(i,1))
fprintf(’ Imag part=%7.4f" ,rts(i,2))

end

fprintf(’\n”)

Note how fprintf is used to provide a clearer output from the matrix rts.

root 1 Real part= 4.0000 Imag part= 0.0000
root 2 Real part=-1.0000 Imag part=-1.0000
root 3 Real part=-1.0000 Imag part= 1.0000

3.11 METHODS FOR FINDING ALL THE ROOTS OF A POLYNOMIAL

Table 3.5 Time required to obtain all roots (in seconds)
MATLAB function MATLAB function

Polynomial: roots bairstow
pl 7 33

p2 6 19

p3 6 14

p4 10 103

p5 11 37

177

root 4 Real part=-2.0000 Imag part= 0.0000
root 5 Real part= 3.0000 Imag part= 0.0000

As we have indicated, MATLAB provides a function roots to determine the roots of a polynomial.
It is interesting to compare this function with Bairstow’s method. Table 3.5 gives the results of this
comparison applied to specific polynomials. The problems p1 through p5 are the polynomials tested:
pl: x°—3x*—10x> +10x> +44x +48 =0
p2: x*—3.001x% 4+ 3.002x — 1.001 =0
p3: xt—6x+11x%4+2x—28=0
p4: x'+1=0
pS: BT+ 4+ +x 3+ 2+ x+1=0

The results for these problems are given in Table 3.5. Both methods determine the correct roots for all
problems, although the function roots is more efficient.

3.11.2 LAGUERRE’'S METHOD

Laguerre’s method provides a rapidly convergent procedure for locating the roots of a polynomial. The
algorithm is interesting and for this reason it is described in this section. The method is applied to a
polynomial in the form

p(x) =x"+ax"! +ax" 2+ ... +a,

Starting with an initial approximation x, we apply the iterative formula (3.19) to the polynomial p(x)

Xip1=x; —npx)/[p(x;) £ S} fori=1,2, ... (3.19)
where

h(x;) = (n = DI(n — D{p')} = np(xi) p” (x)]

and n is the degree of the polynomial. The sign taken in (3.19) is determined so that it is the same as
the sign of p’(x;).

It is important to give some justification for using a formula with such a complex structure. The
reader will notice that if the square root term were not present in (3.19), the iterative form would be

178 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

similar to that of Newton’s method, (3.9), and identical to that of Schroder’s method, (3.14). Thus, we
would have a method with quadratic convergence for the roots of the polynomial. In fact, the more
complex structure of (3.19) provides third-order convergence since the error is proportional to the cube
of the previous error and consequently provides faster convergence than Newton’s method. Thus, given
an initial approximation, the method will converge rapidly to a root of the polynomial which we can
denote by r.

To obtain the other roots of the polynomial we divide the polynomial p(x) by the factor (x — r)
which provides another polynomial of degree n — 1. We can then apply iteration (3.19) to this poly-
nomial and repeat the whole procedure again. This is repeated until all roots are found to the required
accuracy. The process of dividing by (x — r) is known as deflation and can be performed in a simple
and efficient way, described as follows.

Since we have a known factor (x — r), then

apx™ + a1 x" N+ apx" 2 4+ .. +ay,

| 5 3 (3.20)
=& —r)box" '+ b1 x"F+byx"" +...4+b,_1)
On equating coefficients of the powers of x on both sides, we have
bo = ao (3.21)

bij=a;+rbj_y fori=1,2, ..., n—1

This process is known as synthetic division. Care must be taken here, particularly if the root is found
to low accuracy, since ill-conditioning can magnify the effect of small errors in the coefficients of the
deflated polynomial.

This completes the description of the method but a few important points should be noted. Assuming
sufficient accuracy can be maintained in calculations, the method of Laguerre will converge for any
value of the initial approximation. Convergence to complex roots and multiple roots can be achieved
but at a slower rate because the convergence rate is linear. In the case of a complex root the value of
the function % (x;) becomes negative and consequently the algorithm must be adjusted to deal with this
situation. A key feature that should be considered is that the derivatives of the polynomial can be found
efficiently by synthetic division.

To summarize the important features of the algorithm:

1. The algorithm is third order, thus providing rapid convergence to individual roots.
2. All roots of the polynomial can be found by using synthetic division.
3. Derivatives can be calculated efficiently using synthetic division.

3.12 SOLVING SYSTEMS OF NON-LINEAR EQUATIONS

The methods considered so far have been concerned with finding one or all the roots of a non-linear
algebraic equation with one independent variable. We now consider methods for solving systems of
non-linear algebraic equations in which each equation is a function of a specified number of variables.

3.12 SOLVING SYSTEMS OF NON-LINEAR EQUATIONS 179

We can write such a system in the form
fi(x1,x2,...,x,) =0 fori=1,2,3, ..., n (3.22)

A simple method for solving this system of non-linear equations is based on Newton’s method for
the single equation. To illustrate this procedure we first consider a system of two equations in two
variables:

filx1,x2) =0

fa(x1,x2) =0 (3.23)

Given initial approximations x? and xg for x1 and x», we may find new approximations x 11 and le as
follows:
1 0 0
x; =x7 + Ax
1 1 1
! 0 0 (3.24)
Xy =X, + Ax,

These approximations should be such that they drive the values of the functions closer to zero, so that

filx],x)~0

frx],x3) =0

or
fiG) + Ax), XY+ Axd) ~0 (325)
fz(x? + Ax?, xg + Axg) ~0
Applying a two-dimensional Taylor’s series expansion to (3.25) gives
[, x9) +{0f1/0x1}0AxY + {3f1/0x2}°Ax) + ...~ 0 (3.26)

HEY X)) +1{0f2/0x1)°Ax) + {3f2/0x2}°Ax) + ...~ 0

If we neglect terms involving powers of Ax? and Axg higher than one, then (3.26) represents a sys-
tem of two linear equations in two unknowns. The zero superscript means that the function is to be
calculated at the initial approximation and Ax? and Axg are the unknowns we wish to find. Having
solved (3.26) we can obtain our new improved approximations and then repeat the process until we
have obtained the accuracy we require. A common convergence criterion is to continue iterations until

VAXD2 + (Axh)? < e

where r denotes the iteration number and ¢ is a small positive quantity preset by the user.
It is a simple step to generalize this procedure for any number of variables and equations. We may
write the general system of equations as

f(x)=0

180 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

where f denotes the column vector of n components (f1, f2, ..., fn)T and x is a column vector of n
components (X, X2, ..., xn)T. Let x"t! denote the value of x at the (r + 1)th iteration; then

Xt =x"+ Ax" for r=0,1,2, ...
If x"*! is an improved approximation to x, then
f(xr+1) ~0
or

f(x' + AX') ~ 0 (3.27)

Expanding (3.27) by using an n-dimensional Taylor’s series expansion gives
f(x" + AX") =f(x") + VEX)AX" + ... (3.28)

where V is a vector operator of partial derivatives with respect to each of the n components of x. If we
neglect higher-order terms in (Ax”)?, this gives, by virtue of (3.27),

fx)+JAx" =0 (3.29)

where J, = Vf(x"). J, is called the Jacobian matrix. The subscript » denotes that the matrix is evaluated
at the point X" and it can be written in component form as

J=[0fi(x")/0x;] for i=1,2, ..., nand j=1,2, ..., n
On solving (3.29) we have the improved approximation
x Tl =x" —Jr_lf(x’) for r=1,2,..

The matrix J, may be singular and in this situation the inverse, J 1 cannot be calculated.
This is the general form of Newton’s method. However, there are two major disadvantages with this
method:

1. The method may not converge unless the initial approximation is a good one.

2. The method requires the user to provide the derivatives of each function with respect to each
variable. The user must therefore provide n? derivatives and any computer implementation must
evaluate the n functions and the n? derivatives at each iteration.

The MATLAB function newtonmv given here implements this method.

function [xv,it] = newtonmv(x,f,jf,n,tol)

% Newton’s method for solving a system of n nonlinear equations

% in n variables.

% Example call: [xv,it] = newtonmv(x,f,jf,n,tol)

% Requires an initial approximation column vector x. tol is

% required accuracy. User must define functions f (system equations)

3.13 BROYDEN'S METHOD FOR SOLVING NON-LINEAR EQUATIONS 181

% and jf (partial derivatives). xv is the solution vector, the it
% parameter is number of iterations taken.
% WARNING. The method may fail, for example if initial estimates are poor.
it = 0; xv = x;
fr = feval(f,xv);
while norm(fr) > tol
Jr = feval(jf,xv); xv = xv-dr\fr;
fr = feval(f,xv); it = it+l;
end

Fig. 3.11 illustrates the following system of two equations in two variables:

24,2 _
xT+yi=4 (3.30)
xy=1
To solve the system (3.30) we define the MATLAB function by f and its Jacobian by Jf and then call
newtonmv using initial approximations for the roots x =3 and y = —1.5 and a tolerance of 0.00005 as
follows:

>> f =@(v) [v(1)"2+v(2)"2-4; v(1)*v(2)-17;
>> Jf = @(v) [2xv(1) 2%v(2); v(2) v(1)];
>> [rootvals,iter] = newtonmv([3 -1.5]1",f,Jf,2,0.00005)

This results in the MATLAB output

rootvals =
1.9319
0.5176

iter =

The solution is x = 1.9319 and y = 0.5176. Clearly the user must supply a large amount of information
for this function. The next section attempts to deal with this problem.

3.13 BROYDEN’S METHOD FOR SOLVING NON-LINEAR EQUATIONS

The method of Newton described in Section 3.12 does not provide a practical procedure for solving
any but the smallest systems of non-linear equations. As we have seen, the method requires the user
to provide not only the function definitions but also the definitions of the n? partial derivatives of the
functions. Thus, for a system of 10 equations in 10 unknowns, the user must provide 110 function
definitions!

To deal with this problem a number of techniques have been proposed but the group of methods that
appear most successful is the class known as the quasi-Newton methods. The quasi-Newton methods
avoid the calculation of the partial derivatives by obtaining approximations to them involving only the

182 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

y value

FIGURE 3.11

Plot of system (3.30). Intersections show roots.

function values. The set of derivatives of the functions evaluated at any point X" may be written in the
form of the Jacobian matrix

J,=[0f;(x")/dx;] for i=1,2, ...,n and j=1,2, ..., n (3.31)

The quasi-Newton methods provide an updating formula which gives successive approximations
to the Jacobian for each iteration. Broyden and others have shown that under specified circumstances
these updating formulae provide satisfactory approximations to the inverse Jacobian. The structure of
the algorithm suggested by Broyden is:

1. Input an initial approximation to the solution. Set the counter r to zero.

2. Calculate or assume an initial approximation to the inverse Jacobian B".

3. Calculate p” = —B"f" where f" = f(x").

4. Determine the scalar parameter ¢, such that ||[f(x" 4 7.p")|| < ||f'|| where the symbols || || denote
that the norm of the vector is to be taken.

5. Calculate X' *! =x" +1¢,p’".

6. Calculate ! = f(x+1). If ||f"*!|| < & (where ¢ is a small preset positive quantity), then exit. If

not continue with step (7).

7. Use the updating formula to obtain the required approximation to the Jacobian
Bt =B — B’y — pr)(pr)TBr/{(pr)TBryr} where y" = .

8. Seti =i + 1 and return to step (3).

The initial approximation to the inverse Jacobian B is usually taken as a scalar multiple of the unit
matrix. The success of this algorithm depends on the nature of the functions to be solved and on
the closeness of the initial approximation to the solution. In particular, step (4) may present major
problems. It may be very expensive in computer time and to avoid this 7, is sometimes set as a constant,
usually one or smaller. This may reduce the stability of the algorithm but speeds it up.

It should be noted that other updating formulae have been suggested and it is fairly easy to replace
the Broyden formula by others in the preceding algorithm. In general, the problem of solving a system

3.13 BROYDEN'S METHOD FOR SOLVING NON-LINEAR EQUATIONS

183

of non-linear equations is a very difficult one. There is no algorithm that is guaranteed to work for
all systems of equations. For large systems of equations the available algorithms tend to require large
amounts of computer time to obtain accurate solutions.

The MATLAB function broyden implements Broyden’s method. It should be noted that this avoids
the difficulty of implementing step (4) by taking 7, = 1.

func
% Br
% in
% EX
% Re
% ac
% Xv

% taken. WARNING. Method may fail, for example, if initial estimates

% ar
fr =
Br =
fr =
whil

end

To solve the system (3.30) using Broyden’s method we call broyden as follows:

tion [xv,it] = broyden(x,f,n,tol)

oyden’s method for solving a system of n nonlinear equations
n variables.

ample call: [xv,it] = broyden(x,f,n,tol)

quires an initial approximation column vector x. tol is required

curacy. User must define function f.
is the solution vector, parameter it is number of iterations

e poor.

zeros(n,1l); it = 0; xv = Xx;
eye(n); %Set initial Br
feval(f, xv);

e norm(fr)>tol
it it+l; pr = -Br*fr; tau = 1;
XV = xv+tau*pr;
oldfr = fr; fr = feval(f,xv);
% Update approximation to Jacobian using Broyden’s formula
y = fr - oldfr; oldBr = Br;
oyp = oldBrxy-pr; pB = pr’*xoldBr;
for i = 1:n

for j = 1:n

M(i,3) = oyp(i)*pB(]j);
end

end
Br = oldBr-M./(pr’xoldBrxy);

>> f = @(v) [v(1)r2+v(2)722-4; v(1)*v(2)-11;
>> [x, iter] = broyden([3 -1.5]1",f,2,0.00005)
This results in
X =

0.5176

1.9319
iter =

36

184 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

This is a correct root of system (3.30) but it is not the same root as that found by Newton’s method,
even though the starting values for the iteration are the same.
As a second example we consider the following system of equations which are taken from the
MATLAB User’s Guide (1989):
sinx + y? +1log,z =7
3x+2y—z3=-1 (3.32)
xX+y+z=5
The function g, which implements (3.32), is given here:

>> g = @(p) [sin(p(1))+p(2)"2+T0og(p(3))-7; 3xp(1)+27p(2)-p(3)r3+1;
p(1)+p(2)+p(3)-571;

The result of solving (3.32) is given next. The starting values used are x =0, y =2, and 7 = 2.

>> x = broyden([0 2 2]°,9,3,0.00005)

0.5991
2.3959
2.0050

We can now verify this result by substituting this solution in g(p) thus:

>> g(x)’

ans =
1.0e-05 =
-0.2867 -0.5105 0.0068

The residue should, of course, be zero, but here the residue is very small, being of the order of 1073,
This shows that the method is successful for two problems and does not require the evaluation of the
partial derivatives. The reader may be interested in applying the function newtonmv to this problem.
Nine first-order partial derivatives will be required.

3.14 COMPARING THE NEWTON AND BROYDEN METHODS

We end our discussion of the solution of non-linear systems of equations by comparing the perfor-
mance of the functions broyden and newtonmv, developed in Sections 3.12 and 3.13 when solving the
system (3.30). The following script calls both functions and provides the number of iterations required
for convergence.

>> f =@(v) [v(1)"2+v(2)72-4; v(1)*v(2)-11;
>> [x,it] = broyden([3 -1.5]1",f,2,0.00005)

3.15 SUMMARY 185

0.5176
1.9319

it -
36

>> J = @(v) [2xv(1l) 2*xv(2);v(2) v(1)];
>> [x,it] = newtonmv([3,-1.5]",f,J,2,0.00005)

1.9319
0.5176

5

Note that although a correct solution is found in each case, it is a different root.

The first-order partial derivatives are required for the Newton method and this requires a consider-
able effort on the part of the user. Solving the problem using Broyden’s method demonstrates that the
relatively simple form of the function broyden is attractive since it relieves the user of this effort.

In Sections 3.12 and 3.13 two relatively simple algorithms were provided for the solution of a very
difficult problem. They cannot always be guaranteed to work and for large problems will converge only
slowly.

3.15 SUMMARY

The user wishing to solve non-linear equations will find that this is an area which can present particular
difficulties. It is always possible to devise or meet problems which particular algorithms either cannot
solve or take a long time to solve. For example, it is just not possible for many algorithms to find the
roots of the apparently trivial problem x%° = 0 very accurately. However, the algorithms described, if
used with care, provide ways of solving a wide range of problems. MATLAB is well suited for this
study because it allows interactive experimentation and graphical insights into the behavior of methods
and functions. The reader is referred to Chapter 10, Section 10.6 for applications of the symbolic
toolbox for solving non-linear equations. The algorithms solve, fnewtsym, newtmvsym are described
and applied in that section.

3.16 PROBLEMS

3.1. Omar Khayyam (who lived in the twelfth century) solved, by geometric means, a cubic equation
with the form

WP —exP+b*x+a*=0

186

3.2.

3.3.

34.

3.5.

3.6.

3.7.

3.8.

3.9.

CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

The positive roots of this equation are the x coordinates of points of intersection in the first
quadrant of the circle and parabola given in the following:

X2+ y? — (¢ —a?/bP)x + 2by + b* — ca® /> =0
xy=a’/b

Fora =1, b =2, and ¢ = 3 use MATLAB to plot these two functions and note the x coordi-
nates of the points of intersection. Using the MATLAB function fzero, solve the cubic equation
and hence verify Omar Khayyam’s method. Hint: You may find it helpful to use the MATLAB
function ginput.

Use the MATLAB function fnewton to find a root of

x4 x+1/x —100=0

given an initial approximation 50. Use an accuracy of 1074,

Find the two real roots of |x3| + x — 6 = 0 using the MATLAB function fnewton. Use initial
approximations —1 and 1 and an accuracy of 10~*. Plot the function using MATLAB to verify
that the equation has only two real roots. Hint: Take care in finding the derivative of the function.
Explain why it is relatively difficult to find the root of tanx — ¢ =0 when c is a large. Use the
MATLAB function fnewton, with initial approximations 1.3 and 1.4 and accuracy 10~, to find
a root of this equation when ¢ =5 and ¢ = 10. Compare the number of iterations required in
both cases. Hint: A MATLAB plot will be useful.

Find a root of the polynomial x> — 5x* + 10x3 — 10x? 4 5x — 1 = 0 correct to four decimal
places by using the MATLAB function schroder with m =5 and a starting value xo = 2. Use
MATLAB function fnewton to solve the same problem. Compare the result and the number of
iterations using both methods. Use an accuracy of 5 x 107,

Use the simple iterative method to solve the equation x'? = ¢*. Express the equation in the
form x = f(x) in different ways and start the iterations with the initial approximation x = 1.
Compare the efficiency of the formulae you have devised and check your answer(s) using the
MATLAB function fnewton.

The historic Kepler’s equation has the form E — esin E = M. Solve this equation for e =
0.96727464, the eccentricity of Halley’s comet, and M = 4.527594 x 1073. Use the MATLAB
function fnewton, with an accuracy of 0.00005 and a starting value of 1.

Examine the performance of the function fzero for solving x!'! = 0 with an initial value of —1.5
and also 1. Use an accuracy of 1 x 1077,

The smallest positive root of the equation

l—x+x2/2N)* = x3/3BN> +x*/@N* —...=0
is 1.4458. By considering in turn only the first four, five, and six terms in the series, show that

a root of the truncated series approaches this result. Use the MATLAB function fzero to derive
these results, with an initial value of 1 and an accuracy of 1074,

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16 PROBLEMS 187

Reduce the following system of equations to one equation in terms of x and solve the resulting
equation using the MATLAB function fnewton.

ex/lO -y =0
2log,y —cosx =2

Use the MATLAB function newtonmv to solve these equations directly and compare your results.
Use an initial approximation x = 1 for fnewton and approximations x = 1, y = 1 for newtonmv
and accuracy 10~# in both cases.

Solve the pair of equations that follow using the MATLAB function broyden, with the starting
point x = 10, y = —10 and accuracy 104

2x =sin{(x + y)/2}
2y =cos{(x — y)/2}

Solve the two equations that follow using the MATLAB functions newtonmv and broyden with
the starting point x = 1 and y = 2 and accuracy 1074,

¥ —=3xy?=1/2
3x2y —y3=./3/2
The polynomial equation
xt— (13 +e)x® + (57 +8e)x? — (95 + 17e)x + 50+ 10 =0
has roots 1, 2, 5, 5 + . Use the functions bairstow and roots to find all the roots of this
polynomial for ¢ = 0.1, 0.01, and 0.001. What happens as & becomes smaller? Use an accuracy
of 1075.

Employ the MATLAB function bairstow to find all the roots of the following polynomial using
an accuracy requirement of 1074,

o xt B Exr—2x+2=0
Use the MATLAB function roots to find all the roots of the equation
t3—0.5—MJ =0 where 1 =+/—1
Compare with the exact solution

cos{(r/3 +2mk)/3} + 1 sin{(x/3 + 2mk)/3} for k=0,1,2.

Use an accuracy of 1074,

188 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

3.16.

3.17.

3.18.

3.19.

3.20.

An outline algorithm for the Illinois method for finding a root of f(x) =0 (Dowell and Jarrett,
1971) is as follows:

For k=0,1,2, ...

X1 = Xk — Jie/ f[Xk—1, Xk]

if fifie1 >0 setxy=x;—1 and fi = gfi—1

where fi = f(xr), flk—1,x]= (fi — fi—1)/(ox — xk—1)
and g=0.5.

Write a MATLAB function to implement this method. Note that the regula falsi method is similar
but differs in that g is taken as one.

The following iterative formulae can be used to solve the equation x>

—a=0:
X1 = (kg1 +a/xp)/2, k=0,1,2,...

and
X1 = (k1 +a/x)/2 — (o — a/xi)?/(8xx), k=0,1,2,...

These iterative formulae are second- and third-order methods, respectively, for solving this equa-
tion. Write a MATLAB script to implement them and compare the number of iterations required
to obtain the square root of 100.112 to five decimal places. For the purpose of illustration, use
an initial approximation of 1000.

Show how MATLAB can be used to study chaotic behavior by considering the iteration

Xpr1 = g(xg) for £=0,1,2, ...
where

gx)=cx(1—x)

for different values of the constant c¢. This simple iteration arises from an attempt to solve a sim-
ple quadratic equation. However, its behavior is complex and for some values of ¢ is chaotic.
Write a MATLAB script to plot the value of the iterates against the iterate number for this func-
tion and study the behavior of the iterations for ¢ = 2.8, 3.25, 3.5, and 3.8. Use an initial value
of xo =0.7.

For the functions solved in Problems 3.2, 3.3 and 3.7, use the MATLAB function plotapp, given
in Section 3.9, to find approximate solutions for these functions.

It can be shown that the cubic polynomial equation

x3— px —q=0
will have real roots if the inequality p®/g? > 27/4 is satisfied. Select five pairs of values for p

and g for which this inequality is satisfied and hence, using the MATLAB function roots, verify
in each case that the roots of the equation are real.

3.16 PROBLEMS 189

3.21. In the 16th century the mathematician Ioannes Colla suggested the following problem: Divide
10 into three parts such that they shall be in continued proportion to each other and the product
of the first two shall be 6. Taking x, y, and z as three parts, this problem can be stated as:

x+y+z=10, x/y=y/z, xy =06
Now by simple manipulation these equations can be expressed in terms of the specific variable
y as:
4 2 _
Yy 4+6y°—60y+36=0

Clearly if we can solve this equation for y then we can easily find the other variables x and z
from the original equations. Use the MATLAB function roots to find values for y and hence
solve Colla’s problem.

3.22. The natural frequencies of a simply supported beam are given by the roots of the equation

¢l — x4c§ =0
where
¢1 = (sinh(x) + sin(x))/(2x)
and

¢3 = (sinh(x) — sin(x))/(2x%)

Substituting for ¢ and c3 gives
((sinh(x) + sin(x))/(2x))? — x*((sinh(x) — sin(x))/(2x*))> =0

When searching for the roots of this equation no difficulty is found in determining a root for trial
values of x, providing x is small (say x < 10). For values of x > 25 the process becomes erratic.
The roots of this equation are actually x = kmr where k is a positive integer. Use the MATLAB
function fzero with initial approximations x = 5 and x = 30 to obtain a solution close to these
initial approximations for this equation. For the purpose of this exercise, do not simplify this
equation.

Why are the results so poor? If you simplify the preceding equation, which equation do you
obtain and what is its solution?

3.23. Use the MATLAB function roots to solve the cubic equation:

x3+3px—2q=0

with p = 3 and ¢ = 4. One exact solution of this equation is give by Cardano’s formula:

x=d4+\2/q2+p3+\3/4—\2/q2+p3=r1+r2

The complex roots are obtained using w1r| + wzrz and wyry + wirp, where wy = (—1+]\/5)/2
and wy = (—1 — j4/3)/2.

190

3.24.

3.25.

CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

Check your result using the MATLAB function roots. Hint. To find the real root using the
formula you should use the MATLAB function nthroot.
If a, b, and c are real, and a < b < c then the equation:

l+ax 1+bx 1+cx
+ +

X—a x—>b xX—c

+d=0

has three real roots. Taking a = 1, b = 2, ¢ = 3 and rearranging this equation as a cubic. If
you have access to the Symbolic Toolbox you may wish to check your cubic equation using the
symbolic function collect. Then solve this equation using the MATLAB function roots and
verify the statement regarding the roots of this equation.

Determine the roots of the equation

Asin(30) + B 0052(9) + Csin(@)+1=0

where A =0.157, B = —0.940, and C = —0.900. Hint: Expand sin(36) and cos?() in terms
of powers of sin(f) and solve the resultant polynomial using the MATLAB function roots to
obtain values for sin(#), and hence 6.

CHAPTER

DIFFERENTIATION AND
INTEGRATION

Abstract

Differentiation and integration are the fundamental operations of differential calculus and occur in al-
most every field of mathematics, science, and engineering. Determining the derivative of a function
analytically may be tedious but is relatively straightforward. The inverse of this process, that of ana-
Iytically determining the integral of a function, can often be difficult or impossible. These difficulties
have encouraged the development of many numerical procedures for determining approximately the
value of definite integrals. In this chapter we introduce a wide range of algorithm for both numerical
differentiation and integration.

4.1 INTRODUCTION

In the next section of this chapter, we show how the derivative of a function may be estimated for a
particular value of the independent variable. The numerical approximations for derivatives require only
function values. These approximations can be used to great advantage when derivatives are required in a
program. Their application saves the program user the task of determining the analytical expressions for
these derivatives. In Section 4.3 and beyond, we introduce the reader to a range of numerical integration
methods, including methods suitable for infinite ranges of integration. Generally, numerical integration
works well, but there are pathological integrals that will defeat the best numerical algorithms.

4.2 NUMERICAL DIFFERENTIATION

In this section, we present a range of approximations for first- and higher-order derivatives. Before we
derive these approximations in detail, we give a simple example which illustrates the dangers of the
careless or naive use of such derivative approximations. The simplest approximation for the first-order
derivative of a given function f(x) may be developed from the formal definition of the derivative:

W;q.<fu+m—fu»
U _ iy (LEED =)

= 4.1
dx h—0 h ()

One interpretation of (4.1) is that the derivative of a function f(x) is the slope of the tangent to the
function at the point x. For small /7 we obtain the approximation to the derivative:

d h) —
df (fG+D—fE w2
dx h

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00013-0 1 9 1

Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-812256-3.00013-0

192 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

g
2 L
£ 10 * *
'g * *
. . :
< * *
.8 *
5 05
210 *
© P
*
—15 —10 -5 0
10 10 10 10
h value

FIGURE 4.1

A log—log plot showing the error in a simple derivative approximation.

