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Preface

Our primary aim in this text is unchanged from previous editions; it is to introduce the reader to a wide
range of numerical algorithms, explain their fundamental principles and illustrate their application. The
algorithms are implemented in the software package MATLAB which is constantly being enhanced and
provides a powerful tool to help with these studies.

Many important theoretical results are discussed but it is not intended to provide a detailed and
rigorous theoretical development in every area. Rather, we wish to show how numerical procedures
can be applied to solve problems from many fields of application, and that the numerical procedures
give the expected theoretical performance when used to solve specific problems.

When used with care MATLAB provides a natural and succinct way of describing numerical algo-
rithms and a powerful means of experimenting with them. However, no tool, irrespective of its power,
should be used carelessly or uncritically.

This text allows the reader to study numerical methods by encouraging systematic experimentation
with some of the many fascinating problems of numerical analysis. Although MATLAB provides many
useful functions this text also introduces the reader to numerous useful and important algorithms and
develops MATLAB functions to implement them. The reader is encouraged to use these functions to
produce results in numerical and graphical form. MATLAB provides powerful and varied graphics facil-
ities to give a clearer understanding of the nature of the results produced by the numerical procedures.

Particular examples are given throughout the text to illustrate how numerical methods are used to
study problems which include applications in the biosciences, chaos, neural networks, engineering,
and science.

It should be noted that the introduction to MATLAB is relatively brief and is meant as an aid to the
reader. It can in no way be expected to replace the standard MATLAB manual or text books devoted to
MATLAB software. We provide a broad introduction to the topics, develop algorithms in the form of
MATLAB functions and encourage the reader to experiment with these functions which have been kept
as simple as possible for reasons of clarity. These functions can be improved and we urge readers to
develop the ones that are of particular interest to them.

In addition to a general introduction to MATLAB, the text covers the solution of linear equations and
eigenvalue problems; methods for solving non-linear equations; numerical integration and differenti-
ation; the solution of initial value and boundary value problems; curve fitting including splines, least
squares, and Fourier analysis, topics in optimization such as interior point methods, non-linear pro-
gramming, and heuristic algorithms and, finally, we show how symbolic computing can be integrated
with numeric algorithms. Specifically in this 4th edition, descriptions and examples of some functions
recently added to MATLAB such as implicit functions and the Live Editor are given in Chapter 1.
Chapter 4 now includes a section on adaptive integration. Chapter 5 now includes a brief introduction
to Simulink; a toolbox which provides a visual interface to help the user simulating the process of
solving differential equations. The old Chapter 7 has been split into two chapters and we have added
the Kalman filter and principal component analysis, and the Hilbert, Walsh, and wavelet transforms.
The old Chapter 8 has had the emphasis on the genetic algorithm reduced and replaced by the more
modern and efficient differential evolution algorithm.

xxiii



xxiv Preface

The text contains many worked examples, practice problems (some of which are new to this edition)
and solutions and we hope we have provided an interesting range of problems.

For readers of this book, additional materials, including all .m file scripts and functions listed in
the text, are available on the book’s companion site: https://www.elsevier.com/books-and-journals/
book-companion/9780128122563. For instructors using this book as a text for their courses, a solutions
manual is available by registering at the textbook site: www.textbooks.elsevier.com.

The text is suitable for undergraduate and postgraduate students and for those working in industry
and education. We hope readers will share our enthusiasm for this area of study. For those who do
not currently have access to MATLAB, this text still provides a general introduction to a wide range of
numerical algorithms and many useful and interesting examples and problems.

We would like to thank the many readers from all over the world for their helpful comments which
have enhanced this edition and we would be pleased to hear from readers who note errors or have
suggestions for improvements.

George Lindfield
John Penny

Aston University, Birmingham
March 2018

https://www.elsevier.com/books-and-journals/book-companion/9780128122563
http://www.textbooks.elsevier.com
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Acknowledgment

We thank Peter Jardim for his encouragement and support, Joe Hayton, the Publishing Director and the
production team members.

xxv



1
CHAPTER

AN INTRODUCTION TO MATLAB®

Abstract

MATLAB® is a software package produced by The MathWorks, Inc. (http://www.mathworks.com) and
is available on systems ranging from personal computers to super-computers and including parallel
computing. In this chapter we aim to provide a useful introduction to MATLAB, giving sufficient back-
ground for the numerical methods we consider. The reader is referred to the MATLAB manual for a full
description of the package.

1.1 THE SOFTWARE PACKAGE MATLAB
MATLAB is probably the world’s most successful commercial numerical analysis software and the
name MATLAB is derived from the phrase “matrix laboratory”. It has evolved from some software writ-
ten by Cleve Moler in the late 1970s to allow his students to access matrix routines in the LINPACK
and EISPACK packages without the need to write FORTRAN programs. This first version of MATLAB

had only 80 functions, primitive graphics and “matrix” was the only data type. Its use spread to other
universities and, after it was reprogrammed in C, MATLAB was launched as a commercial product
in 1984. MATLAB provides an interactive development tool for scientific and engineering problems
and more generally for those areas where significant numeric computations have to be performed. The
package can be used to evaluate single statements directly or a list of statements called a script can
be prepared. Once named and saved, a script can be executed as an entity. The package was origi-
nally based on software produced by the LINPACK and EISPACK projects but in 2000, MATLAB was
rewritten to use the newer BLAS and LAPACK libraries for fast matrix operations and linear algebra,
respectively. MATLAB provides the user with:

1. Easy manipulation of matrix structures.
2. A vast number of powerful built-in routines which are constantly growing and developing.
3. Powerful two- and three-dimensional graphing facilities.
4. A scripting system which allows users to develop and modify the software for their own needs.
5. Collections of functions, called toolboxes, which may be added to the facilities of the core

MATLAB. These are designed for specific applications: for example neural networks, optimization,
digital signal processing, and higher-order spectral analysis.

It is not difficult to use MATLAB, although to use it with maximum efficiency for complex tasks
requires experience. Generally MATLAB works with rectangular or square arrays of data, the elements
of which may be real or complex. A scalar quantity is thus an array containing a single element.
This is an elegant and powerful notion but it can present the user with an initial conceptual difficulty.
A user schooled in many traditional computer languages is familiar with a pseudo-statement of the
form A = B + C and can immediately interpret it as an instruction that A is assigned the sum of the

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00010-5
Copyright © 2019 Elsevier Inc. All rights reserved.
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values stored in B and C. In MATLAB the variables B and C may represent arrays so that each element
of the array A will become the sum of the values of corresponding elements of B and C; that is the
addition will follow the laws of matrix algebra.

There are several languages or software packages that have some similarities to MATLAB. These
packages include:

Mathematica and Maple. These packages are known for their ability to carry out complicated sym-
bolic mathematical manipulation but they are also able to undertake high precision numerical
computation. In contrast MATLAB is known for its powerful numerical computational and ma-
trix manipulation facilities. However, MATLAB also provides an optional symbolic toolbox. This
is discussed in Chapter 10.

Other Matlab-style languages. Languages such as Scilab,1 Octave,2 and Freemat3 are somewhat
similar to MATLAB in that they implement a wide range of numerical methods, and, in some
cases, use similar syntax to MATLAB.
It should noted that the languages do not necessarily have a range of toolboxes like MATLAB.

Julia. Julia4 is a new high-level, high-performance dynamic programming language. The develop-
ers of Julia wanted, amongst other attributes, the speed of C, the general programming easy
of Python, and the powerful linear algebra functions and familiar mathematical notation of
MATLAB.

General purpose languages. General purpose languages such as Python and C. These languages
don’t have any significant numerical analysis capability in themselves but can load libraries of
routines. For example Python+Numpy, Python+Scipy, C+GSL.

The current MATLAB release, version 9.4 (R2018a), is available on a wide variety of platforms.
Generally MathWorks releases an upgraded version of MATLAB every six months.

When MATLAB is invoked it opens a command window. Graphics, editing, and help windows
may also be opened if required. Users can design their MATLAB working environment as they see fit.
MATLAB scripts and function are generally platform independent and they can be readily ported from
one system to another. To install and start MATLAB, readers should consult the manual appropriate to
their particular working environment.

The scripts and functions given in this book have been tested under MATLAB release, version
9.3.0.713579 (R2017b). However, most of them will work directly using earlier versions of MATLAB

but some may require modification.
The remainder of this chapter is devoted to introducing some of the statements and syntax of

MATLAB. The intention is to give the reader a sound but brief introduction to the power of MATLAB.
Some details of structure and syntax are omitted and must be obtained from the MATLAB manual. A de-
tailed description of MATLAB is given by Higham and Higham (2017). Other sources of information
are the MathWorks website and Wikipedia. Wikipedia should be used with some care.