The error is of O(h) and would appear to imply that the smaller the value of #, the better the value of
our approximation given by (4.2). The following MATLAB script plots Fig. 4.1 which shows the error
for various values of /.

% e4s401.m

@(x) x."9;

x =1; h(l) = 0.5;

hvals = [J; dfbydx = [1;

(e}
Il

for 1 = 1:17
h =h/10;
b = g(x); a = g(x+h);

hvals = [hvals h];
dfbydx(i) = (a-b)/h;
end;
exact = 9;
axes(’position’,[0.30 0.30 0.50 0.501)
loglog(hvals,abs(dfbydx-exact),’ *")
axis([le-18 1 le-8 le4])
xlabel(*h value’), ylabel(’Error in approximation’)

Fig. 4.1 shows that for large values of & the error is large but falls rapidly as % is decreased. However,
when % becomes less than about 10~ rounding errors dominate and the approximation becomes much
worse. Clearly care must be taken in the choice of #. With this warning in mind we develop methods
of differing accuracies for any order derivative.

We have seen how a simple approximate formula for the first derivative can be easily obtained from
the formal definition of the derivative. However, it is difficult to approximate higher derivatives and
deduce more accurate formulae in this way; instead we will use the Taylor series expansion of the
function y = f(x). To determine a more refined approximation for the derivative of this function at x;

4.2 NUMERICAL DIFFERENTIATION 193

we expand f(x; + k) thus:

Fi+h)y= f) +hf (x) + (B2 /2) £ (x0)
+(13 /3D £ (xi) + (h* /4D FI () + 4.3)

We evaluate f(x) at points a distance & apart and write x; + & as x;41, etc. We will also write f(x;) as
fi and f(xj+1) as fi4+1. Thus,

fiv1 = fi +hf' @)+ 220 f " (i) + (0230 £ (xi)
+(h* /4D £ () + . (4.4)

Similarly

fei=h)y = fimv=fi=hf'0a) + W2 /2) f ") = (073D f ' ()
+(h* 40 O () — .. (4.5)

We can find an approximation to the first derivative as follows. Subtracting (4.5) from (4.4) gives
fivr = S =20f G +2 (W/3) 17) + .
Thus, neglecting terms in > and higher, since we may assume # is small, we have

f' () = (fi1 = fi-1) /2h with exrors of O (i?) (4.6)

This is referred to as the central difference approximation and differs from (4.2) which is a forward
difference approximation. Eq. (4.6) is more accurate than (4.2) but in the limit as 4 approaches zero,
the two are identical.

To determine an approximation for the second derivative we add (4.4) and (4.5) to obtain

fier+ fimr =26 42 (02/2!) £) 2 (H/41) SO0 i +
Thus, neglecting terms in 4% and higher, we have
£ () = (fis1 —2fi + fi_1) / h* with errors of O (hz) 4.7

By taking more terms in the Taylor series, together with the Taylor series for f(x + 2h) and
f(x — 2h), etc., and performing similar manipulations, we can obtain higher derivatives and more
accurate approximations if required. Table 4.1 gives examples of these formulae.

The following MATLAB function diffgen computes the first, second, third, and fourth derivative
of a given function with errors of O (h*) for a specified value of x using data from the table.

function q = diffgen(func,n,x,h)
% Numerical differentiation.
% Example call: g = diffgen(func,n,x,h)

194 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

Table 4.1 Derivative approximations
Multipliers for f;_3...fi+3
fi—3 | fi—2 | fi-1| fi | fi+a | fi+2 | fi+3 order of error

2hf' (x;) 0 0] -1 0 1 0 0 >
B2 f"(x;) 0 0 1| =2 1 0 0 h?
283 £ (x;) ol -1 2 0ol -2 1 0 h?
R4 £ (k) 0 1| —4 6| —4 1 0 h?
12k (x;) 0 1| -8 0 8| —1 0 n*
1212 £ (x;) 0| -1 16 | =30 6] -1 0 n*
813 £ (x;) 1| -8 13 0| —13 8| -1 n
6ht FiV(x) | —1 12| =39| 56| —39 12| -1 n*

% Provides nth order derivatives, where n =1 or 2 or 3 or 4
% of the user defined function func at the value x, using a step h.
if (n==1)|(n==2)](n==3)]| (n==4)

c = zeros(4,7);

c(l,:)=[01-808-101;

c(2,:)=[0-116 -30 16 -1 01;
c(3,:) =1[1.5 -12 19.5 0 -19.5 12 -1.5];
c(4,:) =1[-2 24 -78 112 -78 24 -27;
y = feval(func,x+[-3:3]1xh);
q=cln,:)*y."; q= qg/(12%h"n);

else

disp(’n must be 1, 2, 3 or 4°), return
end

For example,
result = diffgen(’cos’,2,1.2,0.01)

determines the second derivative of cos(x) for x = 1.2 with 7 = 0.01 and gives -0.3624 for the result.
The following script calls the function diffgen four times to determine the first four derivatives of
y =x’ when x = 1:

% eds402.m
g = @(x) x."7;

h =20.5;
disp(’ h 1st deriv 2nd deriv 3rd deriv 4th deriv’);
while h>=le-5

tl = h;

t2 = diffgen(g, 1, 1, h);

t3 = diffgen(g, 2, 1, h);

t4 = diffgen(g, 3, 1, h);

ts = diffgen(g, 4, 1, h);

4.3 NUMERICAL INTEGRATION 195

fprintf(’%10.5f %10.5f %10.5f %11.5f %12.5f\n’,t1,t2,t3,t4,t5);
h =h/10;
end

The output from the script e4s402 is

h 1st deriv 2nd deriv 3rd deriv 4th deriv
0.50000 1.43750 38.50000 191.62500 840.00000
0.05000 6.99947 41.99965 209.99816 840.00000
0.00500 7.00000 42.00000 210.00000 840.00001
0.00050 7.00000 42.00000 210.00000 839.95625
0.00005 7.00000 42.00000 209.98669 -189.47806

Note that as & is decreased the estimates for the first and second derivatives steadily improve, but
when i =5 x 10~ the estimate for the fourth derivative begins to deteriorate. When & =5 x 107> the
estimate for the third derivative also begins to deteriorate and the fourth derivative is very inaccurate. In
general we cannot predict when this deterioration will begin. It should be noted that different computer
platforms may give different results for this value.

The function diffgen numerically differentiates the mathematical function provided. This func-
tion is then sampled. The method diffgen could be configured to take a vector of data instead of a
mathamatical function. Thus diffgen could be modified as follows:

function q = diffgend(x,n,k,h)

where x is a vector of equispaced data of increment h, n is the order of the required derivative and
k is the index of x, so that the derivatives are determined for the point x (k).

4.3 NUMERICAL INTEGRATION

We begin by examining the definite integral

b
1=/ f (x)dx (4.8)

The evaluation of such integrals is often called quadrature and we will develop methods for both finite
and infinite values of a and b.

The definite integral (4.8) is a summation process but it may also be interpreted as the area under
the curve y = f(x) from a to b. Any areas above the x-axis are counted positive; any areas below the
x-axis are counted as negative. Integration is a smoothing process and errors in the approximation tend
to cancel each other. Many numerical methods for integration are based on using this interpretation to
derive approximations to the integral. Typically the interval [a, b] is divided into a number of smaller
subintervals, and by making simple approximations to the curve y = f(x) in the subinterval, the area
of the subinterval may be obtained. The areas of all the subintervals are then summed to give an
approximation to the integral in the interval [a, b]. Variations of this technique are developed by taking
groups of subintervals and fitting different degree polynomials to approximate y = f(x) in each of
these groups. The simplest of these methods is the trapezoidal rule.

196 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

The trapezoidal rule is based on the idea of approximating the function y = f(x) in each subinterval
by a straight line so that the shape of the area in the subinterval is trapezoidal. Clearly, as the number
of subintervals used increases, the straight lines will approximate the function more closely. Dividing
the interval from a to b into n subintervals of width 42 (where & = (b — a)/n) we can calculate the area
of each subinterval since the area of a trapezium is its base times the mean of its heights. These heights
are f; and f;41 where f; = f(x;). Thus, the area of the trapezium is

h(fi+ fix1)/2 for i =0,1,2,n—1
Summing all the areas of the trapezia gives the composite trapezoidal rule for approximating (4.8) thus:
I=h{(fo+ f) 2+ i+ 2+ ..+ fa1} (4.9)
The truncation error, E,, which is the error due to the implicit approximation in the trapezoidal rule, is
E,<(b—a)h*?M/12 (4.10)

where M is the upper bound for | f”(¢)| and ¢ must be in the range a to b. The MATLAB function trapz
implements this procedure and we use it in Section 4.4 to compare the performance of the trapezoidal
rule with the more accurate Simpson’s rule.

The level of accuracy obtained from a numerical integration procedure is dependent on three fac-
tors. The first two are the nature of the approximating function and the number of intervals used. These
are controlled by the user and give rise to the truncation error, that is, the error inherent in the ap-
proximation. The third factor influencing accuracy is the rounding error, the error caused by the fact
that practical computation has limited precision. For a particular approximating function the truncation
error will decrease as the number of subintervals increases. Integration is a smoothing process and
rounding errors do not present a major problem. However, when many intervals are used the time to
solve the problem becomes more significant because of the increased amount of computation. This
problem may be reduced by writing the script efficiently.

4.4 SIMPSON’S RULE

Simpson’s rule is based on using a quadratic polynomial approximation to the function f(x) over a pair
of subintervals; it is illustrated in Fig. 4.2. If we integrate the quadratic polynomial passing through the
points (xo, fo); (x1, f1); (x2, f2), where f1 = f(x1), etc., the following formula is obtained:

X2 h
f f) dx:g(fo+4f1+f2) (4.11)
X0

This is Simpson’s rule for one pair of intervals. Applying the rule to all pairs of intervals in the range a
to b and adding the results produces the following expression, known as the composite Simpson’s rule:

b h
/ fx) dx=§{fo+4(f1+f3+f5+...+f2n—1)
+2(fa+ fa+ ...+ fon—2) + fou} (4.12)

4.4 SIMPSON'S RULE 197

Quadratic
approximation

FIGURE 4.2

Simpson’s rule, using a quadratic approximation over two intervals.

Here n indicates the number of pairs of intervals and & = (b — a)/(2n). The composite rule may be
also be written as a vector product thus:

/ah £ (x) dx = % (ch) (4.13)

wherec=[14242 .24 11" andf=[f1 f> f3 ... fonl'.
The error arising from the approximation, called the truncation error, is approximated by

E, = (b—a)h* £ (1)/180
where ¢ lies between a and b. An upper bound for the error is given by
E, < (b—a)h*M/180 (4.14)

where M is an upper bound for | f ©¥)(r)|. The upper bound for the error in the simpler trapezoidal rule,
(4.10), is proportional to 4% rather than 4*. This makes Simpson’s rule superior to the trapezoidal rule
in terms of accuracy at the expense of more function evaluations.

To illustrate different ways of implementing Simpson’s rule we provide two alternatives, simpl
and simp2. The function simpl creates a vector of coefficients v and a vector of function values y
and multiplies the two vectors together. Function simp2 provides a more conventional implementation
of Simpson’s rule. In each case the user must provide the definition of the function to be integrated,
the lower and upper limits of integration and the number of subintervals to be used. The number of
subintervals must be an even number since the rule fits a function to a pair of subintervals.

function q = simpl(func,a,b,m)

% Implements Simpson’s rule using vectors.

% Example call: q = simpl(func,a,b,m)

% Integrates user defined function func from a to b, using m divisions
if (m/2)~=floor(m/2)

198 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

disp(’m must be even’); return
end
h = (b-a)/m; x = a:h:b;
y = feval(func,x);
v 2xones(m+l,1); v2 = 2%xones(m/2,1);
v(2:2:m) = v(2:2:m)+v2;
v(l) =1; v(m+l) = 1;
q = (h/3)xyxv;

The second non-vectorized form of this function is

function q = simp2(func,a,b,m)
% Implements Simpson’s rule using for Toop.
% Example call: g = simp2(func,a,b,m)
% Integrates user defined function
% func from a to b, using m divisions
if (m/2) ~= floor(m/2)
disp(’m must be even’); return

end

h = -a)/m;

s =0; yl = feval(func,a);
= 2:2:m

at+(j-1)xh; ym = feval(func,x);
= atj*h; yh = feval(func,x);
styl+dxymtyh; y1 = yh;

(b
0
for j
X
X
S

end
q = sxh/3;

The script e4s403 calls either simpl or simp2. These functions can be used to demonstrate the effect
on accuracy of the number of pairs of intervals used. The script e4s403 evaluates the integral of x” in
the range 0 to 1.

% e4s403.m

n==4;1=1;

disp(’ n integral value’)

while n < 1025
simpval = simpl(@(x) x.”7,0,1,n); % or simpval = simp2(etc.);
fprintf(’%5.0f %15.12f\n’,n,simpval)
n=2xn; i = i+l;

end

The output from script e4s403 using simpl is shown thus:

n integral value

4

8

16
32
64
128
256
512
1024

0.

o O O O O O o O

129150390625
.125278472900
.125017702579
.125001111068
.125000069514
.125000004346
.125000000272
.125000000017
.125000000001

4.4 SIMPSON’'S RULE

I
199

On running this script, but using simp2, we obtain the same values for the integral. However, we would
expect that the vectorized version, simp1, would be faster than simp2.

Eq. (4.14) shows that the truncation error will decrease rapidly for values of 4 smaller than 1. The
preceding results illustrate this. The rounding error in Simpson’s rule is due to evaluating the function

f(x) and the subsequent multiplications and additions.

We now evaluate the same integral using the MATLAB function trapz. To call this function the
user must provide a vector of function values f. The function trapz(f) estimates the integral of the
function assuming unit spacing between the data points. Thus, to determine the integral we multiply

trapz(f) by the increment h.

% eds404.m

n=14;
disp(’

i

=1; f=@(x)
n integral value’)

while n<1025

h =

1/n;

n = 2xn; i = i+l;

end

Running script e4s404 gives

16
32
64
128
256
512
1024

integral value

0
0
0
0
0.
0
0
0
0

.160339355469
.134043693542
.127274200320
.125569383381
125142397981
.125035602755
.125008900892
.125002225236
.125000556310

x =0:h:1;
trapval = hxtrapz(f(x));
fprintf(’%5.0f %15.12f\n’,n,trapval)

These results illustrate the fact that the trapezoidal rule is less accurate than the Simpson rule.

200 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

As with numerical differentiation, we have chosen to design the MATLAB functions simpl and
simp? to integrate a mathematical function. Sometimes, instead of a function, we have a set data rep-
resenting the function and simp1 could be modified to accept equispaced data rather than a function as
follows:

function q = simpd(y,x0,xm)

where y is a vector of an even number of equispaced data, x0 and xm are the values of x corresponding
toy(1) and y(m).

4.5 NEWTON-COTES FORMULAE

Simpson’s rule is an example of a Newton—Cotes formula for integration. Other examples of these
formulae can be obtained by fitting higher-degree polynomials through the appropriate number of
points. In general we fit a polynomial of degree n through n + 1 points. The resulting polynomial
can then be integrated to provide an integration formula. Here are some examples of Newton—Cotes
formulae together with estimates of their truncation errors. It is important for the reader to note that in
this section the truncation error approximations provided are for the range of integration of the specific
rule only. This is in contrast to the truncation error given for Simpson’s rule which is for the composite
rule applied to the whole integral range.
For n = 3 we have

*3 3h
/ f(X)dX=§(fo+3f1+3fz+f3)
X0

, 3n° ..
+ truncation error Efl) (4.15)

where ¢ lies in the interval xq to x3.
For n =4 we have

/ ' fx)dx = % Tfo+32f1+ 12 +32f34+7f4)
X0

_ 8h7 iy
+ truncation error 945 VA3 (4.16)

where ¢ lies in the interval xq to x4. Composite rules for a specific number of intervals can be generated
using either (4.15) or (4.16).

The truncation errors indicate that some improvement in accuracy may be obtained by using these
rules rather than Simpson’s rule. However, the rules are more complex; consequently, greater compu-
tational effort is involved and rounding errors may become a more significant problem.

4.6 ROMBERG INTEGRATION 201

4.6 ROMBERG INTEGRATION

A major problem that arises with the Simpson’s or Newton—Cotes rules is that the number of intervals
required to provide the required accuracy is initially unknown. Clearly one approach to this problem
is to double successively the number of intervals used and compare the results of applying a particular
rule, as illustrated by the examples in Section 4.4. Romberg’s method provides an organized approach
to this problem and utilizes the results obtained by applying Simpson’s rule with different interval sizes
to reduce the truncation error.

Romberg integration may be formulated as follows. Let be the exact value of the integral and T;
the approximate value of the integral obtained using Simpson’s rule with i intervals. Consequently, we
may write an approximation for the integral / which includes contributions from the truncation error
as follows (note that the error terms are expressed in powers of /%):

I =T, +cith* + coh® +c3h'? + ... 4.17)
If we double the number of intervals, £ is halved, giving
[=Tj+ci(h/2)*+cr(h/2) +c3(h/2)'? + ... (4.18)
We can eliminate the terms in 4#* by subtracting (4.17) from 16 times (4.18), giving
I =16Ty —T;) /15 + kah® + ksh'? + ... (4.19)

Notice that the dominant or most significant term in the truncation error is now of order 4%, In general
this will provide a significantly improved approximation to /. For the remainder of this discussion
it is advantageous to use a double subscript notation. If we generate an initial set of approximations
by successively halving the interval we may represent them by Ty x where k =0, 1, 2, 3,4, These
results may be combined in a similar manner to that described in (4.19) by using the general formula

Tk =(16"T—1 441 — Tr—1.k) / (16" — 1)
fork=0,1,2, 3 ...andr=1, 2, 3, ... (4.20)

Here r represents the current set of approximations we are generating. The calculations may be tabu-
lated as follows:

Too Toqn Too Toz Toa

Tio T Tia T3

Lo Ty Tp

T30 T3,

Ty0
In this case, the interval has been halved four times to generate the first five values in the table de-
noted by Tp . The formula (4.20) for 7}« is used to calculate the remaining values in the table and at

each stage the order of the truncation error is increased by four. A common alternative is to write the
preceding table with the rows and columns interchanged.

202 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

At each stage the interval size is given by
(b—a)/2*fork=0,1, 2, ... 4.21)
Romberg integration is implemented in the following MATLAB function, romb:

function [W T] = romb(func,a,b,d)

% Implements Romberg integration.

% Example call: W = romb(func,a,b,d)

% Integrates user defined function func from a to b, using d stages.
T = zeros(d+1,d+1);

for k = 1:d+1

2°"k; T(l,k) = simpl(func,a,b,n);

n
end
for p = 1:d

q = 16"p;

for k = 0:d-p

T(p+l,k+1) = (g*T(p,k+2)-T(p,k+1))/(qg-1);

end
end
W= T0d+1,1);

We now apply function romb to the evaluation of x%! in the range 0 to 1. The call of the function romb
with five stages is

>> [integral table]l = romb(@(x) x.70.1,0,1,5)

Calling this function gives the following output. Note that the best estimate is the non-zero value in
the last row of the table.

integral =
0.9066

table =
0.7887 0.8529 0.8829 0.8969 0.9034 0.9064
0.8572 0.8849 0.8978 0.9038 0.9066 0
0.8850 0.8978 0.9038 0.9066 0 0
0.8978 0.9038 0.9066 0 0 0
0.9038 0.9066 0 0 0 0
0.9066 0 0 0 0 0

This integral is a surprisingly difficult one and obtaining an accurate result presents a significant
problem. The exact solution to four decimal places is 0.9090 so the application of the Romberg method
gives only two places of accuracy. However, taking d = 10 does give the answer correct to four places
thus:

4.7 GAUSSIAN INTEGRATION 203

>> integral = romb(@(x) x.70.1,0,1,10)

integral =
0.9090

Generally the Romberg method is very efficient and accurate.
An interesting exercise for the reader is to convert function romb to work with the MATLAB function
trapz instead of simpl.

4.7 GAUSSIAN INTEGRATION

The common feature of the methods considered so far is that the integrand is evaluated at equal intervals
within the range of integration. In contrast, Gaussian integration requires the evaluation of the integrand
at specified, but unequal, intervals. For this reason Gaussian integration cannot be applied to data values
that are sampled at equal intervals of the independent variable. The general form of the rule is

1 n
f S odx= D Af () (4.22)
- i=1

The parameters A; and x; are chosen so that, for a given n, the rule is exact for polynomials up to and
including degree 2n — 1. It should be noticed that the range of integration is required to be from —1
to 1. This does not restrict the integrals to which Gaussian integration can be applied since if f(x) is
to be integrated in the range a to b, then it can be replaced by the function g(¢) integrated from —1 to 1
where

t= Q2x—a—->b)/(b—a)

Note that in the preceding formula, when x =a,t = —1 and when x = b, r = 1.
We now determine the four parameters A; and x; for n =2 in (4.22). Thus (4.22) now becomes

1
/1f (x)dx =A1f (x1) +Axf (x2) (4.23)

This integration rule will be exact for polynomials up to and including degree 3 by ensuring that the
rule is exact for the polynomials 1, x, x2, and x3 in turn. Thus four equations are obtained, as follows:
f)=1gives [1 1dx=2=A;+ A,
f(x) =x gives f_ll xdx=0=A1x] + Axxa,
f(x) =x? gives f_ll xrdx =2/3 = A1x} + Axx3,
f)=x gives [x3dx=0=A1x] 4 A}

(4.24)

Solving these equations gives

xi=—1/3, xa=1//3, Ai=1, Ay=1.

204 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

Thus,

/f(x)dx_ <\/3>+f<\/3> (4.25)

Notice that this rule, like Simpson’s rule, is exact for cubic equations but requires fewer function
evaluations.

A general procedure for obtaining the values of A; and x; is based on the fact that in the range of
integration it can be shown that x1, x3, ..., X, are the roots of the Legendre polynomial of degree n. The
values of A; can then be obtained from an expression involving the Legendre polynomial of degree n,
evaluated at x;. Tables have been produced for the values of x; and A; for various values of n; see
Abramowitz and Stegun (1965) and Olver et al. (2010). Abramowitz and Stegun provide an excellent
reference not only for these functions but for a very extensive range of mathematical functions. How-
ever, this classic work is now becoming outdated and a newer handbook of mathematical functions
for the twenty-first century by Olver et al. has been published with many improvements, for example,
clearer, colored graphics. However, this new text contains far fewer tables of functions, since most can
now be rapidly computed on a personal computer.

Function fgauss performs Gaussian integration. It includes a substitution so that integration in the
range a to b is converted to an integration in the range —1 to 1.

function q = fgauss(func,a,b,n)
% Implements Gaussian integration.
% Example call: q = fgauss(func,a,b,n)
% Integrates user defined function func from a to b, using n divisions
% n must be 2 or 4 or 8 or 16.
if (n==2)|(n==4)](n==8)]|(n==16)
c = zeros(8,4); t = zeros(8,4);
c(l,1) = 1;
c(1:2,2) = [.6521451548; .347854845117;
c(1:4,3) = [.3626837833; .3137066458; .2223810344; .1012285362];

c(:,4)= 1[.1894506104; .1826034150; .1691565193; .1495959888;
.1246289712; .0951585116; .0622535239; .02715245947;
t(l,1) = .5773502691;

t(1:2,2) = [.3399810435; .86113631157;
t(1:4,3) = [.1834346424; .5255324099; .7966664774; .96028985641];
t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444;
.7554044084; .8656312023; .9445750230; .98940093501;
j=1;
while j<=4
if 27j==n; break;
else
J =3+
end
end

for

4.8 INFINITE RANGES OF INTEGRATION 205

x1l = (t(k,j)x(b-a)+a+h)/2;
x2 = (-t(k,j)*(b-a)+a+b)/2;
y = feval(func,x1l)+feval (func,x2);
s = stc(k,j*y;
end
q = (b-a)*s/2;
else
disp(’n must be equal to 2, 4, 8 or 16°); return
end

The script e45405 calls the function fgauss to integrate x%! from 0 to 1.

% e4s405.m
disp(® n integral value’);
for j = 1:4
n=2"j;
int = fgauss(@(x) x.”70.1,0,1,n);
fprintf(’%3.0f %14.9f\n’,n,int)
end

The output from script e4s405.m is

n integral value
2 0.916290737
4 0.911012914
8 0.909561226
6

1 0.909199952

Gaussian integration with n = 16 gives a better result than that obtained by Romberg’s method with
five divisions of the interval.

4.8 INFINITE RANGES OF INTEGRATION

Other formulae of the Gauss type are available to allow us to deal with integrals having a special form
and infinite ranges of integration. These are the Gauss—Laguerre and Gauss—Hermite formula and take
the following form.

4.8.1 GAUSS-LAGUERRE FORMULA
This method is developed from (4.26) as follows:

/ T g dx = D Aig(x) (4.26)
0

i=1

206 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

The parameters A; and x; are chosen so that, for a given n, the rule is exact for polynomials up to and
including degree 2n — 1. Considering the case when n =2, we have

gx)=1lgives [(Te ™ dx=1=A;+A;
g(x) =x gives [(xe ™ dx =1=Ax| + Axxs
g(x) =x? gives [x%e ¥ dx =2=Ax] + Axxj

g) =x7 gives [g¥xPe ™ dx =6=Arx{ + Axx

4.27)

Having evaluated the integrals on the left-hand side of Eqs. (4.27) we may solve for the four unknowns
X1, X2, A1, and A; so that (4.26) becomes

o 2 2 2—./2
,[) e “g(x)dx = +v g2 -2+ 4\/

1 g2 +4/2)

It can be shown that the x; are the roots of the nth-order Laguerre polynomial and the coefficients
A; can be calculated from an expression involving the derivative of an nth-order Laguerre polynomial
evaluated at x;.

In general, we wish to evaluate integrals of the form

/ f(x)dx
0

/weﬂw¥NMhu
0

We may write this integral as

Thus, using (4.26), we have
AfMM=memvm) (4.28)
i=1

Eq. (4.28) allows integrals to be evaluated over an infinite range, assuming that the value of the integral
is finite.
The Gauss—Laguerre method is implemented by the MATLAB function galag thus:

function s = galag(func,n)
% Implements Gauss-Laguerre integration.
% Example call: s = galag(func,n)
% Integrates user defined function func from 0 to inf
% using n divisions. n must be 2 or 4 or 8.
if (n==2)|(n==4)](n==8)
¢ = zeros(8,3); t = zeros(8,3);
c(1:2,1) = [1.533326033; 4.450957335];
c(1:4,2) = [.8327391238; 2.048102438; 3.631146305; 6.4871450841];
c(:,3) = [.4377234105; 1.033869347; 1.669709765; 2.376924702;...
3.208540913; 4.268575510; 5.818083368; 8.9062262151;

4.8 INFINITE RANGES OF INTEGRATION 207

t(l:2,1) [.5857864376; 3.414213562];

t(1:4,2) [.3225476896; 1.745761101; 4.536620297; 9.395070912];

t(:,3) = [.1702796323; .9037017768; 2.251086630; 4.266700170;...
7.045905402; 10.75851601; 15.74067864; 22.863131741;

j=1;
while j<=3
if 27j==n; break
else
Jo= 3+
end
end
s =0
for k = 1:n
x = t(k,j); y = feval(func,x);
s = s+c(k,jlxy;
end
else

disp(’n must be 2, 4 or 8); return
end

Sample values x; and the product A;exp(x;) are given by c and t respectively in the MATLAB
function. A more complete list of coefficients may be found in Abramowitz and Stegun (1965) and
Olver et al. (2010).

We now evaluate the integral log, (1 4+ e™*) from zero to infinity. The script e4s406.m evaluates the
integral using the function galag.

% e4s406.m

disp(’ n integral value’);

for j = 1:3
n=2"j;
int = galag(@(x) Tog(l+exp(-x)),n);
fprintf(’%3.0f%14.9f\n",n,int)

end

The output is as follows:

n integral value
2 0.822658694
4 0.822358093
8 0.822467051

Note that the exact result is 72/12 = 0.82246703342411. The eight-point integration formula is accu-
rate to six decimal places!

208 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

4.8.2 GAUSS—HERMITE FORMULA
This method is developed from (4.29) as follows:

/ exp(— x%g(x)dx-ZAlg(x, (4.29)

i=1
Again the parameters A; and x; are chosen so that, for a given n, the rule is exact for polynomials up
to and including degree 2n — 1. For the case n = 2 we have
g(x) =1 gives [% exp(—x})dx =/m = A+ A,
g(x)=x gives [% xexp(—x*)dx =0=Ax| + Axxs 430)
g(x) =x? gives [0 x%exp(—x?)dx = % = A1x? + Axx3 .
g(x) =x3 gives ffooo xexp(—x2)dx =0= Ale + Azxg

We have evaluated the integrals on the left-hand side of Egs. (4.30) and may now solve for the four
unknowns x1, xp, A1, and A; so that (4.29) becomes

[Ea(-) ()

An alternative approach is to note that x; are the roots of the nth-order Hermite polynomial H, (x). The
coefficients A; can then be determined from an expression involving the derivative of the nth-order
Hermite polynomial evaluated at x;.

In general, we wish to evaluate integrals of the form

/ f(x)dx

/ b exp(—x?){exp(x?) f (x)} dx

We may write this integral as

and using (4.29) we have

/OO fydx =" A;exp(x]) f(xi) (4.31)
- i=1

Again, care must be taken to apply (4.31) only to functions that have a finite integral in the range —oo
to co. Extensive tables of x; and A; are given in Abramowitz and Stegun (1965) and Olver et al. (2010).
The MATLAB function gaherm implements Gauss—Hermite integration thus:

function s = gaherm(func,n)
% Implements Gauss-Hermite integration. Chkd 13/01/11
% Example call: s = gaherm(func,n)

4.8 INFINITE RANGES OF INTEGRATION

% Integrates user defined function func from -inf to +inf,
% using n divisions. n must be 2 or 4 or 8 or 16
if (n==2)](n==4)](n==8)]|(n==16)
c = zeros(8,4); t = zeros(8,4);
c(1l,1) = 1.461141183;
c(l:2,2) [1.059964483; 1.2402258187;
c(1:4,3) [.7645441286; .7928900483; .8667/526065; 1.0719301447;
c(:,4) = [.5473752050; .5524419573; .5632178291; .5812472754;
.6097369583; .6557556729; .7382456223; .93687449297;
t(l,1) = .7071067811;
t(1:2,2) [.5246476233; 1.6506801247;
t(l: [.3811869902; 1.157193712; 1.981656757; 2.93063742071;
t(:,4) = [.2734810461; .8229514491; 1.380258539; 1.951787991;
2.546202158; 3.176999162; 3.869447905; 4.6887389391;

~
w
Il

j=1
while j<=4
if 27j==n; break;
else
J o=+l
end
end
s=0;
for k = 1:n/2
x1l = t(k,j); x2 = -x1;
y = feval(func,xl)+feval(func,x2);
s = s+c(k,jlxy;
end
else
disp(’n must be equal to 2, 4, 8 or 16°); return
end

We now evaluate the integral

/“” dx
oo (14 x2)2

by the Gauss—Hermite method. The script e4s407 uses gaherm to evaluate this integral.

% e4s407.m

disp(’ n integral value’);
for j = 1:4
n=2"j;

int = gaherm(@(x) 1./(1+x.72).”"2,n);
fprintf(*%3.0f%14.9f\n’ ,n,int)
end

The results from running script e4s407 are

209

210 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

n integral value
2 1.298792163
1.482336098
1.550273058
16 1.565939612

The exact value of this integral is /2 = 1.570796...

4.9 GAUSS-CHEBYSHEV FORMULA

We now consider two interesting cases where the sample points x; and weights w; are known in a
closed or analytical form. The two integrals together with their closed forms are

1 " 2k —1
[1 % dx = %;f(xk) where x; = cos <%> (4.32)

/ V1—x2 f(x)dx——z <)f(xk) (4.33)

k
where x; = cos(il)

n+1

These expressions are members of the Gauss family, in this case Gauss—Chebyshev formula. Clearly it
is extremely easy to use these formulae for integrands of the required form which have a specified f(x).
It is simply a matter of evaluating the function at the specified points, multiplying by the appropriate
factor and summing these products. A MATLAB script or function can easily be developed and is left
as an exercise for the reader. (See Problem 4.11.)

4.10 GAUSS-LOBATTO INTEGRATION

Lobatto integration or quadrature (Abramowitz and Stegun, 1965), is named after Dutch mathemati-
cian Rehuel Lobatto. It is similar to Gaussian quadrature, which we discussed in Section 4.7, but the
integration points include the end points of the integration interval. This has an advantage when the pro-
cedure is used in a subinterval because data can be shared between consecutive subintervals. However,
Lobatto quadrature is less accurate than the Gaussian formula.

Lobatto quadrature of function f(x) on interval [—1 1] is given by the formula

n—1

/ f(o)dx =)[f(1)+f(D]+ > wi f (i) + Ry

i=2

4.10 GAUSS-LOBATTO INTEGRATION 211

Here the points x; are the roots of the Legendre polynomial P,_j(x) = 0. The weights for f(1) and
f(—1) are both equal 2/(n(n — 1)). The remaining weights, w;, are calculated from the formula:

_ 2
~n(n = D[Py—1 (x)]?

Clearly from this description it is an easy matter to calculate the weights required if the roots of the
derivative of the Legendre polynomial are found.

The coefficients of any order Legendre polynomial can be found using Bonnet’s recursion formula
thus

Wi

(xi #£1)

m+DPx)=C2n+DxPy(x) —nP_1(x)

where Py(x) =1, Pi(x) = x, and P, (x) is the nth Legendre polynomial. Alternatively a recurrence
relation for the polynomials can be found using the differential equation definition of the Legendre
function.

The following MATLAB function is based on generating the polynomial coefficients using a re-
currence formula and then finding the roots of the derivative of this polynomial using the MATLAB
function roots. The range has been converted to any range a to b.

function Iv = Tobattof(func,a,b,n)
% Implementation of Lobattos method
% func is the function to be integrated from the a to b
% using n points.
% Generate Legendre polynomials based on recurrence relation
% derived from the differetial equation which the Tegendre polynomial
% satisfies.
% Obtain derivitive of that polynomial
% The roots of this polynomial give the Lobatto nodes
% From the nodes calculate the weights using standard algorithm
lc=1[1
for k = 0:n-1
if n>=2xk
fnk = factorial (2%n-2%k);
fnp = 2*n*xfactorial(k)*factorial(n-k)xfactorial(n-2xk);
lc(n-2xk+1) = (-1)*k*fnk/fnp;

end
end
% Find coefficients of derivitive of the polynomial
led = [1;
for k = 0:n-1

if n>=2xk

lcd(n-2xk+1) = (n-2%k)*Tc(n-2*k+1);

end

end

lcd(n) = 0;

212 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

% Obtain Lobatto points
x = roots(fliplr(lcd(2:n+l1)));
x1l = sort(x,’descend’);
pv = zeros(size(x));
% Calculate Lobatto weights
for k = l:n+l

pv = pvtlc(k)*x. (k-1);

end

n = n+l;

w=2./(nx(n-1)xpv."2);
w=[2/(nx(n-1)); w; 2/(n*x(n-1))71;

% Transform to range a to b

x1 = (xx(b-a)+(a+h))/2;

pts = [a; x1; bl;

% Implement rule for integration
Iv = (b-a)*w’xfeval(func,pts)/2;

To test the function the MATLAB script e4s408.m is used

% e4s408.m

g = @(x) exp(bxx).xcos(2xx); a = 0; b = pi/2;

for n =102 4 8 16 32 64]
Iv = lobattof(g,a,b,n);
fprintf(’%3.0f%19.9f\n" ,n,real(Iv))

end

exact = -5x(exp(2.5%pi)+1)/29;

fprintf(’\n Exact %15.9f\n’,exact)

The script e4s408.m gives the following results:

2 -674.125699610
4 -443.869707406
8 -444.305258004
16 -444.305258038
32 -444.305439477
64 -15.828963820

Exact -444.305258034

Note that as the number of points used is increased up to 16, the integration becomes more accurate.
However, above this value the accuracy decreases. This is because the function Tobattof determines
the abscissae weights by finding the roots of a polynomial. This becomes less accurate as n increases.

An alternative approach to determine the value of an integral is to subdivide the range of integration
into a specific number of subintervals, m and then apply a Lobatto rule with a small number of points to
each subinterval. The following function allows the user to choose the number of points in the Lobatto
integration and the number of subintervals in which the integration is applied.

4.10 GAUSS-LOBATTO INTEGRATION 213

function s = lobattomp(func,a,b,n,m)
% n is the number of points in the Labatto quadrature
% m is the number of subintervals of the range of the integration.
h = (b-a)/m; s = 0;
for panel = 0:m-1
a0 =a+panel*h; b0 = a+(panel+l)xh;
s = s+lobattof(func,a0,b0,n);
end

The following script evaluates the error in the integration of e>* cos(2x) over the range 0 to /2.
The script considers a 4, 5, ..., 8 point Lobatto integration rule applied to subintervals, the number of
subintervals ranging from 2, 4, 8 to 256.

% e4s409.m
g = @(x) exp(bxx).*xcos(2%x); a = 0; b = pi/2;
format short e
m=2; k=20;
while m<512
% m is number of panels, k is the index

k = k+1;
p =20;
for n = 4:8
% n number of Labotto points, p is index
p=rp+l:
Integral_err(k,p) = real(lobattomp(g,a,b,n,m))+5x(exp(2.5%pi)+1)/29;
end
m = 2%m;

end
Integral_err

Running script e4s409 gives the following output. Each row gives the value of the error for the specified
number of panels, beginning at the first row with m = 2, and doubling each time until m = 256. Each
column, from left to right, gives the value of the error for the specified number of points in the Lobatto
integration, for n = 4 in steps of oneton = 8.

Integral_err =

1.5122e-02 2.6320e-04 1.6910e-06 1.8365e-09 -3.5470e-11
1.0050e-04 3.5484e-07 4.4213e-10 -3.9790e-13 -9.0949e-13
4.4719e-07 3.7176e-10 2.8422e-13 -2.2737e-13 -7.3896e-13
1.8038e-09 1.1369e-13 1.1369e-13 -6.2528e-13 -9.6634e-13
7.0486e-12 -1.7053e-13 2.2737e-13 -6.8212e-13 -8.5265e-13

0 -2.2737e-13 2.8422e-13 -6.2528e-13 -9.0949e-13

0 -2.2737e-13 2.8422e-13 -6.2528e-13 -9.0949e-13
-5.6843e-14 -2.8422e-13 2.8422e-13 -5.6843e-13 -8.5265e-13

214 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

It is evident that increasing the number of subintervals () and increasing the number of points in the
Lobatto integration (n) reduces the error in the integration. However, when the number of points in the
Lobatto integration and the number of subintervals increase beyond a certain values the accuracy of
the integration begins to decrease. The values of m and n at which this happens is problem dependent.

A further disadvantage of the Gauss formula is that the location and weight of the abscissae change
as their number increases. For example, suppose we have evaluated an integral using an n point Gauss
quadrature rule. To increase the accuracy we could now increase the number of points and use the
Gauss rule again, but all the points would be at a new location. An alternative strategy is to keep the
existing n points and add to them n + 1 points located at the best positions. This is the Kronrod method
(Kronrod, 1965). Thus, a three point Gauss method can be extended by keeping the three points and
adding four more to give a seven point rule. The MATLAB function quadgk implements adaptive
Gauss—Kronrod quadrature.

A discussion of the family of Gaussian quadrature methods is given by Thompson (2010).

4.11 FILON'S SINE AND COSINE FORMULAE

These formulae can be applied to integrals of the form

b b
/ f(x)coskxdx and / f(x)sin kx dx (4.34)

The formulae are generally more efficient than standard methods for this form of integral. To derive
the Filon formulae we first consider an integral of the form

2
f(x)coskxdx

By the method of undetermined coefficients we can obtain an approximation to this integrand as fol-
lows. Let

2
f(x) cosxdx =A; f(0)+ Az f () + A3 f(27) (4.35)

Requiring that this should be exact for f(x) =1, x, and x2, we have
0=A1+Ay+ A3

0= A 4+ A32nm
A = Apir? + Azdr?

Thus Ay =2/m, Ao = —4/m,and A3 =2/m. Hence,

2

f(x)cosxdx =

1
A C270) —4f () +2f(2n)] (4.36)

4.11 FILON’S SINE AND COSINE FORMULAE 215

More general results can be developed as follows:
f02” f(x)coskxdx =h[A{f (x,)sinkx, — f(xp)sinkxo} + BC, 4+ DC,]

fozn f(x)sinkx dx = h[A{f (x0) cos kxg — f(x,)coskx,} + BS, + DS,]

where h = (b —a)/n, g = kh, and

A= (q2 4 ¢ sin2q/2 — 2sin? q) /43 (4.37)
B:Z{q (1 +cos2q) —sian}/q3 (4.38)
D =4(sing —q cosq) /q° (4.39)
n—1
Co= Z f(x;) coskx;
i=1,3,5...
1 n—2
Ce= 5/ (xo) coskxo + f (xn) cos k) + > f(xi)coskx;
i=2,4,6...

It can be seen that C, and C, are odd and even sums of cosine terms. S, and S, are similarly defined
with respect to sine terms.

It is important to note that Filon’s method, when applied to functions of the form given in (4.34),
usually gives better results than Simpson’s method for the same number of intervals.

Approximations may be used for the expressions for A, B, and D given in (4.37), (4.38), and (4.39)
by expanding them in series of ascending powers of g. This leads to the following results:

A=2q%(q/45—q° /3154 ¢° /4725 — ...)
B=2(1/344¢%/15—2¢*/105+ ¢%/567 — ...)
D =4/3—2¢*/15+¢*/210 — ¢°/11340 + ...

When the number of intervals becomes very large, & and hence g become small. As g tends to zero,
A tends to zero, B tends to 2/3 and D tends to 4/3. Substituting these values into the formula for Filon’s
method, it can be shown that it becomes equivalent to Simpson’s rule. However, in these circumstances
the accuracy of Filon’s rule may be worse than Simpson’s rule owing to the additional complexity of
the calculations.

The MATLAB function f1i1on implements Filon’s method for the evaluation of appropriate integrals.
In the parameter list, function func defines f(x) of (4.34) and this is multiplied by cos kx when cas = 1
or sin kx when cas ~= 1. The parameters 1 and u specify the lower and upper limit of the integral and
n specifies the number of divisions required. The script incorporates a modification to the standard
Filon method such that the series approximation is used if ¢ is less than 0.1 rather than (4.37) to (4.39).
The justification for this is that as ¢ becomes small, the accuracy of series approximation is sufficient
and easier to compute.

216 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

function int = filon(func,cas,k,1,u,n)

% Implements filon’s integration.

% Example call: int = filon(func,cas,k,1,u,n)
% 1f cas
% 1f cas ~= 1, integrates sin(kx)*f(x) from 1 to u using n divisions.
% User defined function func defines f(x).

if (n/2)~=floor(n/2)

else

end

disp

h:
qz =
if g

end
X =
y =
yodd
if ¢

else

end

= 1, integrates cos(kx)xf(x) from 1 to u using n divisions.

(’n must be even’); return

(u-1)/n; g = kxh;
q*q; q3 = q*q2;

<0.1

a = 2%q2x(q/45-q3/315+q2%q3/4725) ;

b = 2%(1/3+q2/15+2%q2%q2/105+q3%q3/567);
d = 4/3-2%q2/15+q2%q2/210-q3%q3/11340;

a = (q2+q*sin(2*q)/2-2*(sin(q))"2)/q3;
b = 2x(gx(1+(cos(qg))"*2)-sin(2%q))/q3;
d = 4*(sin(q)-q*cos(q))/q3;

T:h:u;

feval(func,x);

= y(2:2:n); yeven = y(3:2:n-1);

as == 1

c = cos(k*x);

codd = c(2:2:n); co = coddxyodd’;

ceven = c(3:2:n-1);

ce = (y(1)xc(l)+y(n+l)*c(n+l))/2;

ce = cetcevenxyeven’;

int = hx(ax(y(n+l)*sin(k*u)-y(1)*sin(k*1))+b*cetd*co);

s = sin(k*x);

sodd = s(2:2:n); so = sodd*yodd’;

seven = s(3:2:n-1);

se = (y(1)*s(l)+y(n+l)*s(n+l))/2;

se = setsevenxyeven’;

int = hx(-a*x(y(n+l)*cos(k*xu)-y(1l)*cos(kx1))+bxse+d*so);

We now test the function fi1on by integrating sinx /x in the range 1 x 10710 to 1. The lower limit

is set at 1 x 10710 to avoid the singularity at zero.

The script e4s410 uses filon and filonmod to evaluate the integral. The function fi1onmod removes

the ability to switch to the series formula in i1on. Note that from (4.34) we use the function f(x) =
1/x for this particular problem.

4.11 FILON’S SINE AND COSINE FORMULAE

Filon with switch’);

= filonmod(g,2,1,1e-10,1,n);

% eds410.m
n=4;
g =@(x) 1./x;
disp(’ Filon no switch
while n<=4096
intl
int2 =

n = 2xn;

end

Running this script gives

n Filon no switch

4

8

16
32
64
128
256
512
1024
2048
4096

1.
.08265940e+005
.77884667e+003
.24742208e+002
.74361110e+001
.60175423e+000
.04956252e+000
.52549009e-001
.46489412e-001
.46109716e-001
.46085291e-001

W W OV O = PN NN &~ O =

72067549e+006

= filon(g,2,1,1e-10,1,n);
fprintf(’%4.0f %17.8e %17.8e\n’,n,intl,int2)

Filon with switch
1.72067549e+006
1.08265940e+005
6.77884667e+003
4.24742207e+002
2.74361124e+001
2.
1
9
9
9
9

60175321e+000

.04956313e+000
.52550585e-001
.46487290e-001
.46108334e-001
.46084649e-001

The exact value of the integral is 0.9460831.

In this particular problem, the switch occurs when n = 16. The output from script e4s410 shows
that the values of the integral obtained with the switch are marginally more accurate. However, it should
be noted that experiments carried out by us have shown that for a lower accuracy of computation than
that supplied in the MATLAB environment, the accuracy of Filon’s method, including the switch, is
significantly better. The reader may find it interesting to experiment with the value of ¢ at which the
switch occurs. This is currently set at 0.1.

Finally we choose a function which is appropriate for Filon’s method and compare the results with

Simpson’s rule. The function is exp(—x/2) cos(100x) integrated between O and 2.
The MATLAB script e4s411 that implements this comparison is

% edsdll.m

n=14;
disp(”’

n Simpsons value

gl = @(x) exp(-x/2);
g2 = @(x) exp(-x/2).xcos(100*x);
while n<=2048

intl

fprintf(’%4.0f %17.8e %17.8e\n’,n,int2,intl)

Filons value’);

= filon(gl,1,100,0,2%pi,n);
int2 = simpl(g2,0,2%pi,n);

217

__
218 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

end

n

2*n;

The results of this comparison are

n Simpsons value Filons value
4 1.91733833e+000 4.55229440e-005
-5.73192992e-001 4.72338540e-005
16 2.42801799e-002 4.72338540e-005
32 2.92263624e-002 4.76641931e-005
64 -8.74419731e-003 4.77734109e-005
128 5.55127202e-004 4.78308678e-005
256 -1.30263888e-004 4.78404787e-005
512 4.53408415e-005 4.78381786e-005
1024 4.77161559e-005 4.78381120e-005
2048 4.78309107e-005 4.78381084e-005

The exact value of the integral to 10 significant digits is 4.783810813 x 107>, In this particular problem
the switch to the series approximations does not take place because of the high value of the coefficient k.
The output shows that using 2048 intervals, Filon’s method is accurate to eight significant digits. In
contrast, Simpson’s rule is accurate to only five significant digits and its behavior is highly erratic.
However, timing the evaluation of this integral shows that Simpson’s method is about 25% faster than
Filon’s method.

4.12 ADAPTIVE INTEGRATION

Some functions represent significant difficulties for integration because of their rapid change over a
narrow range of their independent variable or variables. In some cases the magnitude of these changes
may be such that the integrand approaches a discontinuity. To deal with this type of change the interval
of integration may be changed adaptively according to some measure of the behavior of the function in
the specific region. The basic approach to this is to divide the integral into two parts, with equal ranges
by setting
b P b
/ f(x)dx:/ f(x)dx—i—/ f(x)dx (4.40)
a a)4

where p = (b — a)/2. These two integrals are evaluated separately and then the interval is subdivided
and evaluated recursively, repeating the subdivision as long as there are significant differences between
the values of successive integrals. Usually the interval is halved at each stage. Although this is the basic
method much depends on the integration rule used for the individual integral evaluation; for example
the Simpson’s rule or the Lobatto rule.

There are two problems here; deciding the measure of the rate of change of the function and in-
troducing the extra computation required efficiently. These are important decisions since the extra
computation may slow down the computation process significantly. Adaptive integration using recur-
sion is a true, tried and tested method and has been implemented in MATLAB, for example, in the

4.12 ADAPTIVE INTEGRATION 219

implementation of the function quad which is based on an adaptive Simpson’s rule and lately the quad1
and integral functions which are based on the more accurate Lobatto and Kronrod rules.

When using an adaptive integration routine, the user may well meet with the warning “recursion
level reached”, this was particularly true for the earlier implementation of adaptive integration such as
MATLAB quad. This message is useful in that it gives a clear warning of the nature of the problem. The
recursion level, that was preset in MATLAB, was not adequate for some problems, since it could not
reach the level of accuracy required by the user.

In an outstanding paper by Gander and Gautschi (2000) they considered this problem and examined
in detail how it could be resolved. They provided an algorithm which dealt with the problems effec-
tively. This algorithm is an adaptive Lobatto algorithm and the coefficients supplied by this method
give a high level of accuracy for each recursion. Here we give a description of the key concepts which
are used in its derivation.

Gander and Gautschi began the development of their algorithm with a discussion of the stopping
criteria which should be used for adaptive integration. They pointed out that the stopping criteria used
at that time in the MATLAB function quad failed for some problems. The algorithm compared succes-
sive estimates of the integral and terminated if the difference of these estimates were less than a set
tolerance, these estimates being obtained by halving the interval used. MATLAB also included a check
on the recursion level and terminated with a warning when this had been reached. In an example which
Gander and Gautschi cite the integration of /x for x in the range 0 to 1 using MATLAB at that time.
They found that the evaluation only provide 6 of the 12 digits required. The software also output a
recursion level failure warning.

Consequently they introduced an additional requirement for the stopping criteria which is that the
difference between the current approximations to the integral is negligible compared to the current best
value of the integral. This presents problems since it requires a good estimate of the integral. Thus
an estimate of the integral, say /., must be determined. Gander and Gautschi initial used a Monte
Carlo estimate for the integral. Letting the two current estimates of the integral obtained by halving
the interval be I; and I, Gander and Gautschi propose the stopping criteria should be formulated
as: stop when I, 4+ (/1 — I») is equal to I, to the required, or machine accuracy. They indicate that
this guarantees the termination of the algorithm. This allows the integral to be computed to machine
accuracy. If a calculation to a tolerance rol is required they use I, x tol/eps rather than I,. A final
amendment to the criteria is added which ensures that the values may include the end points. Gander
and Gautschi illustrate these points by providing a recursive MATLAB program using the standard
Simpson’s rule.

However, the main element of their paper is to refine the method for the individual recursions of
the integral evaluations and perform this using the Lobatto method and the Kronrod extension. We do
not describe the Lobatto method here since this is described in Section 4.10. Essentially all of these
techniques supply constant coefficients for the basic integration process which is used in the recursive
programs, different sets of coefficients providing different levels of accuracy. For example the method
used for the implementation of the adaptive Simpson’s method is the basic Simpson’s rule. They intro-
duce the Lobatto Quadrature method and generate a particular set of coefficients for this program.

Gander and Gautschi noted that to test the accuracy of their adaptive Lobatto quadrature method
another accurate method is required. They introduce the Kronrod extension. This provides another set
of coefficients which are an alternative and more accurate quadrature rule. To obtain an estimate of
the improved accuracy of the Kronrod rule a further development of the Kronrod process is used. This

220 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

Table 4.2 Evaluation of test integrals using different algorithms

function quadl adaptsim integral
Integral (4.41) | 9.99000999 x 10~ | 9.99000999 x 10! | 9.99000999 x 10!

Integral (4.42) | 1.34924856 x 102 | 1.34924856 x 1072 | 1.34924856 x 102
Integral (4.43) | 147763348 x 10 | 0 1.47763348 x 10

extension provides a more accurate method and a different set of coefficients. The MATLAB script they
developed on these principles uses the Simpson’s and Kronrod rules to provide the values of I and I,
and the more accurate Kronrod extension to an overall estimate of the integral. These rules are then

applied recursively to provide the quadrature program.

Currently, the MATLAB user is advised to employ the adaptive integration function integral which
is based on the work of Gander and Gautschi. This function is called in a way similar to that of the

quad and quad1 as follows:

integral (fun,xmin,xmax)

where fun, xmin, xmax are the function to be integrated and the limits of integration respectively. Other
parameters may be included in this list if further options are required in the process of integration.

To illustrate this discussion of these integration functions, we compare the performance of the
MATLAB functions quadl, integral and the function of Gander and Gautschi, given in their 2000

paper, which they name adaptsim for a set of test problems, as follows

1
/ x9001 7x =1000/1001 = 0.999000999 . . .
0

! d
/ me)z = (tan~' 200 + tan~"! 30) /230 = 0.0134924856495
0 X —

4
/ x2(x = D2(x —2)%(x — 3)*(x — 4)% dx = 10240/693 = 14.776334776
0

Fig. 4.3 shows plots of the integrands in the range of integration. It can be seen that each function, at
some point, changes rapidly with small changes of the independent variable, making such functions

extremely difficult to integrate numerically if a high degree of accuracy is required.