Before we begin a detailed discussion of the features of MATLAB, the meaning some terminology
needs clarification. Consider the terms MATLAB statements, commands, functions, and keywords. If

1http://www.scilab.org.
2http://www.gnu.org/software/octave.
3http://freemat.sourceforge.net.
4https://julialang.org/.

http://www.scilab.org
http://www.gnu.org/software/octave
http://freemat.sourceforge.net
https://julialang.org/
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we take a very simple MATLAB expression, like y = sqrt(x) then, if this is used in the command
window for immediate execution, it is a command for MATLAB to determine the square root of the
variable x and assign it to y. If it is used in a script, and is not for immediate execution, then it is
usually called a statement. The expression sqrt is a MATLAB function, but it can also be called a
keyword. The vast majority of MATLAB keywords are functions, but a few are not: for example all,
long, and pi. The last of these is a reserved keyword to denote the mathematical constant π . Thus, the
use of the four word discussed are often interchangeable.

1.2 MATRICES IN MATLAB
A two-dimensional array is effectively a table of data, not restricted to numeric data. If arrays are
stacked in the third dimension, then they are three-dimensional arrays. Matrices are two-dimensional
arrays that contain only numeric data or mathematical expressions where the variables of the expression
have already been assigned numeric values. Thus, 23.2 and x2 are allowed, peter is allowed if it is a
numeric constant but not if it is a person’s name. Thus a two dimension array of numeric data can
legitimately be called an array or a matrix. Matrices can be operated on, using the laws of matrix
algebra. Thus if A is a matrix, then 3A and A−1 have a meaning, whereas, if A is an alpha-numeric array
these statements have no meaning. MATLAB supports matrix algebra, but also allows array operations.
For example, an array of data might be a financial statement, and therefore, it might be necessary to
sum the 3rd through 5th rows and place the result in the 6th row. This is a legitimate array operation
that MATLAB supports.

The matrix is fundamental to MATLAB and we have provided a broad and simple introduction to
matrices in Appendix A. In MATLAB the names used for matrices must start with a letter and may be
followed by any combination of letters or digits. The letters may be upper or lower case. Note that
throughout this text a distinctive font is used to denote MATLAB statements and output, for example
disp.

In MATLAB the arithmetic operations of addition, subtraction, multiplication, and division can be
performed in the usual way on scalar quantities, but they can also be used directly with matrices or
arrays of data. To use these arithmetic operators on matrices, the matrices must first be created. There
are several ways of doing this in MATLAB and the simplest method, which is suitable for small ma-
trices, is as follows. We assign an array of values to A by opening the command window and then
typing

>> A = [1 3 5;1 0 1;5 0 9]

after the prompt >>. Notice that the elements of the matrix are placed in square brackets, each row
element separated by at least one space or comma. A semicolon (;) indicates the end of a row and the
beginning of another. When the return key is pressed the matrix will be displayed thus:

A =
1 3 5
1 0 1
5 0 9
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All statements are executed by pressing the return or enter key. Thus, for example, by typing
B = [1 3 51;2 6 12;10 7 28] after the >> prompt, and pressing the return key, we assign values
to B. To add the matrices in the command window and assign the result to C we type C = A+B and
similarly if we type C = A-B the matrices are subtracted. In both cases the results are displayed row by
row in the command window. Note that terminating a MATLAB statement with a semicolon suppresses
any output.

For simple problems we can use the command window. By simple we mean MATLAB statements
of limited complexity – even MATLAB statements of limited complexity can provide some powerful
numerical computation. However, if we require the execution of an ordered sequence of MATLAB

statements (commands) then it is sensible for these statements to be typed in the MATLAB editor
window to create a script which must be saved under a suitable name for future use as required. There
will be no execution or output until the name of this script is typed into the command window and the
script executed by pressing return.

A matrix which has only one row or column is called a vector. A row vector consists of one row
of elements and a column vector consists of one column of elements. Conventionally in mathematics,
engineering, and science an emboldened upper case letter is usually used to represent a matrix, for
example A. An emboldened lower case letter usually represents a column vector, that is x. The transpose
operator converts a row to a column and vice versa so that we can represent a row vector as a column
vector transposed. Using the superscript T in mathematics to indicate a transpose, we can write a row
vector as xT. In MATLAB it is often convenient to ignore the convention that the initial form of a vector
is a column; the user can define the initial form of a vector as a row or a column.

The implementation of vector and matrix multiplication in MATLAB is straightforward. Beginning
with vector multiplication, we assume that row vectors having the same number of elements have been
assigned to d and p. To multiply them together we write x = d*p’. Note that the symbol ’ transposes
the row p into a column so that the multiplication is valid. The result, x, is a scalar. Many practitioners
use .’ to indicate a transpose. The reason for this is discussed in Section 1.4.

Assuming the two matrices A and B have been assigned, for matrix multiplication the user simply
types C = A*B. This computes A post-multiplied by B, assigns the result to C and displays it, providing
the multiplication is valid. Otherwise MATLAB gives an appropriate error indication. The conditions
for matrix multiplication to be valid are given in Appendix A. Notice that the symbol * must be used
for multiplication because in MATLAB multiplication is not implied.

A very useful MATLAB function is whos (and the similar function, who).
These functions tell us the current content of the work space. For example, provided A, B, and C

described above have not been cleared from the memory, then

>> whos

Name Size Bytes Class

A 3x3 72 double array

B 3x3 72 double array

C 3x3 72 double array

This tells us that A, B, and C are all 3 × 3 matrices. They are stored as double precision arrays. A double
precision number requires 8 bytes to store it, so each array of 9 elements requires 72 bytes; a grand
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total is 27 elements using 216 bytes. Consider now the following operations:

>> clear A
>> B = [ ];
>> C = zeros(4,4);
>> whos

Name Size Bytes Class
B 0x0 0 double array
C 4x4 128 double array

Here we see that we have cleared (i.e., deleted) A from the memory, assigned an empty matrix to B and
a 4 × 4 array of zeros to C.

Note that the size of matrices can also be determined using the size and length functions thus:

>> A = zeros(4,8);
>> B = ones(7,3);
>> [p q] = size(A)

p =
4

q =
8

>> length(A)

ans =
8

>> L = length(B)

L =
7

It can be seen that size gives the size of the matrix whereas length gives the number of elements in
the largest dimension.

1.3 MANIPULATING THE ELEMENTS OF A MATRIX
In MATLAB, matrix elements can be manipulated individually or in blocks. For example,

>> X(1,3) = C(4,5)+V(9,1)
>> A(1) = B(1)+D(1)
>> C(i,j+1) = D(i,j+1)+E(i,j)
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are valid statements relating elements of matrices. Rows and columns can be manipulated as complete
entities. Thus A(:,3), B(5,:) refer respectively to the third column of A and fifth row of B. If B has
10 rows and 10 columns, i.e. it is a 10 × 10 matrix, then B(:,4:9) refers to columns 4 through 9 of
the matrix. The : by itself indicates all the rows, and hence all elements of columns 4 through 9. Note
that in MATLAB, by default, the lowest matrix index starts at 1. This can be a source of difficulty when
implementing some algorithms.

The following examples illustrate some of the ways subscripts can be used in MATLAB. First we
assign a matrix

>> A = [2 3 4 5 6;-4 -5 -6 -7 -8;3 5 7 9 1; ...
4 6 8 10 12;-2 -3 -4 -5 -6]

A =
2 3 4 5 6
-4 -5 -6 -7 -8
3 5 7 9 1
4 6 8 10 12
-2 -3 -4 -5 -6

Note the use of ... (an ellipsis) to indicate that the MATLAB statement continues on the next line.
Executing the following statements

>> v = [1 3 5];
>> b = A(v,2)

gives

b =
3
5
-3

Thus b is composed of the elements of the first, third, and fifth rows in the second column of A. Exe-
cuting

>> C = A(v,:)

gives

C =
2 3 4 5 6
3 5 7 9 1
-2 -3 -4 -5 -6

Thus C is composed of the first, third, and fifth rows of A. Executing

>> D = zeros(3);
>> D(:,1) = A(v,2)
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gives

D =
3 0 0
5 0 0

-3 0 0

Here D is a 3 × 3 matrix of zeros with column 1 replaced by the first, third, and fifth elements of
column 2 of A.

Executing

>> E = A(1:2,4:5)

gives

E =
5 6

-7 -8

Note that if we index an existing square or rectangular array with a single index, then the elements
of the array are identified as follows. Index 1 gives the top left element of the array, and the index
is incremented down the columns in sequence, from left to right. For example, with reference to the
preceding array C

C1 = C;
C1(1:4:15) = 10

C1 =
10 3 4 5 10
3 10 7 9 1

-2 -3 10 -5 -6

Note that in this example the index is incremented by 4.
When manipulating very large matrices it is easy to become unsure of the size of the matrix. Thus, if

we want to find the value of the element in the penultimate row and last column of A defined previously
we could write

>> size(A)

ans =
5 5

>> A(4,5)

ans =
12
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but it is easier to use end thus:

>> A(end-1,end)

ans =
12

The reshape function may be used to manipulate a matrix. As the name implies, the function reshapes
a given matrix into a new matrix of any specified size provided it has an identical number of elements.
For example a 3 × 4 matrix can be reshaped into a 6 × 2 matrix but a 3 × 3 matrix cannot be reshaped
into a 5 × 2 matrix. It is important to note that this function takes each column of the original matrix in
turn until the new required column size is achieved and then repeats the process for the next column.
For example, consider the matrix P.