The results of Table 4.2 show that the integrals of the functions given by (4.41) and (4.42) are
accurate to the number of decimal places given for each method. Only in the case of the function given
by (4.43) do we see that the result is poor for the adaptsim program but good for both functions quad]
and integral. In fairness the adaptsim routine uses only Simpson’s rule adaptively, whereas the other
two methods use the highly accurate Lobatto rule as described in Gander and Gautschi (2000). The
results for the MATLAB function quadl and its replacement the MATLAB function integral are the
same as we would expect. The MATLAB function integral uses adaptive Lobatto quadrature.

As a further example of the use of integral the script e4s412 evaluates the integral e* from O to n
where n = 2.5: 2.5 : 25 and outputs the errors. We have chosen to compare integral with the basic
Simpson rule simp1l (called with both 1024 and 4096 panels). The results show the superiority of the

MATLAB function integral.

4.12 ADAPTIVE INTEGRATION 221

function 1 function 1
1
1070002
=05 —0.003
10
0
0 0.5 1 10 107 10°
X X
function 2 function 3
1 15
10
> 0.5 >
5
0 0
0 0.5 1 0 2 4
X X

FIGURE 4.3
Plots of functions defined by (4.41), (4.42), and (4.43).

% eds412.m

err = zeros(10,3);

for n = 1:10; nl = 2.5%n;
ext = exp(nl)-1;
err(n,1) = simpl(’exp’,0,nl1,1024)-ext;
err(n,2) simpl(’exp’,0,n1,4096)-ext;
err(n,3) = integral(@(x) exp(x),0,nl)-ext;

end
err

Running script e4s412.m gives the following:

err =
2.2080e-12 8.8818e-15 0
4.6555e-10 1.8190e-12 0
2.8889%e-08 1.1300e-10 -2.2737e-13
1.112%9e-06 4.3474e-09 0
3.3101e-05 1.2928e-07 -5.8208e-11
8.3618e-04 3.2666e-06 -4.6566e-10
1.8872e-02 7.3716e-05 0
3.9221e-01 1.5322e-03 -1.1921e-07
7.6535e+00 2.9898e-02 -3.8147e-06
1.4211e+02 5.5515e-01 -4.5776e-05

222 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

These results show the advantage of using adaptive subinterval sizes. The Simpson rule (columns 1
and 2) has a fixed interval size. For the smaller ranges of integration it performs very well but as the
range of integration increases, accuracy decreases. Generally the function integral (column 3), which
is adaptive, maintains a much higher level of accuracy.

Another MATLAB function that is adaptive is called quadgk It uses an adaptive Gauss—Kronrod
rule which is particularly efficient for smooth and oscillatory integrals. The limits of integration may
be infinite.

The MATLAB function integral now includes options for defining waypoints and vector functions
which we now illustrate.

As an example of integrating a vector of functions we define a vector of functions which are: cos(x),
cos(xz),cos(x3),cos(x4)

>> fvector = @(x) cos(x."[1 2 3 41)
fvector =
function_handle with value:
@(x)cos(x.”[1,2,3,41)

>> integral(fvector,0,1,’arrayvalued’, true)

ans =
0.8415 0.9045 0.9317 0.9468

Notice the use of the array valued parameter in the function set at true. A single function may be
evaluated in the usual way by replacing the vector by a scalar in the function definition.

Using the parameter waypoints ensures that specified waypoints are used in the integration process.
For example if we have an integral in the overall range O to 4, the pair: *waypoints’, [1, 3] ensures
integration between 0 and 1 and then from 1 to 3 and then 3 to 4. Thus:

>> integral(@(x) cos(x),0,4, ’waypoints’, [1 31)

ans =
-0.7568

>> integral(@(x) cos(x),0,4)

ans =
-0.7568

Waypoints are sometimes helpful in dealing singularities.

4.13 PROBLEMS IN THE EVALUATION OF INTEGRALS 223

4.13 PROBLEMS IN THE EVALUATION OF INTEGRALS

The methods outlined in the previous sections are based on the assumption that the function to be
integrated is well behaved. If this is not so, then the numerical methods may give poor, or totally
useless, results. Problems may occur if:

1. The function is continuous in the range of integration but its derivatives are discontinuous or sin-
gular.

2. The function is discontinuous in the range of integration.

3. The function has singularities in the range of integration.

4. The range of integration is infinite.

It is vital that these conditions are identified because in most cases these problems cannot be dealt with
directly by numerical techniques. Consequently, some preparation of the integrand is required before
the integral can be evaluated by the appropriate numerical method. Case 1 is the least serious condition
but since the derivatives of polynomials are continuous, polynomials cannot accurately represent func-
tions with discontinuous derivatives. Ideally, the discontinuity or singularity in the derivative should be
located and the integral split into a sum of two or more integrals. The procedure is the same in Case 2;
the position of the discontinuities must be found and the integral split into a sum of two or more inte-
grals, the ranges of which avoid the discontinuities. The MATLAB integral option waypoints can be
used for multiple discontinuities. Case 3 can be dealt with in various ways: using a change of variable,
integration by parts and splitting the integral. In Case 4 we must use a method suitable for an infinite
range of integration (see Section 4.8) or make a substitution.
The following integral, taken from Fox and Mayers (1968), is an example of Case 4:

I= / Todx (4.44)
1

x2 4+ cos(x~1)

This integral can be estimated either by using function galag (using the substitution y = x — 1 to give
a lower limit of zero) or by substituting z = 1/x. Thus, dz = —dx /x? and (4.44) may be transformed
as follows:

0 1
dz d
1:_/—Zor1=/7Z (4.45)
1 14+27%cos(z) o 14 z%cos(z)

The integral (4.45) can easily be evaluated by any standard method.

We have discussed a number of techniques for numerical integration. It must be said that even the
best methods have difficulty with functions which change very rapidly for small changes in the inde-
pendent variable. An example of this type of function is sin(1/x). A MATLAB plot of this function is
shown in Section 3.8. However, this plot does not give a true representation of the function in the range
—0.1 to 0.1 because in this range the function is changing very rapidly and the number of plotting
points and the screen resolution are inadequate. Indeed, as x tends to zero the frequency of the oscilla-
tions of the function tends to infinity. A further difficulty is that the function has a singularity at x = 0.
If we decrease the range of x, then a small section of the function can be plotted and displayed. For
example, in the range x =2 x 10™* to 2.05 x 10™* there are approximately 19 cycles of the function
sin(1/x), as shown in Fig. 4.4, and in this limited range the function can be effectively sampled and
plotted. Summarizing, the value of this function can change from an extreme positive to an extreme

224 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

0.5

sin(1/x)
=3

2.01 2.02 2.03 2.04 2.05
X —4
x 10

FIGURE 4.4

Function sin(1/x) in the range x =2 x 10~* t0 2.05 x 10~%. Nineteen cycles of the function are displayed.

negative value for a relatively small change in x. The consequence of this is that when estimating the
integral of the function, a great number of divisions of the range of integration are needed to provide
the required level of accuracy, particularly for smaller values of x.

4.14 TEST INTEGRALS

‘We now compare the Gauss and Simpson methods of integration with the MATLAB function integral
using the difficult integrals given in (4.41), (4.42), and (4.43) and repeated here for convenience.

1
/ x9001 gx =1000/1001 = 0.999000999 . . .
0

1

d

/ m = (tan™" 200 + tan™" 30) /230 = 0.0134924856495
0 X —

4
/ 22(x = D2(x —2)%(x — 3)%(x — 4)% dx = 10240/693 = 14.776334776
0

The integrals (4.41), (4.42), and (4.43) are difficult to evaluate, see Fig. 4.3.
To generate the comparative results we define function ftable thus:

function y = ftable(fname,lowerb,upperb)

% Generates table of results.

intg = fgauss(fname,lowerb,upperb,16);

ints = simpl(fname,lowerb,upperb,2048);

intg integral (fname,lTowerb,upperb, AbsTol’,le-6);
fprintf(’%19.8e %18.8e %18.8e \n’,intg,ints,intq)

The script e4s413 applies this function to the three test integrals:

4.15 REPEATED INTEGRALS 225

% eds413.m

clear

disp(’function Gauss Simpson integral’)
fprintf(’Func 1°), ftable(@(x) x.7~0.001,0,1)

fprintf(’Func 2°), ftable(@(x) 1./(1+(230xx-30).72),0,1)

g = @(x) (X."2).%((1-X)."2).%((2-x)."2).%x((3-%X).72).%((4-x)."2);
fprintf(’Func 37), ftable(g,0,4)

The output from script e4s413 is

function Gauss Simpson integral

Func 1 9.99003302e-01 9.98839883e-01 9.99000999%e-01
Func 2 1.46785776e-02 1.34924856e-02 1.34924856e-02
Func 3 1.47763348e+01 1.47763348e+01 1.47763348e+01

4.15 REPEATED INTEGRALS

In this section, we confine ourselves to a discussion of repeated integrals using two variables. It is
important to note that there is a significant difference between double integrals and repeated integrals.
However, it can be shown that if the integrand satisfies certain requirements then double integrals and
repeated integrals are equal in value. A detailed discussion of this result is given in Jeffrey (1979).

‘We have considered in this chapter various techniques for evaluating single integrals. The extension
of these methods to repeated integrals can present considerable scripting difficulties. Furthermore, the
number of computations required for the accurate evaluation of a repeated integral can be enormous.
While many algorithms for the evaluation of single integrals can be extended to repeated integrals, here
only extensions to the Simpson and Gauss methods with two variables are presented. These have been
chosen as the best compromise between programming simplicity and efficiency.

An example of a repeated integral is

by by
f dx fx,y)dy (4.46)
aj a

In this notation the function is integrated with respect to x from a; to b and with respect to y from a;
to by. Here the limits of integration are constant but in some applications they may be variables.

4.15.1 SIMPSON'’S RULE FOR REPEATED INTEGRALS

We now apply Simpson’s rule to the repeated integral (4.46) by applying it first in the y direction and
then in the x direction. Consider three equispaced values of y which are yg, y1, and y;. On applying
Simpson’s rule, (4.11), to integration with respect to y in (4.46) we have

X2 »2 X2
/ dx/ f(x,y)dy*«’/ k{f (x,y0) +4f(x, y1) + f(x, y2)}dx (4.47)
X0 Yo X

0

where k =y — y; = y1 — yo.

226 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

Consider now three equispaced values of x: xg, x1, and x;. Applying Simpson’s rule again to inte-
gration with respect to x, from (4.47) we have

I~ hk[foo+ for+ fro+ foo+4{fo1+ fio+ fiz+ o1} +16f11]/9 (4.48)

where h = x2 — x; = x1 — x¢ and, for example, f12 = f(x1, y2).

This is Simpson’s rule in two variables. By applying this rule to each group of nine points on
the surface f(x,y) and summing, the composite Simpson’s rule is obtained. The MATLAB function
simp2v evaluates repeated integrals in two variables by making direct use of the composite rule.

function q = simp2v(func,a,b,c,d,n)
% Implements 2 variable Simpson integration.
% Example call: q = simp2v(func,a,b,c,d,n)
% Integrates user defined 2 variable function func.
% Range for first variable is a to b, and second variable, c to d
% using n divisions of each variable.
if (n/2)~=floor(n/2)
disp(’n must be even’); return
else
hx (b-a)/n; x = a:hx:b; nx = Tength(x);
hy (d-c)/n; y = c:hy:d; ny length(y);
[xx,yy]l = meshgrid(x,y);
z = feval(func,xx,yy);
v = 2xones(n+l,1); v2 = 2*ones(n/2,1);
v(2:2:n) = v(2:2:n)+v2;
v(l) =1; v(n+l) = 1;
S =wvxv’'; T = z.%S;
g = sum(sum(T))xhxxhy/9;

end

We now apply the function simp2v to evaluate the integral Gauss—Lobatto Integration

10 10
/ dx/ y2 sinx dy
0 0

The graph of the function y? sinx is given in Fig. 4.5. The script e4s414 integrates this function.

% eds4l4 . .m

z = @(x,y) y."2.xsin(x);

disp(’ n integral value’);

n==4;3j=1

while n<=256
int = simp2v(z,0,10,0,10,n);
fprintf(’%4.0f %17.8e\n’,n,int)
no=2xn; j = j+l;

end

4.15 REPEATED INTEGRALS 227

FIGURE 4.5

Graph of z = yZsinx.

Running script e4s414 gives the following results:

n integral value
4 1.02333856e+003
8 6.23187046e+002
16 6.13568708e+002
32 6.13056704e+002
64 6.13025879e+002
128 6.13023970e+002
256 6.13023851e+002

The value of this integral exact to four decimal places is 613.0238 and the number of floating-point
operations tends to 7n. It can be proved, — see Salvadori and Baron (1961) — that when Simpson’s rule
is adapted to evaluate repeated integrals, the error is still of order 4* and thus it is possible to use an
extrapolation scheme similar to the Romberg method of Section 4.6.

4.15.2 GAUSSIAN INTEGRATION FOR REPEATED INTEGRALS

The Gaussian method can be developed to evaluate repeated integrals with constant limits of integra-
tion. In Section 4.7 it was shown that for single integrals the integrand must be evaluated at specified

points. Thus, if
1 1
I:/ dx/ fx,y)dy
—1 —1

IQZZAiAjf(Xi,yj)

i=1 j=1

then

The rules for calculating x;, y;, and A; are given in Section 4.7. The MATLAB function gauss2v
evaluates integrals using this technique. Because the values of x and y are chosen on the assumption

228 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

that the integration takes place in the range —1 to 1, the function gauss2v includes the necessary
manipulations to adjust it so as to accommodate an arbitrary range of integration.

function g = gauss2v(func,a,b,c,d,n)
% Implements 2 variable Gaussian integration.
% Example call: g = gauss2v(func,a,b,c,d,n)
% Integrates user defined 2 variable function func.
% Range for first variable is a to b, and second variable, ¢ to d
% using n divisions of each variable.
% n must be 2 or 4 or 8 or 16.
if (n==2)](n==4)](n==8) | (n==16)
co = zeros(8,4); t = zeros(8,4);
co(l,1) =1;
co(l:2,2) = [.6521451548; .34785484517;
co(1:4,3) = [.3626837833; .3137066458; .2223810344; .10122853627;
co(:,4) = [.1894506104; .1826034150; .1691565193; .1495959888;
.1246289712;.0951585116; .0622535239; .02715245947;
t(1l,1) = .5773502691;
t(1:2,2) = [.3399810435; .86113631151];
t(1:4,3) = [.1834346424; .5255324099; .7966664774; .96028985641];
t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444;
.7554044084; .8656312023; .9445750230; .98940093507;

j=1;
while j<=4
if 272j==n; break;
else
Jo=3+L
end
end
s =0;

for k = 1:n/2
x1 = (t(k,j)*(b-a)+a+b)/2; x2 = (-t(k,j)*(b-a)+a+b)/2;
for p =1:n/2
yl = (t(p,j)*x(d-c)+d+c)/2; y2 = (-t(p,j)x(d-c)+d+c)/2;
z = feval(func,xl,yl)+feval(func,xl,y2)+feval(func,x2,yl);

z = z+feval(func,x2,y2);
s = s+co(k,j)*co(p,jl*z;
end
end
q = (b-a)x(d-c)*s/4;

else
disp(’n must be equal to 2, 4, 8 or 16°), return
end

4.15 REPEATED INTEGRALS 229

We now consider the problem of evaluating the following integral:

x4 2
/ ~dy /1 2y dx (4.49)
X

Integrals of this form cannot be estimated directly by the MATLAB functions gauss2v or simp2v be-
cause neither of these functions was developed to work with variable limits of integration. However,
a transformation may be carried out in order to make the limits of integration constant. Let

y=@*—x?)z +x? (4.50)

Thus, whenz =1,y = x* and when 7 =0, y =x?2

as required. Differentiating (4.50), we have
dy = (x* — x?)dz

Substituting for y and dy in (4.49), we have

1 2
/ dz/ X2 {(x4 —x2); +x2} (4 — x?)dx 4.51)
0 1
This integral is now in a form that can be integrated using both gauss2v and simp2v. However, we
must define a MATLAB function thus:
W= @(x,2) X. 2. %x((X.M-X."2).%2+X."2) . *x(X."-x."2);
This function is used with the functions simp2v and gauss?2v in the script e4s415.

% e4s415.m

disp(”’ n Simpson value Gauss value’)

W= @(x,z2) X."2.x((X.M-X."2).%2+X."2) . *(X.M-Xx."2);
n=2;3=1;

while n<=16

inl = simp2v(w,1,2,0,1,n);
in2 = gauss2v(w,1,2,0,1,n);
fprintf(°%4.0f%17.8e%17.8e\n’,n,inl,in2)
n=2xn; j = j+1;

end

Running script e4s415 gives

n Simpson value Gauss value

2 9.54248047e+001 7.65255915e+001
4 8.48837042e+001 8.39728717e+001
8 8.40342951e+001 8.39740259e+001
16 8.39778477e+001 8.39740259e+001

The exact integral is equal to 83.97402597 (= 6466/77). This output shows that in general Gaussian
integration is superior to Simpson’s rule.

230 CHAPTER 4 DIFFERENTIATION AND INTEGRATION

4.16 MATLAB FUNCTIONS FOR DOUBLE AND TRIPLE INTEGRATION

Recent versions of MATLAB now provide the functions integral2 and integral3 for repeated inte-
gration. In this section, we consider these functions and their parameters and provide examples of their
use.

For double integration which is repeated integration over two dimensions, the integral?2 function
may be used and has the general form:

IV2 = integral2(fname,x1,xu,yl,yu,acc)

where fname is the name of the two-variable function being integrated, which must be defined by the
user; x1 and xu the lower and upper limits of the x range of integration; and similarly y1 and yu the
lower and upper limits for the y range of integration. The value acc provides the required accuracy of
the integration and is optional.

The use of integral? is illustrated by evaluating the integral:

1 1 1
I:[dx/ dy
0 0o I—xy

We may solve this using the MATLAB function integral?. It is required that the user predefine the
function to be integrated; to do this we use an anonymous function placed directly in the function
parameter list. Using integral2 we have

>> 1 = integral2(@(x,y) 1./(1-x.xy),0,1-1e-6,0,1-1e-6)

1.6449

If we try to integrate this function numerically over the exact range x =0 to 1 and y =0 to 1 then
MATLAB gives warnings because of the singularity when x = y = 1 but gives the same result.

For triple integration which is repeated integration over three dimensions the integral3 function
may be used and has the general form:

IV3 = integral3(fname,x1,xu,yl,yu,z1,zu,acc)

where fname is the name of the three variable function being integrated, x1 and xu are the lower and
upper limits of the x range of integration. Similarly y1, yu and z1, zu are the limits for the y and z
range of integration.

The use of integral3 is illustrated by the following example.

1 1 1
/ dx/ dy/ 64xy(1 —x)zzdz
0 0 0

>> 13 = integral3(@(x,y,z) 64xx.*y.x(1-x).72.%x2,0,1,0,1,0,1)

4.17 SUMMARY 231

MATLAB provides the function quad2d which allows the user to integrate a function of two vari-
ables (say x and y) like the function integral2 but additionally allows the limits in y to be functions
of x.

Consider the integral (4.49) repeated here

2 x*
/ dx/ xzydy
1 x2

Using quad2d we have
>> IV = quad2d(@(x,y) x."2.*y,1,2, @(x) x."2,@(x) x.")

Iv =
83.9740

In this example, the anonymous function @(x,y) x.”2.xy is the function to be integrated, 1 and 2
are the lower and upper limits of integration in the x variable, and @(x) x.”2 and @(x) x.”4 are
anonymous functions defining lower and upper limits in the y range of integration.

4.17 SUMMARY

In this chapter, we have described simple methods for obtaining the approximate derivatives of various
orders for specified functions at given values of the independent variable. The results indicate that these
methods, although easy to program, are very sensitive to small changes in key parameters and should
be used with considerable care. In addition, we have given a range of methods for integration. For
integration, error generation is not such an unpredictable problem but we must be careful to choose the
most efficient method for the integral we wish to evaluate. We have also described adaptive integration.

The reader is referred to Sections 10.8, 10.9, and 10.10 for the application of the Symbolic Toolbox
to integration and differentiation problems.

4.18 PROBLEMS

4.1. Use the function diffgen to find the first and second derivatives of the function x
using 7 =0.1 and h = 0.01.

4.2. Evaluate the first derivative of cos x° for x = 1,2, and 3 using the function diffgen and taking
h =0.001.

4.3. Write a MATLAB function to differentiate a given function using formulae (4.6) and (4.7). Use
it to solve Problems 4.1 and 4.2.

4.4. Find the gradient of y = cosx® at x = 3.1, 3.01, 3.001, and 3 using the function diffgen with
h =0.001. Compare your results with the exact result.

Zcosxatx =1

232

4.5.

4.6.

4.7.

4.8.

4.9,

4.10.

CHAPTER 4 DIFFERENTIATION AND INTEGRATION

The approximations for partial derivatives may be defined as

of/dx ~{f (x +h,y) = f(x —h.y)}/(2h)
offdy = {f (x.y+h)— f(x.y —h)}/(2h)

Write a function to evaluate these derivatives. The function call should have the form
[pdx,pdy] = pdiff(’func’,x,y,h)

Determine the partial derivatives of exp(x? + y>) at x =2, y = 1 using this function with 1 =
0.005.

In a letter sent to Hardy, the Indian mathematician Ramanujan proposed that the number of num-
bers between a and b which are either squares or sums of two squares is given approximately
by the integral

b dx

a /log,x

Test this proposition for the following pairs of values of a and b: (1, 10), (1, 17), and (1, 30).
You should use the MATLAB function fgauss with 16 points to evaluate the integrals required.
Verify the equality

0.764

1+ +r2x2) (1 +r4x2) ~ 2024+ D(r +1)2

/OO dx T(r24+r+1)
0

for the values of r = 0, 1, 2. This result was proposed by Ramanujan. You should use the
MATLAB function galag for your investigations, using eight points.
Raabe established the result that

a+1
/ log,I'(x)dx =alog,a —a +log, v2r
a

Verify this result for a = 1 and a = 2. Use the MATLAB function simpl with 32 divisions to
evaluate the integrals required and the MATLAB function gamma to set up the integrand.
Use the MATLAB function fgauss with 16 points to evaluate the integral

/ 'log, x dx

o 1+ x2

Explain why the function fgauss is appropriate for this problem but simp1 is not.
Use the MATLAB function fgauss with 16 points to evaluate the integral

1 tan—! x
dx
0 X

Note: Integration by parts shows the integrals in Problems 4.9 and 4.10 to be the same value
except for a sign.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.18 PROBLEMS 233

Write a MATLAB function to implement the formulae (4.32) and (4.33) given in Section 4.9 and
use your function to evaluate the following integrals using 10 points for the formula. Compare
your results with the Gauss 16-point rule.

1 X 1
(a)/ %dx, (b)/ V1 —x2 dx
—1 — X —1

Use the MATLAB function simp1 to evaluate the Fresnel integrals

1]Tl2 1 7.”2
c() :/ cos <—> dt and S(l):f sin <—) dt
0 2 0 2

Use 32 intervals. The exact values, to seven decimal places, are C (1) = 0.7798934 and S(1) =
0.4382591.
Use the MATLAB function f11on, with 64 intervals, to evaluate the integral

T
/ sinx coskx dx
0

for k =0, 4, and 100. Compare your results with the exact answer, 2/(1 — k2) if k is even and
0 if & is odd.

Solve Problem 4.13 for k = 100 using Simpson’s rule with 1024 divisions and Romberg’s meth-
ods with 9 divisions.

Evaluate the following integral using the eight point Gauss—Laguerre method:

/ e *dx
0 X+ 100
Compare your answer with the exact solution 9.9019419 x 103 (103/10,402).

Evaluate the integral
00 €—2x —e X
[
0 X

using 8-point Gauss—Laguerre integration. Compare your result with the exact answer which is
—log,2 =—0.6931.
Evaluate the following integral using the 16-point Gauss—Hermite method.

o
/ exp(—xz) cosxdx

—00

Compare your answer with the exact solution /7 exp(—1/4).
Evaluate the following integrals, using Simpson’s rule for repeated integrals, MATLAB function
simp2v, using 64 divisions in each direction.

1 T 1 T
() / dy / x*ytdx, (b) / dy / x10y10gx
—1 -7 -1 -7

234

4.19.

4.20.

4.21.

4.22,

4.23.

4.24.

4.25.

CHAPTER 4 DIFFERENTIATION AND INTEGRATION

Evaluate the following integrals, using simp2v, with 64 divisions in each direction.

3 Jx/3 2 2—x
(a) [dx/ exp(y3)dy, (b) / dx/ (14x+y)3dy
0 1 0 0

Evaluate part (b) in Problems 4.18 and 4.19 using Gaussian integration, MATLAB function
gauss2v. Note: To use this function the range of integration must be constant.
The definition of the sine integral Si(z) is

Z o1 t
Si(z) = / S g
0 t

Evaluate this integral using the 16-point Gauss method for z = 0.5, 1, and 2. Why does the
Gaussian method work and yet the Simpson and Romberg methods fail?
Evaluate the following double integral using Gaussian integration for two variables.

1 1 1
/ dy/ dx
0 o l—xy

Compare your result with the exact answer, 72/6 = 1.6449.
The probability, P, that a certain type of gas turbine engine will fail within a period of time of
T hours is given by the equation:

_ T ab? J
P(.X'<T)—) m X

where a = 3.5 and b = 8200.

By evaluating this integral for values of 7" =500 : 100 : 2000, draw a graph of P against T in
this range. What proportion of the number of gas turbines of this type fail within 1600 hours.
For more information on the probability of failure, see Percy (2011).

Consider the following integral:

P —xa | p+r+1
x"dx =log, | ———
o log,(x) q+r—+1
Use the MATLAB function integral to verify this result for p =3,g =4,r =2.
Consider the three integrals:

log, x dx Utan! x ®© xe*
A:—/ Lz,B:/ dx,C:/ 4261)6
o 1+x 0 X o lH4+e =¥
Use the MATLAB function integral to evaluate the two integrals A and B and hence verify that

they are equal.
Use 8-point Gauss—Laguerre integration to verify that the integral C is also equal to A and B.

4.18 PROBLEMS 235

4.26. Use 16-point Gauss—Hermite integration to verify that the integral I, where

° sinx
I= ——dx
PN
and show that its value is approximately equal to zero.
4.27. Use 16-point Gauss—Hermite integration to evaluate the following integral /

® cosx
I = —dx
oo 1+ x
Check your answer by comparing with the exact answer, 7 /e.
4.28. Use 8-point Gauss—Laguerre integration to find the value of the following integral:

00 xa—l
— / —dx
o 1+xP
for values of (¢, B) = (2,3) and (3, 4). You can verify your answers using the exact value of

the integral which is /(B8 sin(ar/B)).
4.29. An interesting relationship between the Riemann zeta function, ¢, and the integral

oo
Sy = —/ log, (x)3e™ dx
0
is given by:

3 1 2
S3=y> + XA +2¢@3)

where y = 0.57722.
Use the MATLAB function quadgk to evaluate the integral and show that it is a good estimate
of S3.