>> P = C(:,1:4)

P =
2 3 4 5
3 5 7 9
-2 -3 -4 -5

>> reshape(P,6,2)

ans =
2 4
3 7
-2 -4
3 5
5 9
-3 -5

>> s = reshape(P,1,12);
>> s(1:10)

ans =
2 3 -2 3 5 -3 4 7 -4 5

1.4 TRANSPOSING MATRICES
A simple operation that may be performed on a matrix is transposition which interchanges rows and
columns. Transposition of a vector is briefly discussed in Section 1.2. In MATLAB transposition is
denoted by the symbol ’. For example, consider the matrix A, where

>> A = [1 2 3;4 5 6;7 8 9]
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A =
1 2 3
4 5 6
7 8 9

To assign the transpose of A to B we write

>> B = A’

B =
1 4 7
2 5 8
3 6 9

Had we used .’ to obtain the transpose we would have obtained the same result. However, if A is
complex then the MATLAB operator ’ gives the complex conjugate transpose. For example

>> A = [1+2i 3+5i;4+2i 3+4i]

A =
1.0000 + 2.0000i 3.0000 + 5.0000i
4.0000 + 2.0000i 3.0000 + 4.0000i

>> B = A’

B =
1.0000 - 2.0000i 4.0000 - 2.0000i
3.0000 - 5.0000i 3.0000 - 4.0000i

To provide the transpose without conjugation we execute

>> C = A.’

C =
1.0000 + 2.0000i 4.0000 + 2.0000i
3.0000 + 5.0000i 3.0000 + 4.0000i

1.5 SPECIAL MATRICES
Certain matrices occur frequently in matrix manipulations and MATLAB ensures that these are gen-
erated easily. Some of the most common are ones(m,n), zeros(m,n), rand(m,n), randn(m,n), and
randi(p,m,n). These MATLAB functions generate m × n matrices composed of ones, zeros, uni-
formly distributed random numbers, normally distributed random numbers and uniformly distributed
random integers, respectively. In the case of randi(p,m,n), p is the maximum integer. If only a sin-
gle scalar parameter is given, then these statements generate a square matrix of the size given by the
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parameter. The MATLAB function eye(n) generates the n × n unit matrix. The function eye(m,n)
generates a matrix of m rows and n columns with a diagonal of ones; thus:

>> A = eye(3,4), B = eye(4,3)

A =
1 0 0 0
0 1 0 0
0 0 1 0

B =
1 0 0
0 1 0
0 0 1
0 0 0

If we wish to generate a random matrix C of the same size as an already existing matrix A, then the
statement C = rand(size(A)) can be used. Similarly D = zeros(size(A)) and E = ones(size(A))
generates a matrix D of zeros and a matrix E of ones, both of which are the same size as matrix A.

Some special matrices with more complex features are introduced in Chapter 2.

1.6 GENERATING MATRICES AND VECTORS WITH SPECIFIED ELEMENT
VALUES

Here we confine ourselves to some relatively simple examples thus:

x = -8:1:8 (or x = -8:8) sets x to a vector having elements −8,−7, ...,7,8.
y = -2:.2:2 sets y to a vector having elements −2,−1.8,−1.6, ...,1.8,2.
z = [1:3 4:2:8 10:0.5:11] sets z to a vector having the elements

[1 2 3 4 6 8 10 10.5 11]

The MATLAB function linspace also generates a vector. However, in this function the user defines the
beginning and end values of the vector and the number of elements in the vector. For example

>> w = linspace(-2,2,5)

w =
-2 -1 0 1 2

This is simple and could just as well have been created by w = -2:1:2 or even w = -2:2. However,
consider

>> w = linspace(0.2598,0.3024,5)

w =
0.2598 0.2704 0.2811 0.2918 0.3024
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Generating this sequence of values by other means would be more difficult. If we require logarithmic
spacing then we can use

>> w = logspace(1,2,5)

w =
10.0000 17.7828 31.6228 56.2341 100.0000

Note that the values produced are between 101 and 102, not 1 and 2. Again, generating these values
by any other means would require some thought! The user of logspace should be warned that if the
second parameter is pi the values run to π , not 10π . Consider the following

>> w = logspace(1,pi,5)

w =
10.0000 7.4866 5.6050 4.1963 3.1416

More complicated matrices can be generated by combining other matrices. For example, consider the
two statements

>> C = [2.3 4.9; 0.9 3.1];
>> D = [C ones(size(C)); eye(size(C)) zeros(size(C))]

These two statements generate a new matrix D the size of which is double the row and column size of
the original C; thus

D =
2.3000 4.9000 1.0000 1.0000
0.9000 3.1000 1.0000 1.0000
1.0000 0 0 0

0 1.0000 0 0

The MATLAB function repmat replicates a given matrix a required number of times. For example,
assuming the matrix C is defined in the preceding statement, then

>> E = repmat(C,2,3)

replicates C as a block to give a matrix with twice as many rows and three times as many columns.
Thus we have a matrix E of 4 rows and 6 columns:

E =
2.3000 4.9000 2.3000 4.9000 2.3000 4.9000
0.9000 3.1000 0.9000 3.1000 0.9000 3.1000
2.3000 4.9000 2.3000 4.9000 2.3000 4.9000
0.9000 3.1000 0.9000 3.1000 0.9000 3.1000

The MATLAB function diag allows us to generate a diagonal matrix from a specified vector of diagonal
elements. Thus
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>> H = diag([2 3 4])

generates

H =
2 0 0
0 3 0
0 0 4

There is a second used of the function diag which is to obtain the elements on the leading diagonal of
a given matrix. Consider

>> P = rand(3,4)

P =
0.3825 0.9379 0.2935 0.8548
0.4658 0.8146 0.2502 0.3160
0.1030 0.0296 0.5830 0.6325

then

>> diag(P)

ans =
0.3825
0.8146
0.5830

A more complicated form of diagonal matrix is the block diagonal matrix. This type of matrix can be
generated using the MATLAB function blkdiag. We set matrices A1 and A2 as follows:

>> A1 = [1 2 5;3 4 6;3 4 5];
>> A2 = [1.2 3.5,8;0.6 0.9,56];

Then,

>> blkdiag(A1,A2,78)

ans =
1.0000 2.0000 5.0000 0 0 0 0
3.0000 4.0000 6.0000 0 0 0 0
3.0000 4.0000 5.0000 0 0 0 0

0 0 0 1.2000 3.5000 8.0000 0
0 0 0 0.6000 0.9000 56.0000 0
0 0 0 0 0 0 78.0000

The preceding functions can be very useful in allowing the user to create matrices with complicated
structures, without detailed programming.
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1.7 MATRIX ALGEBRA IN MATLAB
The matrix is fundamental to MATLAB and we have provided a broad and simple introduction to
matrices in Appendix A.

MATLAB allows matrix equations to be simply expressed and evaluated. For example, to illustrate
matrix addition, subtraction, multiplication, and scalar multiplication, consider the evaluation of the
matrix equation

Z = A AT + sP − Q

where s = 0.5 and

A =
[

2 3 4 5
2 4 6 8

]
P =

[
1 3
2 −9

]
Q =

[−7 3
5 1

]

Assigning A, P, Q, and s, and evaluating this equation in MATLAB we have

>> A = [2 3 4 5;2 4 6 8];
>> P = [1 3;2 -9];
>> Q = [-7 3;5 1];
>> s = 0.5;
>> Z = A*A’+s*P-Q

Z =
61.5000 78.5000
76.0000 114.5000

This result can be readily checked by hand!
MATLAB allows a single scalar value to be added to or subtracted from every element of a matrix.

This is called explicit expansion. To illustrate this we first generate a fourth-order Riemann matrix
using the MATLAB function gallery. This function gives the user access to a range of special matrices
with useful properties. See Chapter 2 for further discussion. In the following piece of MATLAB code
we use it to generate a 4 × 4 Riemann matrix, and then subtract 0.5 from every element of the matrix.

>> R = gallery(’riemann’,4)

R =
1 -1 1 -1

-1 2 -1 -1
-1 -1 3 -1
-1 -1 -1 4

>> A = R-0.5

A =
0.5000 -1.5000 0.5000 -1.5000

-1.5000 1.5000 -1.5000 -1.5000
-1.5000 -1.5000 2.5000 -1.5000
-1.5000 -1.5000 -1.5000 3.5000
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In the 2016b release of MATLAB this feature has been extended to allow a row or column vector to be
added to a matrix. For example

>> B = 2*ones(4)-[1 2 3 4]

B =
1 0 -1 -2
1 0 -1 -2
1 0 -1 -2
1 0 -1 -2

>> C = 2*ones(4)+[2 4 6 8]’

C =
4 4 4 4
6 6 6 6
8 8 8 8
10 10 10 10

Note that 2*ones(4) produces a 4 × 4 matrix where each element is 2. In computing B the results
show that 1 is subtracted from each element of the first column, the 2 from each element in the second
column, the 3 from each element of the third column and so on. Similarly. in computing C the results
show that 2 is added to each element of the first row, the 4 to each element in the second row, the 6 to
each element of the third row and so on.