4.30. A value for the total resistance of a certain network of unit resistors has been shown to be given
by R(m,n), where:

1 [T T 1—cosmx cosny
R(m,n) = = dx dy
* Jo 0 2—COoSx —cosy

Evaluate this integral for R(50, 100) using the MATLAB functions integral2 and simp2v. Use a
lower limit close to zero, say 0.0001. If a lower limit equal to zero is used, then the denominator
of the integrand will be zero. For large values of m and n an approximation for this integral is
given by

R(m n):i<y+§10g 2+llog (m2+n2)>
’ T 2" 2

where y is Euler’s constant and can be obtained from the MATLAB expression -psi(1). The
function psi (x) is called the digamma function. Use this to check your result.

236

4.31.

4.32.

4.33.

4.34.

CHAPTER 4 DIFFERENTIATION AND INTEGRATION

A value for the total resistance of a cubic network of unit resistors has been shown to be given
by R(s, m, n) where:

R(s,m,n) = / dx/ dy/ﬂ 1 —cossx cosmy cosnz iz

3 —cosx —COSy —COSZ

Evaluate this integral using the MATLAB function for integral3 using the values s =2, m =1,
n = 3. The lower limit should be set at a small non-zero value, say 0.0001.

In calculations of certain moments of inertia the following two equations must be satisfied by
choosing appropriate values for the constants ¢ and y .

_T[
2

/ Jp—_y‘/ J,%dy

where p = (y? 4 y)/c. It can be shown that the values ¢ = —1.035 and y = —2.290 satisfy
these equations. Verify using the MATLAB function integral that these values do satisfy these
equations. See Taylor (2018).

The following integral provides the mean distance (M) between two planets, assuming their
orbits are circular with radius a and b:

1

= \/a2+b2 2abcosh db
2

Using this formula calculate M for the orbits of Venus and Mars where a = 0.723AU and
b =1.524AU approximately. An Astronomical Unit (AU) is defined as the mean distance from
the Earth to the Sun.
The velocity of a body falling vertically under gravity, but subject to resistance is given by the
differential equation:

dv 2
mv— =mg — mk(x)v
dx

where the resistance to travel is given by the equation
k(x) = exp(=p + ax)
and x is the downward distance from the starting point. Note when x = 0 then
k(®) = exp(—p)
It can be shown that the solution to this equation is given by

2_ 28
T aexp(2k(x) /)

Write a MATLAB script to calculate values showing how v, the velocity, varies with the alti-
tude x and use these results to draw a graph of velocity against distance fallen, given initially

(Ei(2k(x) /o) — Ei(2k(0) /ex))

4.18 PROBLEMS 237

x = 0.287986, & = 1.556362 x 10~4, and B = 11.2988350. Perform your calculations using the
MATLAB function expint. Increment x by 0.2 and perform 25 steps.
The function Ei(x) is defined by:

Ei(x):fx ex};(l) dt

—0o0

Note that this function is available in MATLAB by the name expint where
Ei(x) =real(—expint(-x)), forreal x > 0.

For an interesting description of this problem see Mahoney (2014).
4.35. Evaluate the integral

/2
/ exp(—sin(2x)) cos(x) dx
0

using Filon’s method for cosine function. Use sufficient divisions to obtain an accuracy of 6
decimal places. Note that this integral is equal to the sum to infinity of the series given in
Problem 1.39.

4.36. The following functions are the first 4 Legendre polynomials
Py=1; PL=x; P, = (3x* — 1)/2; P3 = (5x3 — 3x)/2. Use Gaussian integration to evaluate
the integral

1
Im,n:/ P (x)Pp(x)dx
-1

for m =0 to 3 and for n = 0 to 3. What can you deduce about the properties of the first 4
Legendre polynomials.

CHAPTER

SOLUTION OF DIFFERENTIAL
EQUATIONS

Abstract

Many practical problems involve the study of how rates of change in two or more variables are in-
terrelated. Often the independent variable is time. These problems give rise naturally to differential
equations which enable us to understand how the real-world works and how it changes dynamically. In
this chapter, we describe a range of widely used algorithms to solve differential equations.

5.1 INTRODUCTION

To illustrate how a differential equation can model a physical situation we will examine a relatively
simple problem. Consider the way a hot object cools, — for example, a saucepan of milk, the water in
a bath or molten iron. Each of these will cool in a different way dependent on the environment but
we shall abstract only the most important features that are easy to model. To model this process by a
simple differential equation we use Newton’s law of cooling which states that the rate at which these
objects lose heat as time passes is dependent on the difference between the current temperature of the
object and the temperature of its surroundings. This leads to the differential equation

dy/dt=K(y —s) ;.1

where y is the current temperature at time ¢, s is the temperature of the surroundings, and K is a
negative constant for the cooling process. In addition we require the initial temperature, yg, to be
specified at time # = 0 when the observations begin. This fully specifies our model of the cooling
process. We only need values for yg, K, and s to begin our study. This type of first-order differential
equation is called an initial value problem because we have an initial value given for the dependent
variable y at time ¢t = 0.

The solution of (5.1) is easily obtained analytically and will be a function of ¢ and the constants
of the problem. However, there are many differential equations which have no analytic solution or
the analytic solution does not provide an explicit relation between y and ¢. In this situation we use
numerical methods to solve the differential equation. This means that we approximate the continuous
solution with an approximate discrete solution giving the values of y at specified time steps between
the initial value of time and some final time value. Thus we compute values of y, which we denote
by y;, for values of ¢ denoted by #; where t; = t9 + ih for i =0, 1, ..., n. Fig. 5.1 illustrates the exact
solution and an approximate solution of (5.1) where K = —0.1, s = 10, and yy = 100. This figure is
generated using the standard MATLAB function for solving differential equations, ode23, from time 0
to 60 and plotting the values of y using the symbol “+”. The values of the exact solution are plotted on
the same graph using the symbol “0”.

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00014-2 2 39
Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-812256-3.00014-2

240 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

100

80

60r e

y value

40 ®

201 ®

FIGURE 5.1
Exact o and approximate + solution for dy/dt = —0.1(y — 10).

To use ode?3 to solve (5.1) we begin by writing a function yprime which defines the right-hand
side of (5.1). Then ode?3 is called in the following script and requires the initial and final values of ¢, 0,
and 60 which must be placed in a row vector; a starting value for y of 100; and a low relative tolerance
of 0.5. This tolerance is set using the odeset function which allows tolerances and other parameters to
be set as required.

% e4s501.m

yprime = @(t,y) -0.1x(y-10); %RH of diff equn.
options = odeset(’RelTol’,0.5);

[t y] = ode23(yprime,[0 60]1,100,o0ptions);

plot(t,y,’ +”)

xlabel("Time’), ylabel(’y value’),

hold on

plot(t,90*exp(-0.1.xt)+10,’0"), % Exact solution.
hold off

This type of step by step solution is based on computing the current y; value from a single or combi-
nation of functions of previous y values. If the value of y is calculated from a combination of more
than one previous value, it is called a multi-step method. If only one previous value is used it is called
a single-step method. We shall now describe a simple single-step method known as Euler’s method.

5.2 EULER’S METHOD

The dependent variable y and the independent variable 7, which we used in the preceding section, can
be replaced by any variable names. For example, many textbooks use y as the dependent variable and
x as the independent variable. However, for some consistency with MATLAB notation we generally use
y to represent the dependent variable and ¢ to represent the independent variable. Clearly initial value
problems are not restricted to the time domain although, in most practical situations, they are.

5.2 EULER'S METHOD 241

y
y=fx)

|¢—— Truncation error
7'y

/ o
Yo |4 h

Slope =y,

Y
v

FIGURE 5.2

Geometric interpretation of Euler's method.

Consider the differential equation
dy/dt =1y 5.2)

One of the simplest approaches for obtaining the numerical solution of a differential equation is the
method of Euler. This employs Taylor’s series but uses only the first two terms of the expansion.
Consider the following form of Taylor’s series in which the third term is called the remainder term and
represents the contribution of all the terms not included in the series.

Yo + 1) = y(to) + ¥ (t)h + y" (O)h* /2 (5.3)

where 6 lies in the interval (¢, #1). For small values of 7 we may neglect the terms in h2, and setting
t1 =ty + h in (5.3) leads to the formula

y1 =yo + hyj
where the prime denotes differentiation with respect to ¢ and ylf = y'(t;). In general,
Ynt1=yn +hy, forn=0,1,2,...
By virtue of (5.2) this may be written
Ynt1 =Yn +hf(tn, yu) forn=0,1,2, ... (5.4

This is known as Euler’s method and it is illustrated geometrically in Fig. 5.2. This is an example of the
use of a single function value to determine the next step. From (5.3) we can see that the local truncation
error, i.e., the error for individual steps is of order h2.

The method is simple to script and is implemented in the MATLAB function feuler as follows.

function [tvals, yvals] = feuler(f,tspan, startval,step)
% Euler’s method for solving
% first order differential equation dy/dt = f(t,y).

242 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

12000
10000
8000
2
§ 6000 °
(e}
>
4000 0
o + *
O
2000 0 "
G39°
0 1 2 3 4 5

FIGURE 5.3

Points from the Euler solution of dy/dr =y — 20 given that y = 100 when ¢ = 0. Approximate solutions for
h=0.2, 0.4, and 0.6 are plotted using o, +, and = respectively. The exact solution is given by the solid line.

% Example call: [tvals, yvals]=feuler(f,tspan,startval,step)
% Initial and final value of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) must be defined by the user.
steps = (tspan(2)-tspan(l))/step+l;
y = startval; t = tspan(1l);
yvals = startval; tvals = tspan(1l);
for i = 2:steps
yl = y+stepxfeval(f,t,y); tl = t+step;
%collect values together for output
tvals = [tvals, tl]; yvals = [yvals, yl];
t=1tl; y=yl;
end

Applying this function to the differential equation (5.1) with K =1, s = 20, and an initial value of
y = 100, gives Fig. 5.3, which illustrates how the approximate solution varies for different values of 4.
The exact value computed from the analytical solution is given for comparison purposes by the solid
line. Clearly, in view of the very large errors shown in Fig. 5.3, the Euler method, although simple,
requires a very small step & to provide reasonable levels of accuracy. If the differential equation must
be solved for a wide range of values of 7, the method becomes very expensive in terms of computer time
because of the very large number of small steps required to span the interval of interest. In addition,
the errors made at each step may accumulate in an unpredictable way. This is a crucial issue, and we
discuss this in the next section.

5.3 THE PROBLEM OF STABILITY

To ensure that errors do not accumulate we require that the method for solving the differential equation
be stable. We have seen that the error at each step in Euler’s method is of order 42. This error is known

5.3 THE PROBLEM OF STABILITY 243

as the local truncation error since it tells only how accurate the individual step is, not what the error
is for a sequence of steps. The error for a sequence of steps is difficult to find since the error from
one step affects the accuracy of the next in a way that is often complex. This leads us to the issue of
absolute and relative stability. We now discuss these concepts and examine their effects in relation to a
simple equation and explain how the results for this equation may be extended to differential equations
in general.

Consider the differential equation

dy/dt =Ky (5.5)
Since f (¢, y) = Ky, Euler’s method will have the form

Ynt1 =Yn +hKy, (5.6)

Thus, using this recursion repeatedly and assuming that there are no errors in the computation from
stage to stage we obtain

Yntr1 = (1 +hK)" Ty (5.7)

For small enough £, it is easily shown that this value will approach the exact value eX’.

To obtain some understanding of how errors propagate when using Euler’s method, let us assume
that yp is perturbed. This perturbed value of yp may be denoted by yj where y§ = (yo — eo) and e is
the error. Thus (5.7) becomes, on using this approximate value instead of yy,

Y = +hK)Y" Ty = (1 +hK)" ™ (yo — e0) = ynr1 — (1 +hK)" T eg

Consequently, the initial error will be magnified if |1 + 2K | > 1. After many steps this initial error will
grow and may dominate the solution. This is the characteristic of instability and in these circumstances
Euler’s method is said to be unstable. If, however, |1 + hK| < 1, then the error dies away and the
method is said to be absolutely stable. Rewriting this inequality leads to the condition for absolute
stability:

—2<hK <0 (5.8)

This condition may be too demanding and we may be content if the error does not increase as a
proportion of the y values. This is called relative stability. Notice that Euler’s method is not absolutely
stable for any positive value of K.

The condition for absolute stability can be generalized to an ordinary differential equation of the
form of (5.2). It can be shown that the condition becomes

—2 < hdf/dy <0 5.9

This inequality implies that, since & > 0, df/dy must be negative for absolute stability. Fig. 5.4 and
Fig. 5.5 give a comparison of the absolute and relative error for 7 = 0.1, for the differential equation
dy/dt =y where y = 1 when t = 0. Fig. 5.4 shows that the error is increasing rapidly and the errors
are large for even relatively small step sizes. Fig. 5.5 shows that the error is becoming an increasing
proportion of the solution values. Thus the relative error is increasing linearly and so the method is
neither relatively stable nor absolutely stable for this problem.

244 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

40 0.25
30 | 4 0 2 " ***%96
5 * = *****
=] * g A*
15} 5 0.15 o
Q * **
220} x 2 o
=} * kS o
é) *j & o *%*****
10 * KK
o 0.05 A
A o
0 u***M *****
0 1 23 4 5 G0 1 2 3 4 5
time time
FIGURE 5.4 FIGURE 5.5
Absolute errors in the solution of dy/dt = y where Relative errors in the solution of dy/dt = y where

y=1when ¢ =0, using Euler's method with =0.1. y =1 when ¢ =0, using Euler’s method with ~ =0.1.

We have seen that Euler’s method may be unstable for some values of /. For example, if K = —100,
then Euler’s method is only absolutely stable for 0 < & < 0.02. Clearly, if we are required to solve the
differential equation between 0 and 10, we would require 500 steps. We now consider an improvement
to this method called the trapezoidal method which has improved stability features although it is similar

in principle to Euler’s method.

5.4 THE TRAPEZOIDAL METHOD

The trapezoidal method has the form
Ynt1 = Yn +h{f(tn, yn) + f (g1, yn41)}/2 for n=0,1,2, ..
Applying the error analysis of Section 5.3 to this problem gives us, from (5.5), that
Yn+1 =Yn +h(Kyn + Kyn41)/2 for n=0,1,2, ...
Thus expressing y,+1 in terms of y, gives
Y1 =1 +hK/2)/(1 —hK/2)y, for n=0,1,2, ...
Using this result recursively for n =0, 1, 2, ... leads to the result

a1 ={(1+hK/2)/(1 - hK/2)}"* yo

(5.10)

(5.11)

(5.12)

(5.13)

Now, as in Section 5.3, we can obtain some understanding of how error propagates by assuming that

Yo is perturbed by the error e so that it is replaced by y; = (yo — o). Hence using the same
(5.13) becomes

Y1 = {1+ hK/2)/(1 = hK /)Y (o — eo)

procedure

5.4 THE TRAPEZOIDAL METHOD 245

This leads directly to the result
yg:] =y+1 — {1+ KK /2)/(1 — hK/Z)}n—HeO

Thus, we conclude from this that the influence of the error term which involves ep will die away if its
multiplier is less than unity in magnitude, i.e.,

(1 +hK/2)/(1 —hK/2)| <1

If K is negative, then for all 4 the method is absolutely stable. For positive K it is not absolutely stable
for any h.

This completes the error analysis of this method. However, we note that the method requires a value
for y, 11 before we can start. An estimate for this value can be obtained by using Euler’s method, that
is

Y+l =Yn +hf(ty, yn) for n=0,1,2, ...

This value can now be used in the right-hand side of (5.10) as an estimate for y,1. This combined
method is often known as the Euler—trapezoidal method. The method can be written formally as:

1. Start with n set at zero where n indicates the number of steps taken.
2. Calculate y\), = yu + hf (t, yn)-

3. Calculate f(t;+1, ylglﬁl) where t,41 =t, + h.
4, Fork =1, 2, ... calculate

YERD = 3+ f (tas y) + [t 0D} /2 (5.14)

At step 4, when the difference between successive values of y, . is sufficiently small, increment n
by 1 and repeat steps 2, 3, and 4. This method is implemented in MATLAB function eulertp thus:

function [tvals, yvals] = eulertp(f,tspan,startval,step)

% Euler trapezoidal method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals] = eulertp(f,tspan,startval,step)

% Initial and final value of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) must be defined by the user.

steps = (tspan(2)-tspan(l))/step+l;

y = startval; t = tspan(1l);

yvals = startval; tvals = tspan(l);

for i = 2:steps

yl = y+stepxfeval(f,t,y);
tl = t+step;
loopcount = 0; diff = 1;

while abs(diff)>0.05
loopcount = Toopcount+1;
y2 = y+stepx(feval(f,t,y)+feval(f,tl,yl))/2;

246 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

0.1 *

Absolute error

time

FIGURE 5.6
Solution of dy/dt = y using Euler (x) and trapezoidal method, 0. Step A =0.1 and yp=1atr =0.

diff = yl-y2; yl = y2;
end
%collect values together for output
tvals = [tvals, tl]; yvals = [yvals, yl]l;
t=1tl; y=yl;
end

We use eulertp to study the performance of this method compared with Euler’s method for solving
dy/dt =y. The results are given in Fig. 5.6 which shows graphs of the absolute errors of the two meth-
ods. The difference is clear but although the Euler—trapezoidal method gives much greater accuracy for
this problem, in other cases the difference may be less marked. In addition, the Euler—trapezoidal
method takes longer.

An important feature of this method is the number of iterations that are required to obtain conver-
gence in step 4. If this is high, the method is likely to be inefficient. However, for the example we just
solved, a maximum of two iterations at step 4 was required. This algorithm may be modified to use
only one iteration at step 4 in (5.14). This is called Heun’s method.

Finally, we examine theoretically how the error in Heun’s method compares with Euler’s method.
By considering the Taylor series expansion of y,; we can obtain the order of the error in terms of the
step size h thus:

Va1 = Y +hy, +h2y 204 1y 6) /3! (5.15)
where 6 lies in the interval (f,,, #,,+1). It can be shown that y;, may be approximated by
Yu = Opgr = ¥)/ b+ O(h) (5.16)
Substituting this expression for y, in (5.15) gives
Yutt = YuHhyy + Ry = 3 /204 O ()
= yn+hQppr +3)/2 + O(h%)

5.5 RUNGE-KUTTA METHODS 247

This shows that the local truncation error is of order /3 so there is a significant improvement in accuracy
over the basic Euler method which has a truncation error of order 2.

We now describe a range of methods which will be considered under the collective title of Runge—
Kutta methods.

5.5 RUNGE-KUTTA METHODS

The Runge—Kutta methods comprise a large family of methods having a common structure. Heun’s
method, described by (5.14) but with only one iteration of the corrector, can be recast in the form of a
simple Runge—Kutta method. We set

k= hf(tn» Vn) and kp = h.f(trz+1 s yn+1)
since

Yn+1=Yn +hf(tn, Yn)

We have
ky =hf(ths1, Yn +hf @, yn))
Hence from (5.10) we have Heun’s method in the form: forn =0, 1, 2, ...

ki ="hf(ty, yn)
kay =hf (tnt1, yn + k1)

and

Yn+1 =Yn + (k1 +k2) /2

This is a simple form of a Runge—Kutta method.
The most commonly used Runge—Kutta method is the classical one; it has the form for each step
n=0,1,2,..

ki ="hf(ty, yn)
k2 :hf(tn +h/2’ Yn +k1/2)

ks =hf(tn +h/2, yn +k2/2)
ka=hf(tn +h, yn + k3)

(5.17)

and

Yn+1 = Yn + (k1 + 2ky + 2k3 + ka) /6

248 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

It has a global error of order h*. The next Runge—Kutta method we consider is a variation on the
formula (5.17). It is due to Gill (1951) and takes the form for each stepn =0, 1,2, ...

ki ="hf(tn, yn)
ky=hf(tn +h/2, y, +ki/2)
k3 =hf(ty+h/2, 0+ (V2= Dki1/2+ (2= /2) k2/2)
ko =hf(tn +h, yn — /2k2/2 4+ (1 + /2/2)k3)

(5.18)

and
Ynt1 =y + {ki + 2 = 2Dk + 2+ V/2k3 + ka} /6

Again this method is fourth-order and has a local truncation error of order 4> and a global error of
order h*.

A number of other forms of the Runge—Kutta method have been derived which have particularly
advantageous properties. The equations for these methods will not be given but their important features
are as follows:

1. Merson—Runge—Kutta method (Merson, 1957). This method has an error term of order k3 and in
addition allows an estimate of the local truncation error to be obtained at each step in terms of
known values.

2. The Ralston—-Runge—Kutta method (Ralston, 1962). We have some degree of freedom in assigning
the coefficients for a particular Runge—Kutta method. In this formula the values of the coefficients
are chosen so as to minimize the truncation error.

3. The Butcher—Runge—Kutta method (Butcher, 1964). This method provides higher accuracy at each
step, the error being of order ho.

Runge—Kutta methods have the general form for each stepn =0, 1, 2, ...

ki =hf @, yn)
i—1
) (5.19)
kl=hf(tn+hdl’y;1+zcz]kj)7 l=273""7 p
j=1
p
Yur1=yn+ Y _bjkj (5.20)

j=1

The order of this general method is p.

The derivation of the various Runge—Kutta methods is based on the expansion of both sides of (5.20)
as a Taylor’s series and equating coefficients. This is a relatively straightforward idea but involves
lengthy algebraic manipulation.

We now discuss the stability of the Runge—Kutta methods. Since the instability which may arise
in the Runge—Kutta methods can usually be reduced by a step size reduction, it is known as partial
instability. To avoid repeated reduction of the value of & and re-running the method, an estimate of

5.5 RUNGE-KUTTA METHODS 249

the value of 4 which will provide stability for the fourth-order Runge—Kutta methods is given by the
inequality

—2.78 <hdf/dy <0

In practice df/dy may be approximated using the difference of successive values of f and y.

Finally, it is interesting to see how we can provide an elegant MATLAB function for the general
Runge—Kutta method given by (5.20) and (5.19). We define two vectors d and b, where d contains the
coefficients d; in (5.19) and b contains the coefficients b; in (5.20), and a matrix ¢ which contains the
coefficients ¢;; in (5.19). If the computed values of the k; are assigned to a vector K, then the MATLAB
statements that generate the values of the function and the new value of y are relatively simple; they
will have the form

k(1) = stepxfeval(f,t,y);
for i = 2:p
k(i)=stepxfeval (f,t+step*d(i),y+c(i,l:i-1)xk(1:1-1)");
end
yl = y+b*k’;

This is of course repeated for each step. A MATLAB function, rkgen, based on this is given below.
Since ¢ and d are easily changed in the script, any form of Runge—Kutta method can be implemented
using this function and it is useful for experimenting with different techniques.

function[tvals,yvals] = rkgen(f,tspan,startval,step,method)
% Runge Kutta methods for solving
% first order differential equation dy/dt = f(t,y).
% Example call:[tvals,yvals]=rkgen(f,tspan,startval,step,method)
% The initial and final values of t are given by tspan = [start finish].
% Initial y is given by startval and step size is given by step.
% The function f(t,y) must be defined by the user.
% The parameter method (1, 2 or 3) selects
% Classical, Butcher or Merson RK respectively.
b=[1;c=01d=11
switch method
case 1
order = 4;
b=1=01/61/3 1/3 1/61; d = [0 .5 .5 17;
c=[0 0 0 0;0.5000;0 .500;00°1 01;
disp(’Classical method selected’)
case 2
order = 6;
b [0.07777777778 0 0.355555556 0.13333333 ...
0.355555556 0.07777777787;
[0 .25 .25 .5 .75 11;
c(l:4,:) =[000000;0.250000 0;0.125 0.125 0 0 0 03
0 -0.510007;

250 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

c(5,:) = [.1875 0 0 0.5625 0 07J;
c(6,:) = [-.4285714 0.2857143 1.714286 -1.714286 1.1428571 071;
disp(’Butcher method selected’)
case 3
order = 5;
b=1[1/6 00 2/3 1/6];
d=1[01/3 1/3 1/2 11;
c=[00000;1/30000:;1/6 1/6 0 0 0;1/8 0 3/8 0 0;

1/2 0 -3/2 2 071;
disp(’Merson method selected’)
otherwise
disp(’Invalid selection’)
end
steps = (tspan(2)-tspan(l))/step+l;
y = startval; t = tspan(1l);
yvals = startval; tvals = tspan(l);
for j = 2:steps
k(1) = stepxfeval(f,t,y);
for i = 2:order
k(i) = stepxfeval (f,t+stepxd(i),y+c(i,1:i-1)xk(1:1-1)");
end
yl = y+bxk’; tl = t+step;
%collect values together for output
tvals = [tvals, tl]; yvals = [yvals, yl];
t=1tl; y=yl;
end

A further issue that needs to be considered is that of the adaptive step size adjustment. Where a
function is relatively smooth in the area of interest, a large step may be used throughout the region.
If the region is such that rapid changes in y occur for small changes in ¢, then a small step size is
required. However, for functions where both these regions exist, then rather than use a small step in the
whole region, adaptive step size adjustment would be more efficient. The details of producing this step
adjustment are not provided here; however, for an elegant discussion see Press et al. (1990). This type of
procedure is implemented for Runge—Kutta methods in the MATLAB functions ode23 and ode45. The
basic algorithm for these functions is the Runge—Kutta—Fehlberg algorithm with adaptive step size.
However the difference between the two functions is that ode23 uses second and third order formulae
while ode45 uses fourth and fifth order formulae.

Fig. 5.7 plots the relative errors in the solution of the specific differential equation dy/dt = —y by
the classical, Merson and Butcher—Runge—Kutta methods using the MATLAB script: e4s502.m:

% e4s502.m
yprime = @(t,y) -y;
char = “ox+’;
for meth = 1:3
[t, y] = rkgen(yprime,[0 3],1,0.25,meth);

5.6 PREDICTOR-CORRECTOR METHODS 251

—4

1
I.SX 0
5 1 o °
5 o
(5] (o]
E o
= o
& 05 o
o
o
[0
. 4 " + + + + + + +
0 0.5 1 1.5 2 2.5 3

FIGURE 5.7

Solution of dy/dt = —y. The = represents Butcher’'s method, + Merson’s method, and o the classical method.

re = (y-exp(-t))./exp(-t);
plot(t,re,char(meth))

hold on
end
hold off, axis([0 3 0 1.5e-41])
xlabel(’Time’), ylabel(’Relative error’)

It is clear from the graphs that Butcher’s method is the best and both Butcher’s and Merson’s
methods are significantly more accurate than the classical method.

5.6 PREDICTOR-CORRECTOR METHODS

The trapezoidal method, which has already been described, is a simple example of both a Runge—Kutta
method and a predictor—corrector method with a truncation error of order /3. The predictor—corrector
methods we consider now have much smaller truncation errors. As an initial example we consider the
Adams—Bashforth—-Moulton method. This method is based on the following equations:

Ynt1=Yn +h(55y, =59y, _, +37y, _, =9y, /24 (P)

(5.21)
yr/lJrl = f(tnt1, Ynt1) (E)

and
Y1 =Yn+h 9y, + 19y, =5y, +y,_5) /24 (C)
y,/,+1 = f(tnt1, Ynt1) (E)

where f,+1 =t, +h.In (5.21) we use the predictor equation (P), followed by a function evaluation (E).
Then in (5.22) we use the corrector equation (C), followed by a function evaluation (E). The truncation
error for both the predictor and corrector is O (/). The first equation in the system (5.21) requires a
number of initial values to be known before y can be calculated.

(5.22)

252 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

After each application of (5.21) and (5.22), i.e., a complete PECE step, the independent variable #,
is incremented by h, n is incremented by one and the process repeated until the differential equation
has been solved in the range of interest. The method is started with n = 3 and consequently the values
of y3, y2, ¥1, and yp must be known before the method can be applied. For this reason, it is called
a multi-point method. In practice y3, y2, y1, and yp must be obtained using a self-starting procedure
such as one of the Runge—Kutta methods described in Section 5.5. The self-starting procedure chosen
should have the same order truncation error as the predictor—corrector method.

The Adams—Bashforth—-Moulton method is often used since its stability is relatively good. Its range
of absolute stability in PECE mode is

—1.25 <hdf/dy <0

Apart from the need for initial starting values, the Adams—Bashforth—-Moulton method in the PECE
mode requires less computation at each step than the fourth-order Runge—Kutta method. For a true
comparison of these methods, however, it is necessary to consider how they behave over a range of
problems since applying any method to some differential equations results, at each step, in a growth of
error that ultimately swamps the calculation since the step is outside the range of absolute stability.

The Adams—Bashforth—-Moulton method is implemented by the function abm. It should be noted
that errors arise from the choice of starting procedure, in this case the classical Runge—Kutta method.
It is, however, easy to amend this function to include the option of entering highly accurate initial
values.

function [tvals, yvals] = abm(f,tspan,startval,step)
% Adams Bashforth Moulton method for solving
% first order differential equation dy/dt = f(t,y).
% Example call: [tvals, yvals]=abm(f,tspan,startval,step)
% The initial and final values of t are given by tspan = [start finish].
% Initial y is given by startval and step size is given by step.
% The function f(t,y) must be defined by the user.
% 3 steps of Runge-Kutta are required so that ABM method can start.
% Set up matrices for Runge-Kutta methods
b=>[1;,c=101;d=11; order = 4;
b [1/6 1/3 1/3 1/61; d = [0 .5 .5 171;
c [0000;0.5000;0.500;00101;
steps = (tspan(2)-tspan(l))/step+l;
y = startval; t = tspan(1l); fval(l) = feval(f,t,y);
ys(1l) = startval; yvals = startval; tvals = tspan(1);
for j = 2:4

k(1) = stepxfeval(f,t,y);

for i = 2:order

k(i) = stepxfeval (f,t+stepxd(i),y+c(i,1:1-1)xk(1:1-1)");

end

yl = y+bxk’; ys(j) = yl; tl = t+step;
fval(j) = feval(f,tl,yl);

%collect values together for output

5.7 HAMMING'S METHOD AND THE USE OF ERROR ESTIMATES 253

! \
0.1+ ’ il !

Absolute error

FIGURE 5.8

Absolute error in solution of dy/dr = —2y using the Adams—Bashforth—Moulton method. The solid line plots
the errors with a step size of 0.5. The dot-dashed line plots the errors with step size 0.7.

tvals = [tvals,tl]; yvals = [yvals,yll;
t=1t1l; y =yl;
end
%ABM now applied
for i = b:steps
yl = ys(4)+stepx(55*fval(4)-59«fval(3)+37xfval(2)-9«fval(l))/24;
tl = t+step; fval(b) = feval(f,tl,yl);
yc ys(4)+stepx(9xfval(5)+19xfval(4)-5«fval(3)+fval(2))/24;
fval(b) = feval(f,tl,yc);
fval(l:4) = fval(2:5);
ys(4) = yc;
tvals = [tvals,tl]; yvals = [yvals,ycl;
t=1tl; y=yl;
end

Fig. 5.8 illustrates the behavior of the Adams—Bashforth—Moulton method when applied to the specific
problem dy/dt = —2y where y = 1 when ¢ = 0, using a step size equal to 0.5 and 0.7 in the interval O
to 10. It is interesting to note that for this problem, since df/dy = —2, the range of steps for absolute
stability is 0 < h < 0.625. For h = 0.5, a value inside the range of absolute stability, the plot shows that

the absolute error does die away. However, for # = (0.7, a value outside the range of absolute stability,
the plot shows that the absolute error increases.

5.7 HAMMING'S METHOD AND THE USE OF ERROR ESTIMATES

The method of Hamming (1959) is based on the following pair of predictor—corrector equations:

Yndl = Yn—3+4h 2y, — v, +2y, ,) /3 (P)

(5.23)
yr/z+1 = f (tn+1> Yn+1) (E)

254 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

Yn+1 = {9)771 — Yn—2+3h (y,;H + 2y;, - y,;_l)} /8 (C)
y,/1+1 = f (tns1s Ynt1) (E)

where t,41 =1, + h.

The first equation (P) is used as the predictor and the third as the corrector (C). To obtain a further
improvement in accuracy at each step in the predictor and corrector we modify these equations using
expressions for the local truncation errors. Approximations for these local truncation errors can be
obtained using the predicted and corrected values of the current approximation to y. This leads to the
equations

Y1 =Yn—3+4h (¥, — yi_1 +2y,_5) /3 (P) (5.24)

M1 = Yay1 — 112(Yp — Ye) /121 (5.25)

In this equation Yp and Y represent the predicted and corrected value of y at the nth step.
v = {99 = a2 + 30O + 25, = D} 8 © (5.26)

In this equation (y™) 41 1s the value of vy 4 calculated using the modified value of y,4; which is
(yM)n+1 .

Ynt1 = Vg1 +90nt+1 = Yoy 1) (5.27)

Eq. (5.24) is the predictor and (5.25) modifies the predicted value by using an estimate of the trun-
cation error. Eq. (5.26) is the corrector which is modified by (5.27) using an estimate of the truncation
error. The equations in this form are each used only once before 7 is incremented and the steps repeated
again. This method is implemented as MATLAB function fhamming thus:

function [tvals, yvals] = fhamming(f,tspan,startval,step)

% Hamming’s method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals]=fhamming(f,tspan,startval,step)

% The initial and final values of t are given by tspan = [start finish].

o

% Initial y is given by startval and step size is given by step.

o

» The function f(t,y) must be defined by the user.
% 3 steps of Runge-Kutta are required so that hamming can start.
% Set up matrices for Runge-Kutta methods
b=[1;c=101;,d=1>011; order = 4;

b [1/6 1/3 1/3 1/61; d = [0 0.5 0.5 11;

c [0000;0.5000;00.500;00101;

steps = (tspan(2)-tspan(l))/step+l;

y = startval; t = tspan(1l);

fval(l) = feval(f,t,y);

ys(l) = startval;

yvals = startval; tvals = tspan(l);

for j = 2:4

5.7 HAMMING'S METHOD AND THE USE OF ERROR ESTIMATES 255

o 10
*
*
=0.5f *
8
g
)
£ -l *
= *
o~ *
-1.5} *
*
*
_2 E
0 1 2 3 4 5

FIGURE 5.9

Relative error in the solution of dy/dt = y where y =1 when ¢ =0, using Hamming’s method with a step size
of 0.5.

k(1) = stepxfeval(f,t,y);
for i = 2:order
k(i) = stepxfeval (f,t+stepxd(i),y+c(i,1:i-1)xk(1:1-1)");
end
yl = y+bxk’; ys(j) = yl; tl = t+step; fval(j) = feval(f,tl,yl);
%collect values together for output
tvals = [tvals, tl]; yvals = [yvals, yll; t =tl; y = yl;
end
%Hamming now applied
for i = 5:steps
yl = ys(1)+dxstepx(2*fval(4)-fval(3)+2*fval(2))/3;
tl = t+step; ylm = yl;
if i>5, ylm = yl+112%(c-p)/121; end
fval(b) = feval(f,tl,ylm);
yc = (9xys(4)-ys(2)+3*step*(2xfval(4)+fval(5)-fval(3)))/8;
ycm = yct+9x(yl-yc)/121;
p=yl; c=yc;
fval(5) = feval(f,tl,ycm); fval(2:4) = fval(3:5);
ys(1:3) = ys(2:4); ys(4) = ycm;
tvals = [tvals, tl]; yvals = [yvals, ycm];
t =tl;

end

The choice of & must be made carefully so that the error does not increase without bound. Fig. 5.9
shows Hamming’s method used to solve the equation dy/dt = y. This is the problem used in Sec-
tion 5.6.

256 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

5.8 ERROR PROPAGATION IN DIFFERENTIAL EQUATIONS

In the preceding sections, we described various techniques for solving differential equations and the
order, or a specific expression, for the truncation error at each step was given. As we discussed in
Section 5.3 for the Euler and trapezoidal methods, it is important to examine not only the magnitude
of the error at each step but also how that error accumulates as the number of steps taken increases.

For the predictor—corrector method described before, it can be shown that the predictor—corrector
formulae introduce additional spurious solutions. As the iterative process proceeds, for some problems
the effect of these spurious solutions may be to overwhelm the true solution. In these circumstances
the method is said to be unstable. Clearly, we seek stable methods where the error does not develop in
an unpredictable and unbounded way.

It is important to examine each numerical method to see if it is stable. In addition, if it is not stable
for all differential equations we should provide tests to determine when it can be used with confidence.
The theoretical study of stability for differential equations is a major undertaking and it is not intended
to include a detailed analysis here. In Section 5.9 we summarize the stability characteristics of specific
methods and compare the performance of the major methods considered on a number of example
differential equations.

5.9 THE STABILITY OF PARTICULAR NUMERICAL METHODS

A good discussion of the stability of many of the numerical methods for solving first-order differential
equations is given by Ralston and Rabinowitz (1978) and Lambert (1973). Some of the more significant
features, assuming all variables are real, are as follows:

1. Euler and trapezoidal methods. For a detailed discussion see Sections 5.3 and 5.4.

2. Runge—Kutta methods: Runge—Kutta methods do not introduce spurious solutions but instability
may arise for some values of /. This may be removed by reducing # to a sufficiently small value.
We have already described how the Runge—Kutta methods are less efficient than the predictor—
corrector methods because of the greater number of function evaluations that may be required at
each step. If & is reduced too far, the number of function evaluations required may make the method
uneconomic. The restriction on the size of the interval required to maintain stability may be esti-
mated from the inequality M < hdf/dy < 0 where M is dependent on the particular Runge—Kutta
method being used and may be estimated. Clearly this emphasizes the need for careful step size
adjustment during the solution process. This is efficiently implemented in the functions ode23 and
ode45 so that this question does not present a problem when applying these MATLAB functions.

3. Adams-Bashforth—-Moulton method: In PECE mode the range of absolute stability is given by
—1.25 < hdf/dy < 0, implying that df/dy must be negative for absolute stability.

4. Hamming’s method: In PECE mode the range of absolute stability is given by —0.5 < hdf/dy <0,
again implying that df/dy must be negative for absolute stability.

Notice that the formulae given for estimating the step size can be difficult to use if f is a general
function of y and #. However, in some cases the derivative of f is easily calculated, for example, when
f = Cy where C is a constant.

5.9 THE STABILITY OF PARTICULAR NUMERICAL METHODS

257

We now give some results of applying the methods discussed in previous sections to solve more
general problems. The script e4s503.m solves the three examples that follow by setting examp1e equal
to 1, 2, or 3 in the first line of the script.

% e4s503.m

example

=1;

switch example
case 1

case

case

end

tf = 2;
[t,x1] =
[t,x2]
[t,x3]
disp(’t
for i =

yprime = @(t,y) 2xtxy;
sol = @(t) 2xexp(t”2);

disp(’Solution of dy/dt = 2yt’)

t0 = 0; yO
2
yprime = @(

t0 = 0; yO
3

yprime = @(t,y) 3xy/t;

:2;

t,y) (cos(t)-2xy*t)/(1+t"2);
sol = @(t) sin(t)/(1+t*2);
disp(’Solution of (1+t~2)dy/dt =

=0;

disp(’Solution of dy/dt = 3y/t”)

sol = @(t)
t0 =1; y0
tinc = 0.25

tr3;
:1’

; steps =

abm(yprime,[t0 tf],y0,tinc);
fhamming(yprime,[t0 tf],y0,tinc);

rkgen(yprime,[t0 tf],y0,tinc,1);
Hamming

abm
l:steps

cos(t)-2yt’)

Classical

floor((tf-t0)/tinct+l);

fprintf(’%4.2f%12.7f%12.7f" ,t(i),x1(i),x2(i))

fprintf("%12.7f%12.7f\n" ,x3(i),s01(t(i)))

end

Example 5.1. Solve

Exact solution: y = 2exp(¢2). Running the script e4s503 with example

output:

Solution
t

.00
.25
.50
.75

o O O O
W NN

of dy/dt =
abm
.0000000
.1289876
.5680329
.5099767

dy/dt =2yt where y =2 whent =0.

2yt

Hamming
2.0000000
2.1289876
2.5680329
3.5099767

Classical
2.0000000
2.1289876
2.5680329
3.5099767

w NN

Exact

.0000000
.1289889
.5680508
.5101093

Exact’)

1 produces the following

258 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

.00 5.4340314 5.4294215 5.4357436 5.4365637
.25 9.5206761 9.5152921 9.5369365 9.5414664
.50 18.8575896 18.8690552 18.9519740 18.9754717
.75 42.1631012 42.2832017 42.6424234 42.7618855
.00 106.2068597 106.9045567 108.5814979 109.1963001

N = = =

Example 5.2. Solve
a1+ tz)dy/dt + 2ty =cost where y =0 when r =0

Exact solution: y = (sin#)/(1 + ¢%). Running script e4s503 with example = 2 produces the following
output:

Solution of (1+t~2)dy/dt = cos(t)-2yt

t abm Hamming Classical Exact

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.25 0.2328491 0.2328491 0.2328491 0.2328508
0.50 0.3835216 0.3835216 0.3835216 0.3835404
0.75 0.4362151 0.4362151 0.4362151 0.4362488
1.00 0.4181300 0.4196303 0.4206992 0.4207355
1.25 0.3671577 0.3705252 0.3703035 0.3703355
1.50 0.3044513 0.3078591 0.3068955 0.3069215
1.75 0.2404465 0.2432427 0.2421911 0.2422119
2.00 0.1805739 0.1827267 0.1818429 0.1818595

Example 5.3. Solve
dy/dt =3y/t where y=1whent =1
Exact solution: y = 3. Running script e4s503 with example = 3 produces the following output:

Solution of dy/dt = 3y/t

t abm Hamming Classical Exact

1.00 1.0000000 1.0000000 1.0000000 1.0000000
1.25 1.9518519 1.9518519 1.9518519 1.9531250
1.50 3.3719182 3.3719182 3.3719182 3.3750000
1.75 5.3538346 5.3538346 5.3538346 5.3593750
2.00 7.9916917 7.9919728 7.9912355 8.0000000

Examples 5.2 and 5.3 appear to show that there is little difference between the three methods con-
sidered and they are all fairly successful for the step size 4 = 0.25 in this range. Example 5.1 is a
relatively difficult problem in which the classical Runge—Kutta method performs well.

For a further comparison, we now use the MATLAB function odel13. This employs a predictor—
corrector method based on the PECE approach described in Section 5.6 for the Adams—Bashforth—
Moulton method. However the method implemented in the ode113 is of variable order. The standard
call of the function takes the form

[t,y] = odell3(f,tspan,y0,options);

5.9 THE STABILITY OF PARTICULAR NUMERICAL METHODS

259

where f is the name of the function providing the right-hand sides of the system of differential equa-
tions; tspan is the range of solution for the differential equation, given as a vector [to tfinall; y0is
the vector of initial values for the differential equation at time t = 0; options is an optional parameter
providing additional settings for the differential equation such as accuracy. To illustrate the use of this

function we consider the example

dy/dt =2yt with initial condition y =2 when t =0

The call to solve this differential equation is

>> options = odeset(’RelTol”,

le-5, AbsTol’,1le-6);

>> [t,yy] = odell3(@(t,x) 2*t*x,[0,2],[2],0ptions); vy

The result of executing these statements is

y =
Columns 1 through 7

2.0000 2.0000 2.

Columns 8 through 14

2.0232 2.0414 2.

Columns 15 through 21

2.5703 2.7755 3.

Columns 22 through 28
5.4557 6.3290 7
Columns 29 through 32

34.6321 54.3997 88.

time =
Columns 1 through 7

0 0.0022 0.

Columns 8 through 14

0.1073 0.1431 0.

Columns 15 through 21

0.5009 0.5724 0.

Columns 22 through 28

1.0018 1.0733 1.

Columns 29 through 32

1.6887 1.8175 1.

0000

0650

0279

L4177

3328

0045

1789

6440

1449

9463

109.

.0002

.0943

.3373

.7831

1944

.0089

L2147

L7155

.2164

.0000

10.

.0006

.1707

.7161

5069

.0179

.2862

.7871

.2880

15.

.0026

L2731

.1805

5048

.0358

.3578

.8587

L4311

=yy',

22

time

.0103

.4048

.7513

.7912

.0716

L4293

.9302

.5599

£

Although a direct comparison between each step is not possible, because odel113 uses a variable
step size, we can compare the result for # = 2 with the results given for Example 5.1 above. This shows

that the final y value given by ode113 is better than those given by the other methods.

260 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

5.10 SYSTEMS OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

The numerical techniques we have described for solving a single first-order differential equation can
be applied, after simple modification, to solve systems of first-order differential equations. Systems of
differential equations arise naturally from mathematical models of the physical world. In this section
we consider systems of differential equations. The first is the Zeeman model and the second is the
predator—prey problem.

5.10.1 ZEEMAN MODEL

Zeeman introduced a simplified model of the heart and incorporates ideas from catastrophe theory. The
model is described briefly here but more detail is given in the excellent text of Beltrami (1987). The
resulting system of differential equations will be solved using the MATLAB function ode23 and the
graphical facilities of MATLAB will help to clarify the interpretation of the results.

The starting point for this model of the heart is Van der Pol’s equation which may be written in the
form

dx/dt =u — pu(x3/3 —x)
du/dt = —x

This is a system of two simultaneous equations. The choice of this differential equation reflects our
wish to imitate the beat of the heart. The fluctuation in the length of the heart fiber, as the heart
contracts and dilates subject to an electrical stimulus, thus pumping blood through the system, may
be represented by this pair of differential equations. The fluctuation has certain subtleties which our
model should allow for. Starting from the relaxed state, the contraction begins with the application of
the stimulus slowly at first and then becomes faster, so giving a sufficient final impetus to the blood.
When the stimulus is removed, the heart dilates slowly at first and then more rapidly until the relaxed
state is again reached and the cycle can begin again.

To follow this behavior, the Van der Pol equation requires some modification so that the x variable
represents the length of heart fiber and the u variable can be replaced by one which represents the stim-
ulus applied to the heart. This is achieved by making the substitution s = —u/u, where s represents the
stimulus and p is a constant. Since ds/dt is equal to (—du/dt)/u, it follows that du/dt = —uds/dt.
Hence we obtain

dx/dt = pu(—s — x3/3 +x)
ds/dt =x/u
If these simultaneous differential equations are solved for s and x for a range of time values, we find
that s and x oscillate in a manner representing the fluctuations in the heart fiber length and stimulus.
However, Zeeman proposed the introduction into this model of a tension factor p, where p > 0, in an

attempt to account for the effects of increased blood pressure in terms of increased tension on the heart
fiber. The model he suggested has the form

dx/dt = pu(—s — x3/3 + px)
du/dt =x/1

5.10 SYSTEMS OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 261

x and s

FIGURE 5.10 FIGURE 5.11

Solution of Zeeman’s model with p =1 and accuracy Solution of Zeeman'’s model with p =20 and accuracy
0.005. The solid line represents s and the dashed line 0.005. The solid line represents s and the dashed line
represents x. represents x.

Although the motivation for such a modification is plausible, the effects of these changes are by no
means obvious.

This problem provides an interesting opportunity to apply MATLAB to simulate the heart beat in an
experimental environment that allows us to monitor its changes under the effects of differing tension
values. The following script solves the differential equations and draws various graphs.

% e4s504.m Solving Zeeman’s Catastrophe model of the heart
clear all

p = input(’enter tension value ’);

simtime = input(’enter runtime ’);

acc = input(’enter accuracy value ’);

xprime = @(t,x) [0.5%(-x(2)-x(1)73/3+p*x(1)); 2%x(1)7;
options = odeset(’RelTol’,acc);

initx = [0 -1]1";

[t x] = ode23(xprime,[0 simtime],initx,options);

% Plot results against time
plot(t,x(:,1),"--",t,x(:,2),"-")

xlabel(’Time’), ylabel(’x and s”)

In the preceding function definition, u = 0.5. Fig. 5.10 shows graphs of the fiber length x and the
stimulus s against time for a relatively small tension factor set at 1. The graphs show that a steady
periodic oscillation of fiber length for this tension value is achieved for small stimulus values. However,
Fig. 5.11 plots x and s against time with the tension set at 20. This shows that the behavior of the
oscillation is clearly more labored and that much larger values of stimulus are required to produce the
fluctuations in fiber length for the much higher tension value. Thus, the graphs show the deterioration
in the beat with increasing tension. The results parallel the expected physical effects and also give some
degree of experimental support to the validity of this simple model.

A further interesting study can be made. The interrelation of the three parameters x, s, and p can
be represented by a three-dimensional surface called the cusp catastrophe surface. This surface can be

262 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

~15
—1500 —1000 —500 0 500 1000 1500
s value

FIGURE 5.12

Sections of the cusp catastrophe curve in Zeeman'’s model for p =0: 10 : 40.

shown to have the form
—s—x3/3+px:0

See Beltrami (1987) for a more detailed explanation. Fig. 5.12 shows a series of sections of the cusp
catastrophe curve for p = 0: 10 : 40. The curve has a pleat which becomes increasingly pronounced
in the direction of increasing p. High tension or high p value consequently corresponds to movement
on the sharply pleated part of this surface and consequently provides smaller changes in the heart fiber
length relative to the stimulus.

5.10.2 THE PREDATOR-PREY PROBLEM

A system of differential equations which models the interaction of competing or predator—prey popu-
lations is based on the Volterra equations and may be written in the form

dP/dt=K|P—-CPQ

(5.28)
dQ/dt = —K»Q + DPQ

together with the initial conditions
O=Qpand P = Ppattimet =0

The variables P and Q give the size of the prey and predator populations, respectively, at time 7. These
two populations interact and compete. K1, K2, C, and D are positive constants. K relates to the rate
of growth of the prey population P, and K> relates to the rate of decay of the predator population Q.
It seems reasonable to assume that the number of encounters of predator and prey is proportional
to P multiplied by Q and that a proportion C of these encounters will be fatal to members of the
prey population. Thus the term C P Q gives a measure of the decrease in the prey population and the
unrestricted growth in this population, which could occur assuming ample food, must be modified by
the subtraction of this term. Similarly the decrease in the population of the predator must be modified
by the addition of the term D P Q since the predator population gains food from its encounters with its
prey and therefore more of the predators survive.

5.10 SYSTEMS OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 263

12000

Population of hares and foxes

FIGURE 5.13

Variation in the population of lynxes (dashed line) and hares (solid line) against time, beginning with 5000
hares and 100 lynxes. Accuracy 0.005.

The solution of the differential equation depends on the specific values of the constants and will
often result in nature in a stable cyclic variation of the populations. This is because as the predators
continue to eat the prey, the prey population will fall and become insufficient to support the predator
population which itself then falls. However, as the predator population falls, more of the prey survive
and consequently the prey population will then increase. This in turn leads to an increase in the predator
population since it has more food and the cycle begins again. This cycle maintains the predator and prey
populations between certain upper and lower limits. The Volterra differential equations can be solved
directly but this solution does not provide a simple relation between the size of the predator and prey
populations; therefore, numerical methods of solution should be applied. An interesting description of
this problem is given by Simmons (1972).

We now use MATLAB to study the behavior of a system of equations of the form (5.28) applied to
the interaction of the lynx and its prey, the hare. The choice of the constants K1, K7, C, and D is not
a simple matter if we wish to obtain a stable situation where the populations of the predator and prey
never die out completely but oscillate between upper and lower limits. The MATLAB script below uses
K1 =2, K, =10, C =0.001, and D = 0.002, and considers the interaction of a population of lynxes
and hares where it is assumed that this interaction is the crucial feature in determining the size of the
two populations. With an initial population of 5000 hares and 100 lynxes, the script e4s505.m uses
these values to produce the graph in Fig. 5.13.

% e4s505.m

% x(1) and x(2) are hare and Tynx populations.

simtime = input(’enter runtime ’);

acc = input(’enter accuracy value ’);

fv = @(t,x) [2%x(1)-0.001%x(1)*x(2); -10*x(2)+0.002%x(1)*x(2)];
initx = [5000 100]";

options = odeset(’RelTol’,acc);

[t x] = 0de23(fv,[0 simtime],initx,options);

plot(t,x(:,1), k’,t,x(:,2), k--")

xlabel(’Time’), ylabel(’Population of hares and Tynxes’)

264 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

For these parameters, there is a remarkably wide variation in the populations of hares and lynxes. The
lynx population, although periodically small, still recovers following a recovery of the hare population.

5.11 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Higher-order differential equations contain differential terms of second order or above, for example, the
third-order differential term d°y /dx>. Higher-order differential equations can be solved by converting
them to a system of first-order differential equations, or in some case, solved by direct methods. In
the following subsections, we describe the process of transforming from a higher-order equation to
set of first-order differential equations, and also describe one direct method for solving second-order
differential equations.