1.8 MATRIX FUNCTIONS
Some arithmetic operations are simple to evaluate for single scalar values but involve a great deal of
computation for matrices. For large matrices such operations may take a significant amount of time.
An example of this is where a matrix is raised to a power. We can write this in MATLAB as A^p where
p is a scalar value and A is a square matrix. This produces the power of the matrix for any value of p. For
the case where the power equals 0.5 it is better to use sqrtm(A) which gives the principal square root
of the matrix A, (see Appendix A, Section A.13). Similarly, for the case where the power equals −1
it is better to use inv(A). Another special operation directly available in MATLAB is expm(A) which
gives the exponential of the matrix A. The MATLAB function logm(A) provides the principal logarithm
to the base e of A. If B=logm(A) then the principal logarithm B is the unique logarithm for which every
eigenvalue has an imaginary part lying strictly between −π and π .

For example

>> A = [61 45;60 76]

A =
61 45
60 76
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>> B = sqrtm(A)

B =

7.0000 3.0000

4.0000 8.0000

>> B^2

ans =

61.0000 45.0000

60.0000 76.0000

1.9 USING THE MATLAB OPERATOR FOR MATRIX DIVISION
As an example of the power of MATLAB we consider the solution of a system of linear equations. It
is easy to solve the problem ax = b where a and b are simple scalar constants and x is the unknown.
Given a and b then x = b/a. However, consider the corresponding matrix equation

Ax = b (1.1)

where A is a square matrix and x and b are column vectors. We wish to find x. Computationally this is
a much more difficult problem and in MATLAB it is solved by executing the statement

x = A\b

This statement uses the important MATLAB division operator \ and solves the linear equation sys-
tem (1.1).

Solving linear equation systems is an important problem and the computational efficiency and other
aspects of this type of problem are discussed in considerable detail in Chapter 2.

1.10 ELEMENT-BY-ELEMENT OPERATIONS
Element-by-element operations differ from the standard matrix operations but they can be very useful.
They are achieved by using a period or dot (.) to precede the operator. If X and Y are matrices (or
vectors), then X.^ Y raises each element of X to the power of the corresponding element of Y. Similarly
X.*Y and Y.\X multiply or divide each element of X by the corresponding element in Y respectively. The
form X./Y gives the same result as Y.\X. For these operations to be executed the matrices and vectors
used must be the same size. Note that a period is not used in the operations + and - because ordinary
matrix addition and subtraction are element-by-element operations. Examples of element-by-element
operations are given as follows:



16 CHAPTER 1 AN INTRODUCTION TO MATLAB®

>> A = [1 2;3 4]

A =
1 2
3 4

>> B = [5 6;7 8]

B =
5 6
7 8

First we use normal matrix multiplication thus:

>> A*B

ans =
19 22
43 50

However, using the dot operator (.) we have

>> A.*B

ans =
5 12
21 32

which is element-by-element multiplication. Now consider the statement

>> A.^B

ans =
1 64

2187 65536

In the above, each element of A is raised to the corresponding power in B.
Element-by-element operations have many applications. An important use is in plotting graphs (see

Section 1.14). For example

>> x = -1:0.1:1;
>> y = x.*cos(x);
>> y1 = x.^3.*(x.^2+3*x+sin(x));

Notice here that using the vector x of many values, allows a vector of corresponding values for y and
y1 to be computed simultaneously from single statements. Element-by-element operations are in effect
operations on scalar quantities performed simultaneously.
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1.11 SCALAR OPERATIONS AND FUNCTIONS
In MATLAB we can define and manipulate scalar quantities, as in most other computer languages, but
no distinction is made in the naming of matrices and scalars. Thus A could represent a scalar or matrix
quantity. The process of assignment makes the distinction. For example

>> x = 2;

>> y = x^2+3*x-7

y =

3

>> x = [1 2;3 4]

x =

1 2

3 4

>> y = x.^2+3*x-7

y =

-3 3

11 21

Note that in the preceding examples, when vectors are used the dot must be placed before the operator.
This is not required for scalar operations, but does not cause errors if used.

In the case where we multiply a square matrix by itself, for example, in the form x^2 we get the
full matrix multiplication as shown below, rather than element-by-element multiplication as given by
x.^2.

>> y = x^2+3*x-7

y =

3 9

17 27

A very large number of mathematical functions are directly built into MATLAB. They act on scalar
quantities, arrays or vectors on an element-by-element basis. They may be called by using the function
name together with the parameters that define the function. These functions may return one or more
values. A small selection of MATLAB functions is given in the following table which lists the function
name, the function use and an example function call. Note that all function names must be in lower
case letters.

All MATLAB functions are not listed in Table 1.1, but MATLAB provides a complete range of
trigonometric and inverse trigonometric functions, hyperbolic and inverse hyperbolic functions and
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Table 1.1 Selected MATLAB mathematical functions

Function Function gives Example
sqrt(x) square root of x y = sqrt(x+2.5);

abs(x) if x is real, is the positive value of x

if x is complex, is the scalar measure of x d = abs(x)*y;

real(x) real part of x when x is complex d = real(x)*y;

imag(x) imaginary part of x when x is complex d = imag(x)*y;

conj(x) the complex conjugate of x x = conj(y);

sin(x) sine of x in radians t = x+sin(x);

asin(x) inverse sine of x returned in radians t = x+sin(x);

sind(x) sine of x in degrees t = x+sind(x);

log(x) log to base e of x z = log(1+x);

log10(x) log to base 10 of x z = log10(1-2*x);

cosh(x) hyperbolic cosine of x u = cosh(pi*x);

exp(x) exponential of x, i.e., ex p = .7*exp(x);

gamma(x) gamma function of x f = gamma(y);

bessel(n,x) nth-order Bessel function of x f = bessel(2,y);

logarithmic functions. The following examples illustrate the use of some of the functions listed be-
fore:

>> x = [-4 3];

>> abs(x)

ans =

4 3

>> x = 3+4i;

>> abs(x)

ans =

5

>> imag(x)

ans =

4

>> y = sin(pi/4)

y =

0.7071

and
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>> x = linspace(0,pi,5)

x =

0 0.7854 1.5708 2.3562 3.1416

>> sin(x)

ans =

0 0.7071 1.0000 0.7071 0.0000

and

>> x = [0 pi/2;pi 3*pi/2]

x =

0 1.5708

3.1416 4.7124

>> y = sin(x)

y =

0 1.0000

0.0000 -1.0000

Some functions perform special calculations for important and general mathematical processes. These
functions often require more than one input parameter and may provide several outputs. For example,
bessel(n,x) gives the nth-order Bessel function of x. The statement y = fzero(’fun’,x0) deter-
mines the root of the function fun near to x0 where fun is a function defined by the user that provides
the equation for which we are finding the root. For examples of the use of fzero, see Section 3.1. The
statement [Y,I] = sort(X) is an example of a function that can return two output values. Y is the
sorted matrix and I is a matrix containing the indices of the sort.

In addition to a large number of mathematical functions, MATLAB provides several utility functions
that may be used for examining the operation of scripts. These are:

pause causes the execution of the script to pause until the user presses a key. Note that the cursor is
turned into the symbol P, warning the script is in pause mode. This is often used when the script
is operating with echo on.

echo on displays each line of script in the command window before execution. This is useful for
demonstrations. To turn it off, use the statement echo off.

who lists the variables in the current workspace.
whos lists all the variables in the current workspace, together with information about their size and

class, and so on.

MATLAB also provides functions related to time:
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clock returns the current date and time in the form: <year month day hour min sec>.
etime(t2,t1) calculates elapsed time between t1 and t2. Note that t1 and t2 are output from the

clock function. When timing the duration of an event tic ... toc should be used.
tic ... toc times an event. For example, finding the time taken to execute a segment of script. The

statement tic starts the timing and toc gives the elapsed time since the last tic.
cputime returns the total time in seconds since MATLAB was launched.
timeit times the operation of a function. Suppose we carry out a 8192 point Fourier

transform using the MATLAB function fft (described in Chapter 8) then we run
fft_time = timeit(@()fft(8192)).

The script e4s101.m uses the timing functions described previously to estimate the time taken to solve
a 1000 × 1000 system of linear equations:

% e4s101.m Solves a 5000 x 5000 linear equation system
A = rand(5000); b = rand(5000,1);
T_before = clock;
tic
t0 = cputime;
y = A\b;
tend = toc;
t1 = cputime-t0;
t2 = timeit(@() A\b);
disp(’ tic-toc cputime timeit’)
fprintf(’%10.2f %10.2f %10.2f \n\n’, tend,t1,t2)

Running script e4s101.m on a particular computer gave the following results:

tic-toc cputime timeit
2.52 5.09 2.60

The output shows that the three alternative methods of timing give essentially the same value. When
measuring computing times the displayed times vary from run to run and the shorter the run time, the
greater the percentage variation.

1.12 STRING VARIABLES
We have found that MATLAB makes no distinction in naming matrices and scalar quantities. This is
also true of string variables or strings. For example, A = [1 2; 3 4], A = 17.23, or A = ’help’ are
each valid statements and assign an array, a scalar or a text string respectively to A.

Characters and strings of characters can be assigned to variables directly in MATLAB by placing the
string in quotes and then assigning it to a variable name. Strings can then be manipulated by specific
MATLAB string functions which we list in this section. Some examples showing the manipulation of
strings using standard MATLAB assignment are given below.
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>> s1 = ’Matlab ’, s2 = ’is ’, s3 = ’useful’

s1 =
Matlab

s2 =
is

s3 =
useful

Strings in MATLAB are represented as vectors of the equivalent ASCII code numbers; it is only the
way that we assign and access them that makes them strings. For example, the string ’is ’ is actually
saved as the vector [105 115 32]. Hence, we can see that the ASCII codes for the letters i, s, and
a space are 105, 115, and 32 respectively. This vector structure has important implications when we
manipulate strings. For example, we can concatenate strings, because of their vector nature, by using
the square brackets as follows

>> sc = [s1 s2 s3]

sc =
Matlab is useful

Note the spaces are recognized. To identify any item in the string array we can write:

>> sc(2)

ans =
a

To identify a subset of the elements of this string we can write:

>> sc(3:10)

ans =
tlab is

we can display a string vertically, by transposing the string vector thus:

>> sc(1:3)’

ans =
M
a
t

We can also reverse the order of a substring and assign it to another string as follows:
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>>a = sc(6:-1:1)

a =
baltaM

We can define string arrays as well. For example, using the string sc as defined previously:

>> sd = ’Numerical method’
>> s = [sc; sd]
Matlab is useful
Numerical method

To obtain the 12th column of this string we use

>> s(:,12)

ans =
s
e

Note that the string lengths must be the same in order to form a rectangular array of ASCII code
numbers. In this case the array is 2 × 16. We now show how MATLAB string functions can be used to
manipulate strings. To replace one string by another we use strrep as follows:

>> strrep(sc,’useful’,’super’)

ans =
Matlab is super

Notice that this statement causes useful in sc to be replaced by super.
We can determine if a particular character or string is present in another string by using findstr.

For example

>> findstr(sd,’e’)

ans =
4 12

This tells us that the 4th and 12th characters in the string are ‘e’. We can also use this function to find
the location of a substring of this string as follows

>> findstr(sd, ’meth’)

ans =
11

The string ’meth’ begins at the 11th character in the string. If the substring or character is not in the
original string, we have the result illustrated by the example below:
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>> findstr(sd,’E’)

ans =
[ ]

We can convert a string to its ASCII code equivalent by either using the function double or by invoking
any arithmetic operation. Thus, operating on the existing string sd we have

>> p = double(sd(1:9))

p =
78 117 109 101 114 105 99 97 108

>> q = 1*sd(1:9)

q =
78 117 109 101 114 105 99 97 108

Note that in the case where we are multiplying the string by 1, MATLAB treats the string as a vector
of ASCII equivalent numbers and multiplies it by 1. Recalling that sd(1:9) = ’Numerical ’ we can
deduce that the ASCII code for N is 78 and for u it is 117, etc.

We convert a vector of ASCII code to a string using the MATLAB char function. For example

>> char(q)

ans =
Numerical

To increase each ASCII code number by 3, and then to convert to the character equivalent we have

>> char(q+3)

ans =
Qxphulfdo

>> char((q+3)/2)

ans =
(<84:6327

>> double(ans)

ans =
40 60 56 52 58 54 51 50 55

char(q) has converted the ASCII string back to characters. Here we have shown that it is possible to do
arithmetic on the ASCII code numbers and, if we wish, convert back to characters. If after manipulation
the ASCII code values are non-integer, they are rounded down.

It is important to appreciate that the string ‘123’ and the number 123 are not the same. Thus
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>> a = 123

a =
123

>> s1 = ’123’

s1 =
123

Using whos shows the class of the variables a and s1 as follows:

>> whos
Name Size Bytes Class
a 1x1 8 double array
s1 1x3 6 char array

A total of 4 elements using 14 bytes. Thus, a character requires 2 bytes, a double precision num-
ber requires 8 bytes. We can convert strings to their numeric equivalent using the functions str2num,
str2double as follows:

>> x=str2num(’123.56’)

x =
123.5600

Appropriate strings can be converted to complex numbers but the user should take care, as we
illustrate below:

>> x = str2num(’1+2j’)

x =
1.0 + 2.0000i

but

>> x = str2num(’1+2 j’)

x =
3.0000 0 + 1.0000i

Note that str2double can be used to convert to complex numbers and is more tolerant of spaces.

>> x = str2double(’1+2 j’)

x =
1.0 + 2.0000i
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There are many MATLAB functions which are available to manipulate strings; see the appropriate
MATLAB manual. Here we illustrate the use of some functions.

bin2dec(’111001’) or bin2dec(’111 001’) returns 57.
dec2bin(57) returns the string ‘111001’.
int2str([3.9 6.2]) returns the string ‘4 6’.
num2str([3.9 6.2]) returns the string ‘3.9 6.2’.
str2num(’3.9 6.2’) returns 3.9000 6.2000.
strcat(’how ’,’why ’,’when’) returns the string ‘howwhywhen’.
strcmp(’whitehouse’,’whitepaint’) returns 0 because strings are not identical.
strncmp(’whitehouse’,’whitepaint’,5) returns 1 because first the 5 characters of strings are

identical.
date returns the current date, in the form 24-Aug-2011.

A useful and common application of the function num2str is in the disp and title functions see
Sections 1.13 and 1.14 respectively.

1.13 INPUT AND OUTPUT IN MATLAB
To output the names and values of variables, the semicolon can be omitted from assignment statements.
However, this does not produce clear scripts or well-organized and tidy output. It is often better practice
to use the function disp since this leads to clearer scripts. The disp function allows the display of text
and values on the screen. To output the contents of the matrix A on the screen we write disp(A). Text
output must be placed in single quotes, for example,

>> disp(’This will display this test’)
This will display this test

Combinations of strings can be printed using square brackets [ ], and numerical values can be placed
in text strings if they are converted to strings using the num2str function. For example,

>> x = 2.678;
>> disp([’Value of iterate is ’, num2str(x), ’ at this stage’])

will place on the screen

Value of iterate is 2.678 at this stage

The more flexible fprintf function allows formatted output to the screen or to a file. It takes the
form

fprintf(’filename’,’format_string’,list);

Here list is a list of variable names separated by commas. The filename parameter is optional; if not
present, output is to the screen rather than to the filename. The format string formats the output. The
basic elements that may be used in the format string are
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%P.Qe for exponential notation
%P.Qf fixed point
%P.Qg becomes %P.Qe or %P.Qf whichever is shorter
\n gives a new line

Note that P and Q in the preceding are integers. The integer string characters, including a period (.),
must follow the % symbol and precede the letter e, f, or g. The integer before the period (P) sets the
field width; the integer after the period (Q) sets the number of decimal places after the decimal point.
For example, %8.4f and %10.3f give field width 8 with four decimal places and 10 with three decimal
places, respectively. Note that one space is allocated to the decimal point. For example,

>> x = 1007.461; y = 2.1278; k = 17;
>> fprintf(’\n x = %8.2f y = %8.6f k = %2.0f \n’,x,y,k)

outputs

x = 1007.46 y = 2.127800 k = 17

whereas

>> p = sprintf(’\n x = %8.2f y = %8.6f k = %2.0f \n’,x,y,k)

gives

p =

x = 1007.46 y = 2.127800 k = 17

Note that p is a string vector, and can be manipulated if required.
The degree to which the MATLAB user will want to improve the style of MATLAB output will

depend on circumstances. Is the output generated for other persons to read, perhaps requiring a clearly
structured output, or is it just for the user alone and therefore requiring only a simple output? Will the
output be filed away for future use, or is it a quick result that is rapidly discarded? In this text we have
given examples of very simple output and sometimes quite elaborate output.