5.11.1 CONVERSION TO A SET OF SIMULTANEOUS FIRST-ORDER DIFFERENTIAL
EQUATIONS

The process of converting a higher-order differential equation to a set of first-order simultaneous equa-
tions is best described by an example. To illustrate this, consider the third-order differential equation

dPujdx® — cd®u/dx® + (df/du)(du/dx) — (b/c)u =0 (5.29)

where f =u(l —u)(u —a),0<a <1,and b > 0.
This equation describes a simplified model of the behavior of pulses in a squid axon (Igbal, 1999).
We require the derivative of f. Thus

dffdu=(1—-uw)u—a)+u(-Du—-D+u(l—u)= —3u? +2(a+NHu—a
If we substitute v = du/dx, w = dv/dx = d*u/dx? then (5.29) becomes

du/dx =v
dv/dx=w (5.30)
dw/dx = cw +3u®> —2(a+ 1) +av+ (b/c)u

Thus, the third-order differential equation has been replaced by a system of three first-order differ-
ential equations.
If we have an nth-order differential equation of the form

and"y [dt" + an_1d" " y /A" 4 agy = f(t,y) (5.31)
by making the substitutions
Py=y and dP;_;/dt=P; fori=1,2, ..., n—1 (5.32)
(5.31) becomes

andPy1/dt = f(t,y) —an-1Py—1 —an2Pr2— ... —ap P (5.33)

5.11 HIGHER-ORDER DIFFERENTIAL EQUATIONS 265

Now (5.32) and (5.33) together constitute a system of » first-order differential equations. Initial values
will be given for (5.31) in terms of the various order derivatives P; fori = 1,2,...,n — 1 at some
initial value 7y and these can easily be translated into initial conditions for the system of Egs. (5.32)
and (5.33). In general, the solutions of the original nth order differential equation and the system of
first-order differential equations, (5.32) and (5.33), are the same. In particular, the numerical solution
will provide the values of y for a specified range of . An excellent discussion of the equivalence of
the solutions of the two problems is given in Simmons (1972). We can see from this description that
any order differential equation of the form (5.31) with given initial values can be reduced to solving
a system of first-order differential equations. This argument is easily extended to the more general
nth-order differential equation by making exactly the same substitutions as above in

d"y/di" = f(t,y,y, ... y"D)

where y~1 denotes the (n — 1)th-order derivative of y.

5.11.2 NEWMARK’S METHOD

Newmark’s method, (Newmark, 1959), allows the direct solution of a second-order differential equa-
tion or a system of second-order differential equations without the need for the transformation to a
pair of simultaneous first-order differential equations. The method may be applied in various fields of
engineering, in particular to dynamic response systems. We begin the derivation of Newmark’s method
by considering a system of p second-order differential equations:

Y G LI £(r)
- e =
dr? dt
or using dashed notation:
Mu” + Cu’' + Ku =f(¢) (5.34)

together with the initial conditions that u = u(0) and v’ = u’(0) at time 7 = 0. Here, if M, C, and K
are arrays of constant coefficients and the function f(¢) is a function of time only, then the equations
are linear differential equations, otherwise they are non-linear differential equations. We will deal with
linear differential equations case only. The initial development of Newmark’s method uses the mean
value theorem for u, one element of u, and which may be stated as follows. There exists a scalar value
B such that:

u(t + At) —u(t) =u'(t + BAH At

where the dash denotes the derivative of # and Af is the time increment.
Newmark used the standard Taylor’s series expansion of the functions u (¢ + Ar) and u'(r + At) as
far as the third-order derivative of u. Denoting u(¢t + At) by u,1 and u(¢) by u,, these are given by:

Ar)? At)3
Up+1 :un+u;At+uZ% +ug/%+... (5.35)
" (At)z

Upyy = Uy + Uy At +u (5.36)

o2l

266 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

Applying the generalized mean value theorem we may write these equations as:

At
Uptl = Uy + u At + "2—') + Bu W(At)3 + ... (5.37)

Wy = u) +uy At + yu) (AN + ... (5.38)

where there exit 0 <y <1 and 0 < B < 1 such that these equations are true.
The third derivative u’”, if linear, may be written:

u”
Upy1 = (un+l —u)/At

So far we have considered the third derivative of a single variables u. However, if we are considering
a system of p differential equations, then u must be generalized to a column vector of p variable, u.
Thus the previous equation becomes

///
w) =, —u,)/At
" s

Substituting for each element of u
vector, gives:

in (5.38) in turn, and collecting the values of u 41 into acolumn

w,_ =), + Ar(l — y)u) + Aty (5.39)

and0 <y <1.
Now, substituting for each element of u;,
vector gives

w1 in (5.37) and collecting the values of w,+1 into a column

/ (At)z // 2 1"
U,y =u, + Aru, + (1 —28)——) a T BAD Y, (5.40)

As above, we place a constraint on the values of 8,0 <28 <landso0<pg <1/2
We now have formulae for velocities, (5.39) and displacements (5.40). We can obtain a formula for
accelerations from the original differential equation, (5.34), thus:

w, =M (1) — — Ku, 1) (5.41)

Thus the equations give formulae for displacement, velocity and acceleration. However since these
are implicit they must be reformulated so that we obtain expressions for the updated values in terms of
the previously known values at step n. This can be achieved by algebraic manipulation. Rearranging

Eq. (5.40) to provide an expression for u/, 4 gives:

BAN W | =yt =y — Atw, — (1 =28)((AD?/2)u;
Now dividing this equation by B(At)? gives:
w, = g —w,)/(BAD?) —u, /(BAD) — (1/(28) — D), (5.42)
Inserting the expression for u;l’ 41 from (5.42) into (5.39) gives:

w, =y —u,)/(BAD +u, (1 —y/B) + Aru, (1 — v /(2B)) (5.43)

5.11 HIGHER-ORDER DIFFERENTIAL EQUATIONS 267

We can now insert the explicit expressions for “Z 41 and u;l 41 from (5.42) and (5.43) into the
original second-order differential equation (5.34) to obtain:

M W1 = w)/(BADD) = w, /(BAD = (1/2B) = Duy .

+ Clpp1 —w)y/(BAD +u, (1 — y/B) + Aty (1 — y /(28))] ...
+Ku, g =1£(t41) (5.44)

Now rearranging (5.44) as an equation for u,41 we obtain the equation:
Au,; 1 =B, (5.45)

and thus u,+; =A~'B,.
This is an explicit expression for u, 1 in terms of values at an earlier cycle. Where A and B,, are
defined as follows:

__M rC
T B(AD? T BAt

B, =f(t,41) +M |:ll—n + bt + (L _ 1>u;:i|
B(AN? ~ BAr \2B

YU, /)4 " 14
+C|:,3At —u, (1_E>_Am" <l_ﬁ>i| (5.47)

Note that once 8 and At are given specific numerical values, A is an array of constant values for a
particular set of differential equations. This, of course, is not the case for B, which changes with each
iteration. Having determined u,,4-; we use Eqs. (5.42) and (5.43) to determine u;{ 41 and u; Iy

Knowing u// 41 We can determine u, 41 the iterative process can then be continued. We now proceed
in this way for the number of iterations required.

It remains to choose values for y and 8. An undamped system (that is C = 0) is conditionally stable

(5.46)

if y > 1/2, and unconditionally stable if y > 1/2 and 8 > % (y + %)2 However, y > 1/2 introduces
artificial damping into the solution, and so Newmark chose y = 1/2 and 8 = 1/4. This is sometimes
called the average acceleration method and it is unconditionally stable, meaning that the method will
converge for all time increments. If 8 is chosen to be 1/6 the method is called the linear acceleration
method, but it is only conditionally stable.

It is important to consider the stability of Newmark’s method, i.e. the conditions under which the
algorithm will converge to the correct solution. In certain circumstances Newmark’s method is uncon-
ditionally stable, this means that the method will converge for all time increments.

This is the case if the following condition is satisfied:

26>y =>1/2 (5.48)

For example B = 1/2 and y = 1/2 satisfy this condition. But it is important to note that certain val-
ues of y do introduce significant errors in the computation process. The method is called conditionally
convergent when convergence is guaranteed only for a limited range of the step size. This condition is

268 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

given by:
1
At < ———— (5.49)
Wmax % -B

where f <1/2and y > 1/2.

The value w4, can be calculated from the characteristic equation or the eigenvalue problem of the
differential equations.

The following MATLAB function, newmark, implements this procedure.

function [tp,x] = newmark(M,C,K,F,tspan,n,x0,xd0)
% M, C, K are matrices multiplying xddot, xdot and x repectively
% F is column vector of exciations. x0, xdO are initial x0 and xd vectors
% tspan = [t_initial t_finall; n is tspan/t_increment
dt = (tspan(2)-tspan(l))/n;
tp(l) = tspan(l);
x(:,1) = x07;
xd(:,1) = xd0’;
gamma = 1/2; beta = 1/4;
A = (1/(beta*xdt”2))*M+(gamma/(betaxdt))*C+K; invA = inv(A);
xdd(:,1) = inv(M)*(F(:,1)-Cxxd(:,1)-Kxx(:,1));
for i = 1:n
B = (F(:,i+1)+...
Mx((1/(betaxdt”2))*x(:,1)+(1/(betaxdt))*xd(:,1)+ ...
(1/(2*beta)-1)*xdd(:,1))+Cx((gamma/(betaxdt))*x(:,i)+...
(gamma/beta-1)*xd(:,i)+(gamma/beta-2)*(dt/2)*xdd(:,1)));
x(:,i+1) = invA*B;
xdd(:,i+1) = (1/(betaxdt”2))*(x(:,i+1)-x(:,i))...
-(1/(beta*dt))*xd(:,1)-((1/(2*beta))-1)*xdd(:,1);
xd(:,i+1) = xd(:,i)+(1-gamma)*dtxxdd(:,i)+gammaxdtxxdd(:,i+1);
tp(i+l) = tp(i)+dt;
end

We now illustrate the application of Newmark’s method to solving the system shown in Fig. 2.8.
The equations of motion for this system are given in (2.35) and these equations can be written in matrix
form as

Mx+Kx=0

For the purposes of this illustration, we will add an external force to the system given by f(z) and a
damping matrix, C, so that the above equation becomes

MX + Cx + Kx = £(¢)

5.11 HIGHER-ORDER DIFFERENTIAL EQUATIONS 269

M and K are given by (2.38) and repeated here for convenience.

10 0 O 45 =20 -15
M=| 0 20 O kgand K=| —-20 45 -25 | kN/m
0 0 30 —-15 =25 40

x lists the displacements of the three coordinates. We will make C =3 x 10~2K and apply a half sine
pulse of 0.29 s duration with a peak value of 50 N at coordinate x3. The MATLAB script e4s506.m calls
both newmark and ode45 to solve this problem.

%e4s506.m

clear all

t_init = 0; t_final = 3;
t_incr = 0.005;

n = (t_final-t_init)/t_incr;
tt = t_init:t_incr:t_final;
trange = [t_init t_finall;

M= [10 0 0;0 20 0;0 0 307];
K = 1e3x[45 -20 -15;-20 45 -25;-15 -25 407;
C = 3e-2%K;

F(1,:) = 0xtt;
F(2,:) = 0xtt;
omega = pi/.29;
F(3,:) = 50%xsin(omega*tt);
for j = 1:n

pulse(j) = sin(omega*tt(j));

if tt(j) > pi/omega

pulse(j) = 0;

end
end
F(3,1:n) = 50*pulse;
x0 = [0 0 0];
xd0= [0 0 071;
[tp,x1] = newmark(M,C,K,F,trange,n,x0,xd0);
x1 = 1000*x1;
figure(l), plot(tp,x1(:,1), k’,tp,x1(:,2), k’,tp,x1(:,3), k’,tp,0xtp, k)
xlabel(*Time, s’)
ylabel(’x, mm”)
axis([0 3 -5 101)

hold on

figure(l), plot(tt(1:60),5xpulse(l:60),.k")

hold off

[t,x2] = oded5(’f10",[t_init:t_incr:t_finall,[0 0 0 0 0 01);
x2 = 1000*x2;

d(:,1) = (x1(:,1)-x2(:,1));

270 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

10 0.01
g 0.005
5 i
e /N g /\ ﬁ\ AN
5l g ’ \Y
A s
0 /N & \/ \\/
v \/ 8 -0005
5 : : -0.01
0 1 5 3 0 1 2 3
Time, s Time, s
FIGURE 5.14 FIGURE 5.15
Graph showing the three coordinate responses of a Plot showing the difference between the Newmark
mass-spring-damper system, shown by full lines, and 4th-order Runge—Kutta method solutions for the
when excited by a half sine pulse, shown by a dotted three coordinates.
line.
d(:,2) = (x1(:,2)-x2(:,2));
d(:,3) = (x1(:,3)-x2(:,3));

figure(2), plot(tp,d(:,1), k’,tp,d(:,2),’ k", tp,d(:,3), k’,tp,0xtp, "k’)
xlabel(’Time, s’)

ylabel (’Difference, mm’)

axis([0 3 -le-2 le-2])

The function 10, required by function ode45, is as follows:

function yprime = f10(t,y)
m=[10 0 0;0 20 0;0 O 307;
k = 1e3%[45 -20 -15;-20 45 -25;-15 -25 40];
c = 3e-2%k; f =[0; 0; 507;
omega = pi/.29;
pulse = sin(omega*t);
if t > pi/omega
pulse = 0;

end

A = [zeros(3,3) eye(3,3); -m\k -m\c];
b = [zeros(3,1); m\fxpulsel;

yprime = Axy+b;

Running script e4s506.m generates Figs. 5.14 and 5.15. Fig. 5.14 shows the response of the three
coordinates and the half sine pulse. The pulse is scaled a factor of 10 in order to display on the graph.
Fig. 5.15 shows the difference between the output of newmark and ode45. It is seen that the maximum
difference is 0.006 mm.

5.12 CHAOTIC SYSTEMS 271

5.12 CHAOTIC SYSTEMS

Chaos arises in several disciplines, including meteorology, physics, environmental science, engineer-
ing, economics, biology and ecology. Because of this it is perhaps surprising that chaotic motion was
not properly recognized until the 1960s.

Chaotic systems are difficult to define. Essentially they are dynamic systems that are highly sensi-
tive to small differences in their initial conditions and also to rounding errors in numerical computation.
These differences produce widely diverging outcomes for such systems. In 1972 Edward Lorenz pre-
sented a talk to the American Association for the Advancement of Science entitled “Predictability:
Does the Flap of a Butterfly’s Wings in Brazil Set a Tornado in Texas?”. The theme of this presentation
was that small changes in the state of the atmosphere can result in large differences in its later states.
The term butterfly effect has entered popular culture as a symbol of chaos.

Chaos occurs even though such systems are deterministic, meaning that their future behavior is fully
determined by their initial conditions, with no random elements involved. Given exactly the same initial
conditions, the same result is obtained. Thus, despite its “random” appearance, chaos is a deterministic
outcome.

A simple example of a chaotic system quoted by Lorenz (1993) is a pin ball machine. At the start
of the game, the ball is given an initial velocity. The ball then rolls through an array of pins. Striking a
pin changes the ball’s direction and the ball subsequently strikes other pins in the array. The slightest
change in the initial velocity of the ball will cause it to strike different pins and take a totally different
route through the array of pins.

5.12.1 THE LORENZ EQUATIONS

As an example of a system of three simultaneous equations, we consider the Lorenz system. This
system has a number of important applications including weather forecasting. The system has the
form

dx/dt =s(y —x)
dy/dt=rx —y —xz
dz/dt =xy — bz

subject to appropriate initial conditions. As the parameters s, r, and b are varied through various ranges
of values, the solutions of this system of differential equations vary in form. In particular, for certain
values of the parameters the system exhibits chaotic behavior. To provide more accuracy in the com-
putation process we use the MATLAB function ode45 rather than ode23. The MATLAB script e4s507.m
for solving this problem is given below.

% e4s507.m Solution of the Lorenz equations

r = input(’enter a value for the constant r ’');

simtime = input(’enter runtime ’);

acc = input(’enter accuracy value ’);

xprime = @(t,x) [10*x(x(2)-x(1)); r*x(1)-x(2)-x(1)*x(3);
X(1)*x(2)-8*x(3)/37;

272 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

180 200
160 150
140 100
N 120 %50
100 0
80 -50
-100
—40 -20 0 20 40 0 2 4 6 8
X time
FIGURE 5.16 FIGURE 5.17
Solution of Lorenz equations for r =126.52, s = 10, Solution of Lorenz equations where each variable is
and b = 8/3 using an accuracy of 0.000005 and plotted against time. Conditions are the same as those
terminating at r = 8. used to generate Fig. 5.16. Note the unpredictable

nature of the solutions.

initx = [-7.69 -15.61 90.39]";

tspan = [0 simtime];

options = odeset(’RelTol’,acc);

[t x] = oded5(xprime,tspan,initx,options);
% Plot results against time

figure(l), plot(t,x,’k”)

xlabel(’Time’), ylabel(’x’)

figure(2), plot(x(:,1),x(:,3),°k”)

xlabel ("x”), ylabel(’z")

The results of running script e4s507 .m are given in Figs. 5.16 and 5.17. Fig. 5.16 is characteristic of
the Lorenz equations and shows the complexity of the relationship between x and z. Fig. 5.17 shows
how x, y, and z change with time.

For r = 126.52 and for other large values of r the behavior of this system is chaotic. In fact for
r > 24.7 most orbits exhibit chaotic wandering. The trajectory passes around two points of attrac-
tion, called strange attractors, switching from one to another in an apparently unpredictable fashion.
This appearance of apparently random behavior is remarkable considering the clearly deterministic
nature of the problem. However, for other values of r the behavior of the trajectories is simple and
stable.

We now consider the case of the Lorenz equations with s = 10, b = 8/3, and r = 28.
Fig. 5.18 shows the solution of the Lorenz equations with initial conditions of x = [5 5 5] and
x = [5.0091 4.9997 5.0060]. Fig. 5.19 shows the solution of Lorenz equations with the initial con-
ditions x = [5 5 5] but with two different accuracies; the default accuracy of the MATLAB function
ode45; namely an absolute tolerance of 10~ and a relative tolerance of 103, and an increased accu-
racy with an absolute tolerance of 10~! and a relative tolerance of 1075,

5.12 CHAOTIC SYSTEMS 273

20 | 20 20 L 20
! o il i
10 i 10 I 10 1 EHY - Al
>~ 0 ’,‘\”“‘/ > 0 | "“v“"u > 0 ‘”‘H“”A’\‘ > 0 H’w‘“v’l\
oMl 1B o N [it T il
“H ! \"| “ T | | AT
i i g
20 ! 20 20 b 20
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
t t t t
FIGURE 5.18 FIGURE 5.19
Solution of Lorenz equations for r =28, s = 10, and Solution of Lorenz equations for r =28, s = 10, and
b =8/3. Initial conditions x =[5 5 5] shown by the full b =8/3. The full line shows the solution using the
line, and x = [5.0091 4.9997 5.0060] shown by the default accuracy of the MATLAB Runge—Kutta 4/5

dashed line. Note the sudden divergence of the two function. The dashed line shows a higher accuracy

solutions from each other and unpredictable nature of solution. Note the sudden divergence of the two

the solutions. solutions from each other and unpredictable nature of
the solutions.

5.12.2 DUFFING'S EQUATION

The Duffing oscillator is described by Duffing’s equation: a second-order differential equation of the
form

mx + cx + kx + hx® = £ (1)

This equation might represent, for example, an electric circuit or a mechanical oscillator. In a me-
chanical oscillator, m is the system mass, ¢ is the viscous damping coefficient, k and & are stiffness
coefficients and f(¢) is the force applied to the system. This force is a function of time, ¢. Duffing’s
equation is, of course, a non-linear differential equation since it contains a term in x>. The equation can
be solved approximately by seeking a series solution and considering only a small number of terms in
the series. These approximate solutions can be very revealing and provide information about the free
vibration of the oscillator by setting f(¢) to zero, or the system response to a non-zero force f(z).
Here we seek a numerical solution using the MATLAB function ode45. In order to use ode45 we
must transform the second-order differential equation into a pair of first-order differential equations
thus

mL't=f(t)—cu—kx—hx3 and X = u

We consider two cases. In each case we assume m = 1 kg, ¢ =5 Ns/m, k = —5000 N/m, h =
50 x 10% N/m?, and f = 50sin(wt) N. In each case only the frequency of the applied force and the
initial conditions are changed. The following script e4s508.m solves Duffing’s equation and generates
Figs. 5.20-5.25.

274 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

% e4s508.m

clear all

close all

% Solution of Duffing’s equation

% x_ddot+cxx_dot+kxx+h*x*3 = fxcos(omegaxt)

c =10; k = -5000; h = 50e6; f = 30;

% Case 1 omega = 100

omega = 100;

omega_Hz = omega/2/pi;

gprime = @(t,q)[q(2); -c*xq(2)-kxq(l)-hxq(1l)"3+fxcos(omegaxt)];
dt = 0.001; nt = 8192; T = ntxdt;

t = 0:dt:(nt-1)*dt;

[t q] = oded45(gprime,[0:dt:(nt-1)*dt]1,[0 01);

figure(l), plot(t,1000%xq(:,1), k’,t,5«cos(omega*t), k--")
axis([2 3 -25 251)

xlabel(*Time, s’)

ylabel(’Displacement, mm’)

grid
% Case 2 omega = 120
omega = 120;

omega_Hz = omega/2/pi;

gprime = @(t,q)[q(2); -c*xq(2)-k*q(1)-h*q(1)"3+fxcos(omegaxt)];

[t ql1] = ode45(qgprime,[0:0.001:11,[0 01);

[t ql2] = oded45(qprime,[0:0.001:11,[0.001 11);

figure(2), plot(t,1000%xqll(:,1), k”,t,1000%xql2(:,1), k--")

grid

xlabel(’Time, s’)

ylabel(’Displacement, mm”)

[t4 g4] = ode45(gprime,[0:0.001:2],[0.001000 01);

[t5 g5] ode45(gprime,[0:0.001:2]1,[0.001001 01);

[t6 g6] = ode45(qprime,[0:0.001:27,[0.001002 01);

figure(3), plot(t4,1000%q4(:,1), k’,t5,1000%q5(:,1), k--",t6,1000%xq6(:,1), k-.")
grid

axis([0 2 -20 2001)

xlabel ("Time, s”)

ylabel(’Displacement, mm”)

[t q] = ode45(qgprime,[15:0.001:20]1,[0 01);

x = 1000xq(:,1); v = q(:,2); theta = omegaxt;

figure(4); plot(x,v,’k”)

grid

xlabel(’Displacement, mm”)
ylabel(’Velocity, m/s”)
[tl gql] = oded45(qgprime,[0:2xpi/omega:400]1,[0 0]);
figure(5), plot(1000*ql(300:end,1),ql(300:end,2), k.")

5.12 CHAOTIC SYSTEMS 275

20
20 -
= 10
Z z
Q Q
: X
2 2
& 73
a Aot
20t
‘ ‘ ‘ ‘ 20 ‘ ‘ ‘ ‘
2 22 2.4 2.6 2.8 3 0 0.2 0.4 0.6 0.8 1
Time, s Time, s
FIGURE 5.20 FIGURE 5.21
Case 1: The full line is the output from Duffing Output from Duffing oscillator. w = 120 rad/s. Full line
oscillator. w =100 rad/s (15.92 Hz). Zero initial gives output with zero initial conditions. Dashed line
conditions. The dashed line is the input force, give output with an initial displacement of 1 mm and
arbitrarily scaled in amplitude. an initial velocity of 1 m/s.

axis([-20 20 -1.1 1.10)

xlabel(’Displacement, mm”)

ylabel(’Velocity, m/s’)

[tl gql] = oded45(qgprime,[0:2xpi/omega:400]1,[0 0]);

[t2 q2] ode45(qgprime,[0:2xpi/omega:400],[0.001 11);
figure(6)
plot(1000%q2(775:25:2000,1),q2(775:25:2000,2), ko’ ,1000xq1(775:25:2000,1), ...
ql(775:25:2000,2), k+’)

axis([-20 20 -1.1 1.10)

xlabel(’Displacement, mm”)

ylabel(’Velocity, m/s”)

Case 1. Input frequency w = 100 rad/s (15.92 Hz). With the values of the two initial conditions
equal to zero, the oscillator output is shown in Fig. 5.20. Also shown in the figure is the input force, its
amplitude arbitrarily scaled to fit the graph. It can be seen that the output frequency is about one third
of the input frequency. This can be confirmed by using the discrete Fourier transform (see Chapter 8).
The Fourier transform shows the major frequency component in the output is /3 and there are also
smaller frequency components at w and Sw/3. However, introducing an initial velocity of 1 m/s causes
the w/3 and Sw/3 frequency components in the output to vanish so that the w frequency component is
dominant. There is then also a small 2w frequency component present.

Case 2. Input frequency w = 120 rad/s (19.10 Hz). At this excitation frequency the character of
the response has changed completely, as shown in Fig. 5.21. The output appears to be unpredictable.
Furthermore, the output with initial conditions of velocity and displacement equal to zero, is strikingly
different from the output with an initial displacement of 1 mm and an initial velocity of 1 m/s ex-
cept, perhaps, in the overall amplitude. Even more remarkable are the three plots shown in Fig. 5.22.
In each case the initial velocity is zero but the three initial displacements are 1 mm, 1.001 mm and

276 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

20 . ! : 1
. I
1 H N 4 i ,
AT NN T ~—
I, 1 e !‘ | [l H i \” /
g 10, i1 AT o1 Ay] 0.5 A*\\ ,
g AR i “[“h i R H o @ 178% -\ \‘ 8
i !
= [b “ il w ‘\" | il ,’!\ g /4
g (O O LA T U R YT R . I /
'é’ roaLia i “w W i 50
r ! i Il g iy £
8 0 ‘rf\l \!\{\ i | h i ! ! ": \EJ 1 \\":\ 3 0 ‘ ‘i
I ! I
= Wi ‘!‘1 \\‘,\H‘\\;\‘ \\;H‘t‘ i (H % o'.,ql
=9 J 1 1 HRTR A RN N AR T
A L EEA] 8 b b sy g
10+ JIfsHR i 1 L R R -05
N LI R) SN\
] IR AT Ay
Y o L T i
220 . . . -1
0 0.5 1 1.5 2 -20 20
Time, s Displacement, mm

Output from Duffing oscillator. @ = 120 rad/s. Solution Output from Duffing oscillator. Phase plane plot.
with zero initial velocity and initial displacements of 1, @ = 120 rad/s.

1.001, and 1.002 mm. (Shown by full, dashed and

dot-dashed lines respectively.)

1.002 mm. The outputs differ from each other even though the difference in the initial displacements
are only 1 and 2 ym. Clearly, this is an example of chaotic motion. If we plot the output displacement
against the output velocity for a short period, Fig. 5.22 is obtained. It is difficult to draw any useful
conclusions from this plot, and so we plot the so-called Poincaré map or section to clarify the situation.
The output displacement and velocity are sampled once per cycle of the excitation or input signal fre-
quency, for a large number of cycles and the resulting large number of sample points is plotted in the
displacement—velocity plane. Thus if 7 = 27 /w then the samples are taken at multiples of 7', that is
T,=0, T, 2T, ..., nT. The Poincaré map for this system is shown in Fig. 5.23. We see that there are
areas where points cluster and other areas devoid of values. If we change the initial displacement from
zero to 1 mm and the initial velocity from zero to 1 m/s the Poincaré map appears unchanged. How can
this be since the output is so influenced by the initial condition, as shown in Fig. 5.217 The explanation
is that if we plot a small number of the output points at the same instances of time but with the two
different sets of initial conditions, the points on the Poincaré map are in different locations but, none
the less, they are confined in the same regions. This is shown in Fig. 5.24. A large number of points
from either output will create the same Poincaré map but the points generated from the two different
sets of initial conditions will not be coincident with each other in the Poincaré map. The Poincaré map
helps to clarify the relationship between displacement and velocity.