We now consider the input of text and data via the keyboard. An interactive way of obtaining input
is to use the function input. One form of this function is

>> variable = input(’Enter data: ’);
Enter data: 67.3

The input function displays the text as a prompt and then waits for a numeric entry from the keyboard,
67.3 in this example. This is assigned to variable when the return key is pressed. Scalar values or
arrays can be entered in this way. The alternative form of the input function allows string input thus:

>> variable = input(’Enter text: ’,’s’);
Enter text: Male

This assigns the string Male to variable.
For large amounts of data, perhaps saved in a previous MATLAB session, the function load allows

the loading of files from disk using
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load filename

The filename normally ends in .mat or .dat. A file of sunspot data already exists in the MATLAB

package and can be loaded into memory using the command

>> load sunspot.dat

In the following example, we save the values of x, y, and z in file test001, clear the workspace and the
reload x, y, and z into the workspace, thus

>> x = 1:5; y = sin(x); z = cos(x);
>> whos

Name Size Bytes Class
x 1x5 40 double array
y 1x5 40 double array
z 1x5 40 double array

>> save test001
>> clear all, whos Nothing listed
>> load test001
>> whos

Name Size Bytes Class
x 1x5 40 double array
y 1x5 40 double array
z 1x5 40 double array

>> x = 1:5; y = sin(x); z = cos(x);

Here we only save x, y in file test002 and then we clear the workspace and reload x, y thus:

>> save test002 x y
>> clear all, whos Nothing listed
>> load test002 x y, whos

Name Size Bytes Class
x 1x5 40 double array
y 1x5 40 double array

Note that the statement load test002 has the same effect as load test002 x y. Finally we clear the
workspace and reload x into the workspace thus:

>> clear all, whos Nothing listed
>> load test002 x, whos

Name Size Bytes Class
x 1x5 40 double array

Files composed of Comma Separated Values (CSV) are commonly used to exchange large amounts
of tabular data between software applications. The data is stored in plain text and the fields are sepa-
rated by commas. The files are easily editable using common spread sheet applications (e.g. MS Excel).
If data has been generated elsewhere and saved as a CSV file it can be imported into MATLAB
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using csvread. We use csvwrite to generate a CSV file from MATLAB. In the following MATLAB

statements we save the vector p, we clear the workspace and then reload p, but now call it the vector g:

>> p = 1:6;
>> whos
Name Size Bytes Class
p 1x6 48 double array

>> csvwrite(’test003’,p)
>> clear
>> g = csvread(’test003’)
g =

1 2 3 4 5

As a further example of the load and save commands, consider the following example:

% e4s110
x = [1 0 2 3 1]; y = [-1 0 4 1 1];
A = [x;x.^2; x.^3;x.^4;x.^5];
B = [x;2*x; 3*x; 4*x;5*x];
save test004 A B
clear all
whos
disp(’nothing listed’)
load test004
C = A*B;
disp(’Results of matrix multiplication’)
disp(C)

Running script e4s110 gives

>> e4s110
nothing listed
Results of matrix multiplication

24 0 48 72 24
54 0 108 162 54

138 0 276 414 138
378 0 756 1134 378

1074 0 2148 3222 1074

1.14 MATLAB GRAPHICS
MATLAB provides a wide range of graphics facilities which may be called from within a script or
used simply in command mode for direct execution. We begin by considering the plot function. This
function takes several forms. For example,
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Table 1.2 Symbols and characters used in plotting

Line Symbol Point Symbol Color Character
Solid - point . yellow y

Dashed - - plus + red r
Dotted : star * green g

Dashdot -. circle o blue b
x mark × black k

plot(x,y) plots the vector x against y. If x and y are matrices the first column of x is plotted against
the first column of y. This is then repeated for each pair of columns of x and y.
plot(x1,y1,’type1’,x2,y2,’type2’) plots the vector x1 against y1 using the line or point type given
by type1, and the vector x2 against y2 using the line or point type given by type2.

The type is selected by using the required symbol from Table 1.2. This symbol may be preceded by a
character indicating a color.

Semilog and log–log graphs can be obtained by replacing plot by semilogx, semilogy, or loglog
functions and various other replacements for plot are available to give special plots. Titles, axis labels
and other features can be added to a given graph using the functions xlabel, ylabel, title, grid, and
text. These functions have the following forms:

title(’title’) displays the title which is enclosed between quotes, at the top of the graph.
xlabel(’x_axis_name’) displays the name which is enclosed between quotes for the x-axis.
ylabel(’y_axis_name’) displays the name which is enclosed between quotes for the y-axis.
grid superimposes a grid on the graph.
text(x,y,’text-at-x,y’) displays text at position (x, y) in the graphics window where x and y are
measured in the units of the current plotting axes. There may be one point or many at which text is
placed depending on whether or not x and y are vectors.
gtext(’text’) allows the placement of text using the mouse by positioning it where the text is required
and then pressing the mouse button.
ginput allows information to be taken from a graphics window. The function takes two main forms.
The simplest is

[x,y] = ginput

This inputs an unlimited number of points into the vectors x and y by positioning the mouse cross-hairs
at the points required and then pressing the mouse button. To exit ginput the return key must be pressed.
If a specific number of points n are required, then we write

[x,y] = ginput(n)

In addition, the function axis allows the user to set the limits of the axes for a particular plot. This
takes the form axis(p) where p is a four-element row vector specifying the lower and upper limits of
the axes in the x and y directions. The axis statement must be placed after the plot statement to which
it refers. Similarly the functions xlabel, ylabel, title, grid, text, gtext, and axis must follow the
plot to which they refer.

Script e4s102.m gives the plot which is output as Fig. 1.1. The function hold is used to ensure that
the two graphs are superimposed.



30 CHAPTER 1 AN INTRODUCTION TO MATLAB®

FIGURE 1.1

Superimposed graphs obtained using plot(x,y) and hold statements.

% e4s102.m
x = -4:0.05:4;
y = exp(-0.5*x).*sin(5*x);
figure(1), plot(x,y)
xlabel(’x-axis’), ylabel(’y-axis’)
hold on
y = exp(-0.5*x).*cos(5*x);
plot(x,y), grid
gtext(’Two tails...’)
hold off

Script e4s102.m illustrates how few MATLAB statements are required to generate a graph.
The function fplot allows the user to plot a previously defined function between given limits. The

important difference between fplot and plot is that fplot chooses the plotting points in the given
range adaptively depending on the rate of change of the function at that point. Thus, more points
are chosen when the function is changing more rapidly. This is illustrated by executing the MATLAB

script e4s103.m:

% e4s103.m
y = @(x) sin(x.^3);
x = 2:.04:4;
figure(1)
plot(x,y(x),’o-’)
xlabel(’x’), ylabel(’y’)
figure(2)
fplot(y,[2 4])
xlabel(’x’), ylabel(’y’)

Note figure(1) and figure(2) direct the graphic output to separate windows. The interpretation of
the anonymous function @(x) sin(x.^3) is explained in Section 1.19.
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FIGURE 1.2

Plot of y = sin(x3) using 51 equispaced plotting
points.

FIGURE 1.3

Plot of y = sin(x3) using the function fplot to choose
plotting points adaptively.

Running script e4s103.m produces Fig. 1.2 and Fig. 1.3. In the plot example, we have deliberately
chosen an inadequate number of plotting points and this is reflected in the quality of Fig. 1.2. The
function fplot produces a smoother and more accurate curve. Note that fplot only allows a function
or functions to be plotted against an independent variable. Parametric plots cannot be created by fplot.

The MATLAB function ezplot is similar to fplot in the sense that we only have to specify the
function, but has the disadvantage that the step size is fixed. However, ezplot does allow parametric
plots and three-dimensional plots. For example

>> ezplot(@(t) (cos(3*t)), @(t) (sin(1.6*t)), [0 50])

is a parametric plot but the plot is rather coarse.
We have seen how fplot helps in plotting difficult functions. Other functions which help to clarify

when the plot of a function is unclear or unpredictable are ylim and xlim. The function ylim allows the
user to easily limit the range of the y-axis in the plot and xlim does the same for the x-axis. Their use
is illustrated by the following example. Fig. 1.4 (without the uses of xlim and ylim) is unsatisfactory
since it gives little understanding about how the function behaves except at the specific points x = −2.5,
x = 1, and x = 3.5.

>> x = -4:0.0011:4;

>> y =1./(((x+2.5).^2).*((x-3.5).^2))+1./((x-1).^2);

>> plot(x,y)

>> ylim([0,10])

Fig. 1.5 shows how the MATLAB statement ylim([0,10]) restricts the y-axis to maximum value
of 10. This gives a clear picture of the behavior of the graph. There are a number of special features
available in MATLAB for the presentation and manipulation of graphs and some of these are now be
discussed. The subplot function takes the form subplot(p,q,r) where p and q split the figure window
into a p × q grid of cells and places the plot in the rth cell of the grid, numbered consecutively along



32 CHAPTER 1 AN INTRODUCTION TO MATLAB®

FIGURE 1.4

Function plotted over the range from −4 to 4. It has a
maximum value of 4 × 106.

FIGURE 1.5

The same function as plotted in Fig. 1.4 but with a
limit on the range of the y-axis.

the rows. This is illustrated by running script e4s104.m which generates six different plots, one in each
of the six cells. These plots are given in Fig. 1.6.

% e4s104.m

x = 0.1:.1:5;

subplot(2,3,1), plot(x,x)

title(’plot of x’), xlabel(’x’), ylabel(’y’)

subplot(2,3,2), plot(x,x.^2)

title(’plot of x^2’), xlabel(’x’), ylabel(’y’)

subplot(2,3,3), plot(x,x.^3)

title(’plot of x^3’), xlabel(’x’), ylabel(’y’)

subplot(2,3,4), plot(x,cos(x))

title(’plot of cos(x)’), xlabel(’x’), ylabel(’y’)

subplot(2,3,5), plot(x,cos(2*x))

title(’plot of cos(2x)’), xlabel(’x’), ylabel(’y’)

subplot(2,3,6), plot(x,cos(3*x))

title(’plot of cos(3x)’), xlabel(’x’), ylabel(’y’)

The current plot can be held on screen by using the function hold and subsequent plots are drawn
over it. The function hold on switches the hold facility on while hold off switches it off. The figure
window can be cleared using the function clf.

MATLAB provides many other plot functions and styles. To illustrate two of these, the polar and
compass plots, we display the roots of x5 − 1 = 0 which have been determined using the MATLAB

function roots. This function is described in detail in Section 3.11. Having determined the five roots
of this equation we plot them using both polar and compass. The function polar requires the absolute
values and phase angles of the roots, whereas as the function compass plots the real parts of the roots
against their imaginary parts.
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FIGURE 1.6

An example of the use of the subplot function.

>> p=roots([1 0 0 0 0 1])

p =
-1.0000
-0.3090 + 0.9511i
-0.3090 - 0.9511i
0.8090 + 0.5878i
0.8090 - 0.5878i

>> pm = abs(p.’)

pm =
1.0000 1.0000 1.0000 1.0000 1.0000

>> pa = angle(p.’)

pa =
3.1416 1.8850 -1.8850 0.6283 -0.6283

>> subplot(1,2,1), polar(pa,pm,’ok’)
>> subplot(1,2,2), compass(real(p),imag(p),’k’)

Fig. 1.7 shows these subplots.
An interesting development introduced in the 2016b release of MATLAB are polar scatter and polar

histogram plots that allow data to be plotted in polar coordinates. For the polar scatter function the
points are plotted on a circle, each point being denoted by a circle, or some other selected symbol.
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FIGURE 1.7

polar and compass plots showing the roots of x5 − 1 = 0.

For the polar histogram the data is divided into bins in the usual manner of histogram plots but the
bins are plotted as appropriate size segments of a circle. These processes are implemented using the
MATLAB functions polarscatter and polarhistogram. The simplest form of polarscatter is given
by:

polarscatter(th,r)

Here the th and r parameters are vectors of the same size providing the polar coordinates, so a call
would take the form:

>> th = -2*pi:0.1:2*pi; r= 2*cos(th.*th);
>> polarscatter(th,r,’black’)

This produces the diagram shown on the left side of Fig. 1.8. Additional parameters may be included
in the function parameter list to increase marker size, provide color and fill the markers, and change
marker symbol. Remarkably, different marker sizes can be set by using a vector for the marker sizes.

The following commands will produce the same figure but with much larger black, filled circles.

>> th2 = -2*pi:pi/4:2*pi; r2= 2*th2;
>> polarscatter(th2,r2,150,’black’,’filled’)

Note the extra parameter values used are, 150,’black’,’filled’. These provide the marker size, 150,
the color, black, and require that the plotting symbol is filled. These commands produce the diagram
on the right side of Fig. 1.8.

We now consider the polar histogram plot this divides a data set into a specific number of groups
called bins. The data values of equal value are placed in the separate bins so in general the bins will
contain a different numbers of values according to the frequency with which the data values occur. The
polar histogram function plots a histogram of the data in polar coordinates. As an example we give the
following commands which are executed in the command window:

>> x = 2*pi*rand(1,100);
>> polarhistogram(x,20)

which produces the polar histogram shown on the left side of Fig. 1.9.
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FIGURE 1.8

Polar scatter plots. Left diagram with default size circle markers. Right diagram with larger filled black circles.

FIGURE 1.9

Polar scatter histogram.

The polar histogram function can include additional parameters. A new color can be set using
FaceColor together with an indicator of color, for example ‘red’ or ‘black’, which plots the histogram
blocks in red or black; transparency can be altered using FaceAlpha and a numerical value between 0
and 1. The higher the numerical value associated with ‘FaceAlpha’ the less transparent the image. As
an example we give the commands:

>> x = 2*pi*randn(1,100);
>> polarhistogram(x,20,’Facecolor’, ’black’, ’FaceAlpha’, 0.1)

These commands produce the output shown on the right side of Fig. 1.9. In this plot the bin seg-
ments are clearly transparent because of the low value, 0.1 used for the parameter FaceAlpha in the
command.

1.15 THREE-DIMENSIONAL GRAPHICS
It is often convenient to draw a three-dimensional graph of a function or set of data to gain a deeper
insight into the nature of the function or data. MATLAB provides powerful and extensive facilities to
allow the user to draw a wide range of three-dimensional graphs. Here we only briefly introduce a small
selection of these functions. These are the functions meshgrid, mesh, surfl, contour, and contour3.
It should be noted that the more complex graphs of this type may take a significant time to draw on the
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screen, depending on the algebraic complexity of the function, the amount of detail required, and the
power of the computer being used.

Usually three-dimensional functions are plotted to illustrate particular features of the function such
as regions where maxima or minima lie. Plotting surfaces to illustrate these features can be difficult
and some careful analysis of the function may be needed before the graph is drawn successfully. In
addition, even when the region of interest is successfully located and plotted, the feature of interest
may be hidden and it is then be necessary to choose a different viewpoint. Discontinuities may also be
present and cause plotting problems.

For the function z = f (x, y) the MATLAB function meshgrid is used to generate a complete set
of points in the x–y plane for the three-dimensional plotting functions. We can then compute the
values of z and these are finally plotted by using one of the functions mesh, surf, surfl, or surfc. For
example, to plot the function

z = (−20x2 + x)/2 + (−15y2 + 5y)/2 for x = −4 : 0.2 : 4 and y = −4 : 0.2 : 4

we first set up the values of the x–y domain and then compute z corresponding to these x and y values
using the given function. Finally we plot the three-dimensional graph using the function surfl. This is
achieved by using the script e4s105.m. Note how the function figure is used to direct the output to a
graphics window so that the first plot is not overwritten by the second.

% e4s105.m
[x,y] = meshgrid(-4.0:0.2:4.0,-4.0:0.2:4.0);
z = 0.5*(-20*x.^2+x)+0.5*(-15*y.^2+5*y);
figure(1)
surfl(x,y,z); axis([-4 4 -4 4 -400 0])
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)
figure(2)
contour3(x,y,z,15); axis([-4 4 -4 4 -400 0])
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)
figure(3)
contourf(x,y,z,10)
xlabel(’x-axis’), ylabel(’y-axis’)

Running script e4s105.m generates the plots shown in Fig. 1.10, Fig. 1.11, and Fig. 1.12. The first plot
is created using surfl and shows the function as a surface; the second is created by contour3 and
is a three-dimensional contour plot of the surface; and the third, created using contourf, provides a
two-dimensional filled contour plot.

When plotting surfaces a very useful function is view. This function allows the surface or mesh to
be viewed from different positions. The function has the form view(az,el) where az is the azimuth
and el is the elevation of the viewpoint required. Azimuth may be interpreted as the viewpoint rotation
about the z-axis and elevation as the rotation of the viewpoint about the x–y plane. A positive value of
the elevation gives a view from above the object and a negative value a view from below. Similarly a
positive value of azimuth gives a counterclockwise rotation of the viewpoint about the z-axis while a
negative value gives a clockwise rotation. If the view function is not used, the default values are −37.5◦
for the azimuth and 30◦ for the elevation.

There are many other three-dimensional plotting facilities but they are not described here.
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FIGURE 1.10

Three-dimensional surface using default view.

FIGURE 1.11

Three-dimensional contour plot.

FIGURE 1.12

Filled contour plot.

1.16 IMPLICIT GRAPHICS
Since the 2016b release, MATLAB has the facility to plot implicit functions. An explicit function in two
dimensions takes the form y = f (x) whereas an implicit function takes the form f (x, y) = 0. Plotting
a two-dimensional implicit function is achieved by using the MATLAB function fimplicit. To plot
an implicit function of the form f (x, y, z) = 0, that is in three dimensions, the MATLAB function
fimplicit3 is used.

An example of a two-dimensional implicit function is the quadrafolium, given by the implicit func-
tion:

(x2 + y2)3 − 4x2y2 = 0

This function can be plotted for x and y the range −1 to 1 by using the MATLAB statement:

>> fimplicit(@ (x,y) (x.^2+y.^2).^3-4*x.^2 .*y.^2,[-1 1])

The result of executing this command is shown in the left side of Fig. 1.13.
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FIGURE 1.13

Implicit quadrafolium and folium of Descartes.

Another function, called the folium of Descartes, is defined by:

x3 + y3 − 3y = 0

Using MATLAB to plot this function, we have:

>> fimplicit(@ (x,y) x.^3+y.^3-3*x.*y,[-4 4])

The result of executing this command is shown in the right side of Fig. 1.13.
Note that for the function fimplicit the ranges for each variable can be different. In this case the

single range for example [−4 4] can be replaced by [−5 5 0 6]. Here the first pair of values provide
the range for the x variable and the second pair provide the range for the y variable. In addition the
line type, color, and thickness can be specified. For example including the parameter -g, will ensure
a continuous green line is use for the graph and using the parameter pair LineWidth, 4 will ensure a
thicker line is used.

We can use the MATLAB function fimplicit3 to plot three-dimensional implicit functions. The
following three-dimensional implicit function represents the general form of a torus:

(√
x2 + y2 − a

)2

+ z2 − b2 = 0

where the distance form the center of the torus to the center of the torus ring is a and the radius of the
torus tube is b.