5.13 DIFFERENTIAL EQUATIONS APPLIED TO NEURAL NETWORKS

Different types of neural networks have been used to solve a wide range of problems. Neural net-
works often consist of several layers of “neurons” that are “trained” by fixing a set of weights. These
weights are found by minimizing the sum of squares of the difference between actual and required out-
puts. Once trained, the networks can be used to classify a range of inputs. However, here we consider

5.13 DIFFERENTIAL EQUATIONS APPLIED TO NEURAL NETWORKS 277

17 1 o,
o
0.5 0.5 &5+ 8 LT
B z o ++ +0 +
g éﬁ 00 o o+t o
2 0 2 9 °o T e
§ § £ we ?@ﬁo O%~(§
3 o + ®
> > ®
-0.5 -0.5+ wo @ °
S+
-1t ‘ ‘ ‘ -1 ‘ ‘ ‘
20 -10 0 10 20 -20 -10 0 10 20
Displacement, mm Displacement, mm
FIGURE 5.24 FIGURE 5.25
Poincaré map showing output from Duffing oscillator. Output from Duffing oscillator showing where points
w =120 rad/s. from two solutions lie on a Poincaré map. + and o

indicate points generated from two different initial
conditions with w = 120 rad/s.

a different approach that uses a neural network that may be based directly on considering a system
of differential equations. This approach is described by Hopfield and Tank (1985, 1986), who demon-
strated the application of neural networks to solving specific numerical problems. It is not our intention
to provide the full details or proofs of this process here.

Hopfield and Tank, in their 1985 and 1986 papers, utilized a system of differential equations which
take the form

duj —u; A .
dl‘: T’+X(:)T,~jvj+1i fori=0,1,..n—1 (5.50)
i=

where 7 a constant usually taken as 1. This system of differential equations represents the interaction
of a system of n neurons, and each differential equation is a simple model of a single biological neuron.
(This is only one of a number of possible models of a neural network.) Clearly, to establish a network
of such neurons, they must be able to interact with each other and this interaction must be represented
in the differential equations. The 7;; provide the strengths of the interconnections between the ith and
Jjth neuron and the /; provide the externally applied current to the ith neuron. These /; may be viewed
as inputs to the system. The V; values provide the outputs from the system and are directly related to
the u ; so that we may write V; = g(u ;). The function g, called a sigmoidal function, may be specified,
for example, by

V; = (1 + tanhu;)/2 forall j=0,1,... n—1

A plot of this function is given in Fig. 5.26.

Having provided such a model of a neural network, the question still remains: how can we show
that it can be used to solve specific problems? This is the key issue and a significant problem in itself.
Before we can solve a given problem using a neural network we must first reformulate our problem so
that it can be solved by this approach.

278 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

0.8f

0.6f

0.4r

0.2}

=1

FIGURE 5.26
Plot of sigmoid function V = (1 + tanhu)/2.

To illustrate this process, Hopfield and Tank chose as an example the simple problem of binary
conversion. That is, to find the binary equivalent of a given decimal number. Since there is no obvious
and direct relationship between this problem and the system of differential equations (5.50) which
model the neural network, a more direct link has to be established.

Hopfield and Tank have shown that the stable state solution of (5.50), in terms of the V;, is given
by the minima of the energy function:

n—1n—1

n—1
E:—%ZZT[J-V,-VJ-—ZIJ-VJ- (5.51)
j=0

i=0 j=0

It is an easy matter to link the solution of the binary conversion problem to the minimization of the
function (5.51).
Hopfield and Tank consider the energy function

2
n—1 n—1
E:% x=Y vl b+ 22 (1-vy) (5.52)
j=0 j=0

Now the minimum of (5.52) will be attained when x = £V;2/ and V; = 0 or 1. Clearly the first term
ensures that the required binary representation is achieved while the second term provides that the V;
take either O or 1 values when the value of E is minimized. On expanding this energy function (5.52)
and comparing it with the general energy function (5.51) we find that if we make

T;j=—2""/ fori # jand T;; = 0 wheni = j
Ij=—22j_1+2-ix

then the two energy functions are equivalent, apart from a constant. Thus the minimum of one gives the
minimum of the other. Solving the binary conversion problem expressed in this way is thus equivalent
to solving the system of differential equations (5.50) with this special choice of values for 7;; and I;.

5.13 DIFFERENTIAL EQUATIONS APPLIED TO NEURAL NETWORKS 279

In fact, using an appropriate choice of T;; and /;, a range of problems can be represented by a neural
network in the form of the system of differential equations (5.50). Hopfield and Tank have extended
this process from the simple example considered above to attempting to solve the very challenging
traveling salesman problem. The details of this are given in Hopfield and Tank (1985, 1986).

In MATLAB we may use ode23 or ode45 to solve this problem. The crucial part of this exercise
is to define the function which gives the right-hand sides of the differential equation system for the
neural network. This can be done very simply using the function hopbin below. This function gives
the right-hand side for the differential equations which solve the binary conversion problem. In the
definition of function hopbin, sc is the decimal value we wish to convert.

function neurf = hopbin(t,x)

global n sc

% Calculate synaptic current

[=2.7[0:n-1]xsc-0.5%x2.7(2.%[0:n-11);
% Perform sigmoid transformation
V = (tanh(x/0.02)+1)/2;

% Compute interconnection values

p=2.70:n-1].%V";

% Calculate change for each neuron

neurf = -x-2.7[0:n-11"*xsum(p)+I’+2.7(2.x[0:n-1])" .*V;

This function hopbin is called by the script e4s509.m to solve the system of differential equations
which define the neural network and hence simulate its operation.

% e4s509.m
% Hopfield and Tank neuron model for binary conversion problem
global n sc
n = input(’enter number of neurons ’);
sc = input(’enter number to be converted to binary form ’);
simtime = 0.2; acc = 0.005;
initx = zeros(l,n)’;
options = odeset(’RelTol’,acc);
%Call oded45 to solve equation
[t x] = oded45(hopbin’,[0 simtime],initx,options);
V = (tanh(x/0.02)+1)/2;
bin = V(end,n:-1:1);
for i = 1:n
fprintf(*%8.4f, bin(i))

end
fprintf(’\n\n’)
plot(t,V, k")

xlabel(’Time’), ylabel(’Binary values’)

Running this script to convert the decimal number 5 gives

280 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

o
)

o
=

binary values
<
S

0 0.05 011 015 0.2
time
FIGURE 5.27

Neural network finds the binary equivalent of 5 using 3 neurons and an accuracy of 0.005. The three curves
show the convergence to the binary digits 1, 0, and 1.

enter number of neurons 3
enter number to be converted to binary form 5
1.0000 0.0000 0.9993

together with Fig. 5.27. This plot shows how the neural network model converges to the required
results, that is, V(1) = 1, V(2) = 0 and V(3) = 1 or binary number 101. As a further example, we
convert the decimal number 59 using 7 neurons as follows:

enter number of neurons 7
enter number to be converted to binary form 59
0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.9999

Again, a correct result.

This is an application of neural networks to a trivial problem. A real test for neural computing is
the traveling salesman problem. The MATLAB neural network toolbox provides a range of functions to
solve neural network problems.

5.14 STIFF EQUATIONS

When the solution of a system of differential equations contains components which change at signif-
icantly different rates for given changes in the independent variable, the equation system is said to be
“stiff”. When this phenomenon is present, a particularly careful choice of the step size must be made
if stability is to be achieved.

We will now consider how the stiffness phenomenon arises in an apparently simple system of
differential equations. Consider the system given below.

dyy/dt = —by; —cy2

(5.53)
dy/dt =y

5.14 STIFF EQUATIONS 281

This system may be written in matrix form as
dy/dt = Ay (5.54)

The solution of (5.54) is

y1 = Aexp(rit) + Bexp(rt) (5.55)
y2 = Cexp(rit) + Dexp(rat)
where A, B, C, and D are constants set by the initial conditions. It can easily be verified that r; and r;
are the eigenvalues of the matrix A.

If a numerical procedure is applied to solve these systems of differential equations, the success of
the method will depend crucially on the eigenvalues of the matrix A and in particular the ratio of the
smallest and largest eigenvalues.

As an example of a matrix with widely spaced eigenvalues we can take the 8 x 8 Rosser matrix;
this is available in MATLAB as rosser. The sequence of statements

>> a = rosser; lambda = eig(a);

>> eigratio = max(abs(lambda))/min(abs(Tambda))

eigratio =
3.2285e+15

produces a matrix with eigenvalue ratios of order 10'6. Thus a system of ordinary first-order differen-
tial equations involving this matrix would be pathologically difficult to solve. The significance of the
eigenvalue ratio in relation to the required step size can be generalized to systems of many equations.
Consider the system of n equations

dy/dt = Ay + P(1) (5.56)

where y is an n component column vector, P(¢) is an n component column vector of functions of ¢ and
A is an n x n matrix of constants. It can be shown that the solution of this system takes the form

Y@ =) vid; exp(rit) +s () (5.57)
i=1

Here ry, rp, ... are the eigenvalues and d, d», ... the eigenvectors of A. The vector function s(z)
is the particular integral of the system, sometimes called the steady-state solution since for negative
eigenvalues the exponential terms should die away with increasing 7. If it is assumed that the ry < 0
for k =1, 2, 3, ... and we require the steady-state solution of system (5.56), then any numerical method
applied to solve this problem may face significant difficulties, as we have seen. We must continue the
integration until the exponential components have been reduced to negligible levels and yet we must
take sufficiently small steps to ensure stability, thus requiring many steps over a large interval. This is
the most significant effect of stiffness.

The definition of stiffness can be extended to any system of the form (5.56). The stiffness ratio is
defined as the ratio of the largest and smallest eigenvalues of A and gives a measure of the stiffness of
the system.

282 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

The methods used to solve stiff problems must be based on stable techniques. The MATLAB func-
tion ode23s uses continuous step size adjustment and therefore is able to deal with such problems,
although the solution process may be slow. If we use a predictor—corrector method, not only must this
method be stable but the corrector must also be iterated to convergence. An interesting discussion of
this topic is given by Ralston and Rabinowitz (1978). Specialized methods have been developed for
solving stiff problems, and Gear (1971) has provided a number of techniques which have been reported
to be successful. Note that although explicit methods are commonly used for stiff equations, implicit
methods can be a good choice for this type of problem.

5.15 SPECIAL TECHNIQUES

A further set of predictor—corrector equations may be generated by making use of an interpolation
formula due to Hermite. An unusual feature of these equations is that they contain second-order deriva-
tives. It is usually the case that the calculation of second-order derivatives is not particularly difficult
and consequently this feature does not add a significant amount of work to the solution of the problem.
However, it should be noted that in using a computer program for this technique the user has to supply
not only the function on the right-hand side of the differential equation but its derivative as well. To the
general user this may be unacceptable.
The equations for Hermite’s method take the form

Y0 = v RO =3y)/2+ KTy + Ty)/12
i =y +310m = y)/30 (5.58)
Vo = Fltnsr vt
Fork=1,2,3,..

k+1 k k
YD e h L 2+ R =y 8y 2

This method is stable and has a smaller truncation error at each step than Hamming’s method. Thus it
may be worthwhile accepting the additional effort required by the user. We note that since we have

dy/dt = f(t,y)
then
d?y/dt* = df/dt

and thus y,/q/ , etc., are easily calculated as the first derivative of f. The MATLAB function fhermite
implements this method, and the script is given below. Note that in this function, the function f must
provide both the first and second derivatives of y.

function [tvals, yvals] = fhermite(f,tspan,startval,step)
% Hermite’s method for solving
% first order differential equation dy/dt = f(t,y).

5.15 SPECIAL TECHNIQUES 283

% Example call: [tvals, yvals] = fhermite(f,tspan,startval,step)
% The initial and final values of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) and its derivative must be defined by the user.
% 3 steps of Runge-Kutta are required so that hermite can start.
% Set up matrices for Runge-Kutta methods
b=[01;c=01;d=1011
order = 4;
b [1/6 1/3 1/3 1/61; d = [0 0.5 0.5 17;
c [(0000;0.5000;00.500;001017;
steps = (tspan(2)-tspan(l))/step+l;
y = startval; t = tspan(1l);
ys(1l) = startval; w = feval(f,t,y); fval(l) = w(l); df(l) = w(2);
yvals = startval; tvals = tspan(l);
for j = 2:2
k(1) = stepxfval(l);
for i = 2:order
w = feval (f,t+stepxd(i),y+c(i,1:i-1)*k(1:71-1)");
k(i) = step*w(1);

end
yl = y+bxk’; ys(j) = yl; tl = t+step;
w = feval(f,tl,yl); fval(j) = w(l); df(j) = w(2);
%collect values together for output
tvals = [tvals, tl]; yvals = [yvals, yl];
t=1t1l; y =yl;
end
%hermite now applied
h2 = step*step/l2; er = 1;
for i = 3:steps
vl ys(2)+stepx(3*xfval(1l)-fval(2))/2+h2x(17xdf(2)+7xdf(1));
tl t+step; ylm = yl; y10 = yl;
if i>3, ylm = yl1+31*(ys(2)-y10)/30; end
w = feval(f,tl,ylm); fval(3) = w(l); df(3)=w(2);
yc =0; er =1;
while abs(er)>0.0000001
yp = ys(2)+stepx(fval(2)+fval(3))/2+h2*(df(2)-df(3));
w = feval(f,tl,yp); fval(3) = w(l); df(3) = w(2);
er = yp-yc; yc = yp;

end

fval(l:2) = fval(2:3); df(l:2) = df(2:3);
ys(2) = yp;

tvals = [tvals, tl1]; yvals = [yvals, ypl;
t =tl;

end

284 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

GX 10
-1
2 .
K| *
& 4 -
*
_5 *
0 1 2 3 4 5
time
FIGURE 5.28
Relative error in the solution of dy/dt = y using Hermite’s method. Initial condition y=1whent=0and a
step of 0.5.

Fig. 5.28 gives the error when solving the specific equation dy/dt = y using the same step size and
starting point as for Hamming’s method — see Fig. 5.9. For this particular problem Hermite’s method
performs better than Hamming’s method.

Finally, we compare the Hermite, Hamming, and Adams—Bashforth—-Moulton methods for the dif-
ficult problem

dy/dt =—10y given y=1 when t =0
The script e4s510.m implements these comparisons.

% e4s510.m
vg = @(t,x) [-10%x 100%x];
v = @(t,x) -10%x;
disp(’Solution of dx/dt = -10x")
t0 = 0; y0 = 1;
tf = 1; tinc = 0.1; steps = floor((tf-t0)/tinc+l);
[t,x1] = abm(v,[t0 tf],y0,tinc);
[t,x2] = fhamming(v,[t0 tf],y0,tinc);
[t,x3] fhermite(vg,[t0 tf],y0,tinc);
disp(’t abm Hamming Hermite Exact’);
for i = l:steps
fprintf(%4.2f%12.7F%12.7F ,£(i),x1(i),x2(i))
fporintf(*%12.7f%12.7f\n" ,x3(1),exp(-10x(t(i))))
end

Note that for the function fhermite, we must supply both the first and second derivatives of y with
respect to 7. For the first derivative, we have directly dy/dt = —10y but the second derivative d”y/dt>
is given by —10dy/dt = —10(—10y) = 100y. Consequently, the function takes the form

vg = @(t,x) [-10xx 100*x7;

5.16 EXTRAPOLATION TECHNIQUES 285

The functions abm and fhamming require only the first derivative of y with respect to ¢ and we define
function thus:

v = @(t,x) -10xx;

Running the above script provides the following results, demonstrating the superiority of the Hermite
method.

Solution of dx/dt = -10x

t abm Hamming Hermite Exact

0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.10 0.3750000 0.3750000 0.3750000 0.3678794
0.20 0.1406250 0.1406250 0.1381579 0.1353353
0.30 0.0527344 0.0527344 0.0509003 0.0497871
0.40 -0.0032654 0.0109440 0.0187528 0.0183156
0.50 -0.0171851 0.0070876 0.0069089 0.0067379
0.60 -0.0010598 0.0131483 0.0025454 0.0024788
0.70 0.0023606 0.0002607 0.0009378 0.0009119
0.80 -0.0063684 0.0006066 0.0003455 0.0003355
0.90 -0.0042478 0.0096271 0.0001273 0.0001234
1.00 0.0030171 -0.0065859 0.0000469 0.0000454

One feature which may be used to improve many of the methods discussed above is step size ad-
justment. This means that we adjust the step size h according to the progress of the iteration. One
criterion for adjusting 4 is to monitor the size of the truncation error. If the truncation error is smaller
than the accuracy requirement, we can increase 4; however, if the truncation error is too large, we can
reduce h. Step size adjustment can lead to considerable additional work; for example, if a predictor—
corrector method is used, new initial values must be calculated. The following method is an interesting
alternative to this kind of procedure.

5.16 EXTRAPOLATION TECHNIQUES

The extrapolation method described in this section is based on a similar procedure to that used in
Romberg integration, introduced in Chapter 4. The procedure begins by obtaining successive initial
approximations for y,41 using a modified mid-point method. The interval sizes used for obtaining
these approximations are calculated from

hi=h;_1/2fori=1, 2, ... (5.59)

with the initial value kg given.
Once these initial approximations have been obtained, we can use (5.60), the extrapolation formula,
to obtain improved approximations.

Ton ko =@"Tn1, kgt — Tu—1, 1)/ (4" = 1)

(5.60)
form=1,2,...andk=1,2,... s —m

286 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

The calculations are set out in an array in much the same way as the calculations for Romberg’s method
for integration described in Chapter 4. When m = 0, the values of Ty ; for k =0, 1,2, ..., s are taken as
the successive approximations to the values of y, 41 using the 4; values obtained from (5.59).

The formula for calculating the approximations used for the initial values Ty i in the above array
are computed using the following equations.

y1 =yo+hy,

(5.61)
Yntl =Yn—1 +2hy, forn=1,2 ..., Ng

Here k =1, 2, ... and Ny is the number of steps taken in the range of interest, so that Ny = 2k as the

size of the interval is halved each time. The independent variable increment between y, 11 and y,_1 is

2h. Values of this increment may lead to significant variations in the magnitude of the error. Because

of this, instead of using the final value of y,41 given by (5.61), Gragg (1965) has suggested that at the

final step these values be smoothed using the intermediate value y,. This leads to the values for T

To.k = (y_1 + 20 + Yhi)/4

where the superscript k denotes the value at the kth division of the interval.

Alternatives to the method of Gragg are available for finding the initial values in the function
rombergx and various combinations of predictor—correctors may be used. It should be noted, how-
ever, that if the corrector is iterated until convergence is achieved, this will improve the accuracy of the
initial values but at considerable computational expense for smaller step sizes, i.e., for larger N values.
The MATLAB function rombergx implements the extrapolation method and is given below.

function [v W] = rombergx(f,tspan,intdiv,inity)
% Solves dy/dt = f(t,y) using Romberg’s method.
% Example call: [v W] = rombergx(f,tspan,intdiv,inity)

% The initial and final values of t are given by tspan = [start finish].
% Initial value of y is given by inity.

o

% The number of interval divisions is given by intdiv.
% The function f(t,y) must be defined by the user.
W = zeros(intdiv-1,intdiv-1);
for index = l:intdiv
y0 = inity; t0 = tspan(l);
intervals = 2%index;
step = (tspan(2)-tspan(l))/intervals;
yl = yO+stepxfeval (f,t0,y0);
t = tO+step;
for i = l:intervals
y2 = y0+2xstepxfeval (f,t,yl);
t = t+step;
ye2 = y2; yel = yl; ye0 = y0; y0 = yl; yl = y2;
end
tableval(index) = (yeO+2xyel+ye?2)/4;
end

5.17 SIMULINK 287

for i = l:intdiv-1
for j = l:intdiv-i
table(j) = (tableval(j+1)*4~i-tableval(j))/(4”1-1);
tableval(j) = table(j);
end
tablep = table(l:intdiv-i);
W(i,1:intdiv-1) = tablep;
end
v = tablep;

We can now call this function to solve dx/dt = —10x with x =1 at t = 0. The following MATLAB
statement solves this differential equation when ¢ = 0.5:

>> [fv P] = rombergx(@(t,x) -10%x,[0 0.5],7,1)

fv =
0.0067
P:

-2.5677 0.2277 0.1624 0.0245 0.0080 0.0068
0.4141 0.1580 0.0153 0.0069 0.0067 0
0.1539 0.0131 0.0068 0.0067 0 0
0.0125 0.0068 0.0067 0 0 0
0.0068 0.0067 0 0 0 0
0.0067 0 0 0 0 0

The final value, 0.0067, is better than any of the results achieved for this problem by other methods
presented in this chapter. It must be noted that only the final value is found; other values in a given
interval can be obtained if intermediate ranges are considered.

This completes our discussion of those types of differential equations known as initial value prob-
lems. In Chapter 6 we consider a different type of differential equation known as a boundary value
problem.

5.17 SIMULINK

Simulink is part of MATLAB and can only be used when MATLAB is installed. Simulink is used to
model, simulate, and analyze dynamic systems. The systems can be linear or non-linear, modeled in
continuous or sampled time, or a mixture of both. Simulink provides a graphical user interface that
allows the user to drag and drop the appropriate blocks in order to create the required block diagram
to model the system. The wide range of blocks in the block library comprise sources (inputs to the
system), sinks (outputs from the system) and both linear and non-linear process blocks, and connectors.
Simulink also allows the user to modify or create blocks of their own. The parameters for each block
are set by the user to be appropriate for their specific problem.

It is reasonable to ask why Simulink was developed. MATLAB provides a range of functions
to solve differential equation and hence to simulate and analyze dynamic systems. Where Simulink

288 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

proves its value is in simulating more complicated dynamic systems, perhaps combining the dynamics
of two or more systems. A further advantage of Simulink is that it is possible to visualize a system
in terms of process block diagrams (as control engineers often do) rather than in terms of systems of
differential equations. A further advantage is the ease with which non-linear phenomena such as dead
zones, limits, hysteresis, and so on can be incorporated into the model.

In this brief introduction to Simulink we provide some examples of the way block diagrams can
be developed to simulate some simple systems. We do not give details of how the process blocks are
selected, dragged, and dropped into the model nor how connections are made between blocks, which,
in any case, is quite intuitive. The purpose of this introduction is to show how simple problems can be
represented by Simulink models. We do not provide the output from the models because in this context
the output data is only of secondary interest.

We now provide a series of Simulink examples.

Example 5.4. Suppose we wish to simulate the dynamic system described by the following second-
order differential equation:

mx + cx + kx = fysin(wt) (5.62)

We begin by isolating the highest derivative of the equation to obtain
X = (fo/m)sin(wt) — (¢/m)x — (k/m)x (5.63)

To create the Simulink model we begin by dragging and dropping two integration process blocks,
labeled internally é, see Fig. 5.29. The integration process blocks perform numerical integration. The
input to the process block (Integrator 1) is labeled x ddot and its output is X dot. This output becomes
the input to Integrator 2 and the output of this integrator is X. A connection is made from x dot to
one of the gain process block, labeled Gain c/m, set to a gain of ¢/m. Gain means that the signal is
increased or multiplied by this quantity to give an output (c/m)x dot. Similarly x is connected to the
other gain process block, labeled Gain k/m, with a gain of k/m to give an output of (k/m)x. At the left
of the Simulink diagram is a process block that generates a sine wave, labeled Sine Wave. The output
from this block is a sine wave of amplitude f/m, and is connected to a summing unit. Also connected to
the summing unit is the negatives of (¢/m)x dot and (k/m)x. From (5.63), (fo/m) sin(wt) — (¢/m)x +
(k/m)x is equal to X, so the output of the summing block is x ddot which is connected to the input of
integrator 1. Finally, x and x dot are connected to a Scope block, labeled Scope 1, which, as the name
suggests, displays x and x against the simulation time.

Before we run the model, we must open the Sine Wave block and set the frequency and amplitude
of the input; we must also open the integrators to specify any initial conditions required, in this case
the initial velocity at Integrator 1 and initial the displacement at Integrator 2, and open the Gain blocks
to set the required gains. Finally, we open the Model Simulation Parameters and set the start and end
times of the simulation, the ODE solver to be used (ode45 in this case), relative and absolute accuracy,
step size, and so on.

Rearranging (5.62) to isolate the X terms is not the only arrangement we might consider for a
Simulink model. We could arrange (5.62) to isolate the x term as thus:

x = (fo/) sin(wr) — (m/K)% — (¢/ k)i

5.17 SIMULINK 289

/\/ S f/m

Sine Wave 1 1
x ddot s x dot s X
Integrator 1 Integrator 2
()
3 >
(c/m)*x dot
Gain ¢/m Scopet
k/m)*x
(m) 5000 |< X
Gain k/m
fim
FIGURE 5.29

Model of a second-order differential equation, (5.62).

Simulating this equation would require two stages of differentiation. Although Simulink provides
a differentiation process block, one should not simulate (5.62) in this way. Numerical differentiation is
a noisy process that will lead to errors.

Example 5.5. In Example 5.4, we have used two integrator process blocks to determine the velocity
and displacement from acceleration. Basically, we need as many stages of integration as the order of
the ordinary differential equation. Because many ordinary differential equations arising from real world
problems are second order, Simulink provides a second-order integrator, that is a block that combines
two integrator blocks. For example, suppose we wish to simulate

X + Fsignx +kx =0
Rearranging this equation in terms of X gives
X = —Fsignx — kx

In this example, there is no external excitation, only the non-zero initial displacements and/or ve-
locities cause the subsequent changes in x. Also, there is no x term. Energy dissipation is by a constant
force F' which opposes the motion and changes direction with the sign of x. This form of energy
dissipation is sometimes called Coulomb damping. The Simulink model for the system is shown in
Simulink Fig. 5.30.

Note the ease with which we are able to model the non-linear Coulomb damping.

Example 5.6. In this example, we simulate the same system as simulated in Example 5.4. However,
rather than a simulation based on the ODE that describes the system, we begin by converting (5.62)
to an equivalent transfer function. To do this we take the Laplace Transform of (5.62). The Laplace
transform is described in Section 10.12 of Chapter 10.

290 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

10X ()

U =
s2 dx

Integrator, Scope1
Second-Order

==
Gain Sign
X
5000 }47
(k/m)*x
Gain k/m

FIGURE 5.30
Model of a second-order differential equation with Coulomb damping.

ft 1 x(t)
/\/ 252 + 10s + 5000 D

Sine Wave Transfer Fcn1

Scope1

FIGURE 5.31

A second-order system modeled by a transfer function.

Denoting the Laplace transform of x(#) by X (s) then L(x(¢)) = X (s) and L(x(¢)) = s X (s) + x(0)
and L(X (1)) = $2X (s) 4 sx(0) +v(0) and where x(0) and v(0) are the initial displacement and velocity,
respectively. Applying this transform to (5.62) and assuming the initial conditions are zero gives

(ms®> +cs + k)X (s) = F(s) (5.64)

Rearranging, (5.64) becomes

X(s) 1

= 5.65
F(s) ms?+4cs+k (5.65)

The expression on the right side of (5.65) is the transfer function for (5.62). Comparing Simulink
Fig. 5.31 with Simulink Fig. 5.29, we see that the two integrators and two gain processes have been
replaced by a Simulink t