As an example, suppose we plot one torus inside another. The distance from the center of the torus
to the center of the torus tubes are a = 1 and a = 3 and the radius of both torus tube is b = 0.4. This is
achieved by using the script e4s106.m:

% e4s106.m
fimplicit3(@ (x,y,z) (sqrt(x.^2 +y.^2)-3).^2 ...
+z.^2-0.4^2,[-2*pi 2*pi -2*pi 2*pi, -0.4,0.4],...
’EdgeColor’, ’none’, ’FaceAlpha’,0.9);
hold on
fimplicit3(@ (x,y,z) (sqrt(x.^2 +y.^2)-1).^2 ...
+z.^2-0.4^2,[-2*pi 2*pi -2*pi 2*pi, -0.4,0.4],...
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’EdgeColor’, ’none’, ’FaceAlpha’,0.9);
view([-5.036 -75.565])

In this example, we use the MATLAB function fimplicit3, together with a number of parameters.
These are: the implicit function we wish to plot, the range of each of the variables x, y, and z, the param-
eter EdgeColor, which gives the color of any edge lines on the surface, and the parameter FaceAlpha,
which gives the transparency of the surface. In this case we have used EdgeColor as zero, so that no
edges appear and FaceAlpha as 0.9 to provide limited transparency. The variables x and y are defined
in the range −2π to 2π and z is between −0.4 and 0.4. Notice a view statement is also included which
a direction of view favored by the user. This may be introduced by selecting the figure in its window
and then it may be rotated, panned, and zoomed or viewed in the standard window. Once an acceptable
view is obtained the code may be updated to provide this specific view.

We do not show the figure generated by this code. If the reader runs the code a pair of tori will be
plotted.

1.17 MANIPULATING GRAPHICS – HANDLE GRAPHICS
Handle graphics allows the user to choose for a particular plot, font type, line thickness, symbol type
and size, axes form, and many other features for a particular figure. It introduces more complexity into
MATLAB but has considerable benefits. Here we give a very brief introduction to some of the main
features. There are two key functions, get and set. The get function allows the user to obtain detailed
information about a particular graphics function such as: plot, title, xlabel, ylabel, and others. The
function set allows the user to modify the standard setting for the particular graphics element such as
xlabel or plot. In addition, gca can be used with set to retrieve the handles of the axes of the current
figure and with get to manipulate the properties of the axes of that figure.

To illustrate the details involved in a simple graphics statement, consider the following statements,
where handles h and h1 have been introduced for the plot and title functions:

>> x = -4:.1:4;
>> y = cos(x);
>> h = plot(x,y);
>> h1 = title(’cos graph’)

To obtain information about the detailed structure of the plot and title functions we use get and the
appropriate handle as follows. Note that only a selection of the properties produced by get are shown.

>> get(h)
Color: [0 0 1]

EraseMode: ’normal’
LineStyle: ’-’
LineWidth: 0.5000

Marker: ’none’
MarkerSize: 6

MarkerEdgeColor: ’auto’
..........................[etc]
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However for the title function we have:

>> get(h1)
FontName = Helvetica
FontSize = [10]
FontUnits = points
HorizontalAlignment = center

LineStyle = -
LineWidth = [0.5]
Margin = [2]
Position = [-0.00921659 1.03801 1.00011]
Rotation = [0]
String = cos graph
..........................[etc]

Notice there are different properties for plot and title. Script e4s106.m illustrates the use of handle
graphics:

% e4s107.m
% Example for handle graphics
x = -5:0.1:5;
subplot(1,3,1)
e1 = plot(x,sin(x)); title(’sin x’)
subplot(1,3,2)
e2 = plot(x,sin(2*round(x))); title(’sin round x’)
subplot(1,3,3)
e3 = plot(x,sin(sin(5*x))); title(’sin sin 5x’)

Running script e4s107.m gives Fig. 1.14.
We now modify the script e4s106.m using a sequence of set statements to give script e4s108.m.

% e4s108.m
% Example for handle graphics
x = -5:0.1:5;
s1 = subplot(1,3,1);
e1 = plot(x,sin(x)); t1 = title(’sin(x)’);
s2 = subplot(1,3,2);
e2 = plot(x,sin(2*round(x))); t2 = title(’sin(round(x))’);
s3 = subplot(1,3,3);
e3 = plot(x,sin(sin(5*x))); t3 = title(’sin(sin(5x))’);
% change dimensions of first subplot
set(s1,’Position’,[0.1 0.1 0.2 0.5]);
%change thickness of line of first graph
set(e1,’LineWidth’,6)
set(s1,’XTick’,[-5 -2 0 2 5])
%Change all titles to italics
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FIGURE 1.14

Plots illustrating aspects of handle graphics.

set(t1,’FontAngle’,’italic’), set(t1,’FontWeight’,’bold’)
set(t1,’FontSize’,16)
set(t2,’FontAngle’,’italic’)
set(t3,’FontAngle’,’italic’)
%change dimensions of last subplot
set(s3,’Position’,[0.7 0.1 0.2 0.5]);

The position statement has the values
[shift from left, shift from bottom, width, height].

The size of the plotting area is taken as a unit square. Thus

set(s3,’Position’,[0.7 0.1 0.2 0.5]);

shifts the figure 0.7 from the left and 0.1 from the bottom; its width is 0.2 and its height is 0.5. It
may need some experimentation to get the required effect. Executing script e4s107.m gives Fig. 1.15.
Notice the differing sizes of the boxes, thicker line in the first graph, bold title different ticks on x-axis
and that all the titles are in italics, many other aspects could have been changed.

The following example shows how we can manipulate the various properties of the axes in Fig. 1.16
using gca with set which gets the current axes properties. The examples that follow show the use of
gca in altering various properties of the axes:
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FIGURE 1.15

Plot of functions shown in Fig. 1.14 illustrating further handle graphs features.

>> x = -1:0.1:2; h = plot(x,cos(2*x));

These statements give left plot in Fig. 1.16.

>> get(gca,’FontWeight’)

ans =
normal

>> set(gca,’FontWeight’,’bold’)
>> set(gca,’FontSize’,16)
>> set(gca,’XTick’,[-1 0 1 2])

These additional statements provide the right plot of Fig. 1.16. Note that the differences produced
larger bold font.

An alternative approach to manipulating font styles and other features is illustrated in script
e4s109.m.

% e4s109.m
% Example of the use of special graphics parameters in MATLAB
% illustrates the use of superscripts, subscripts,
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FIGURE 1.16

Plot of cos(2x). The axes of the right-hand plot are enhanced using handle graphics.

% Fontsize and special characters
x = -5:.3:5;
plot(x,(1+x).^2.*cos(3*x),...
’linewidth’,1,’marker’,’hexagram’,’markersize’,12)
title(’(\omega_2+x)^2\alpha cos(\omega_1x)’,’fontsize’,14)
xlabel(’x-axis’), ylabel(’y-axis’,’rotation’,0)
gtext(’graph for \alpha = 2,\omega_2 = 1, and \omega_1 = 3’)

Executing script e4s109.m provides the graph shown in Fig. 1.17.
We now describe the features that were used in this script. We have used Greek characters from an

extensive range of symbols that can be introduced using the backslash character “\”. The following
gives examples of how these characters may be introduced:

• \alpha gives α,
• \beta gives β,
• \gamma gives γ .

Any of the Greek symbols may be obtained by typing the backslash followed by the standard
English name of the Greek letter. Titles and axis labels may include superscripts and subscripts by
preceding the subscript character by “_” and the superscript by “∧”. Font sizes may be specified by
placing the additional parameter ’fontsize’ in the xlabel, ylabel, or title statements, followed by
and separated by a comma from the actual font size required. For example,
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FIGURE 1.17

Plot of (ω2 + x)2α cos(ω1x).

title(’(\omega_2+x)^2\alpha*cos(\omega_1*x)’,’fontsize’,14)

gives

(ω2 + x)2α ∗ cos(ω1 ∗ x)

in 14 point font. In the plot function itself, additional markers for the graph points are available and
may be indicated by using the additional parameter ’marker’ followed by the name of the marker, for
example,

’marker’,’hexagram’

The size of the marker may also be specified using the additional parameter ‘markersize’ followed by
the required marker size thus:

’markersize’,12

The line thickness may also be adjusted using the parameter ’linewidth’, for example,

’linewidth’,1

Finally, the orientation of any label may be changed using ’rotation’. For example,

’rotation’,0

This additional parameter with the setting zero makes the label horizontal to the y-axis rather than the
usual vertical orientation; the value of the parameter gives the angle in degrees.

A further more complex example involving reference to a partial differential equation in a MATLAB

text statement is as follows:

gtext(’Solution of \partial^2V/\partialx^2+\partial^2V/\partialy^2 = 0’)

This leads to the text

Solution of ∂2V/∂x2 + ∂2V/∂y2 = 0
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being placed in the current graphics window at a point selected using the cross-hairs cursor and clicking
the mouse button.

In addition, features may be included in conjunction with the \ followed by a font name parameter
which allows the specification of any available font. Examples are \bf that gives a bold style and \it
that gives an italic style.

An important issue in placing figures in a manuscript is that they must have a consistent position
and size and must be easy to read. The listed graphics scripts work satisfactorily but would not provide
the quality required if directly imported into this manuscript. An example of this is shown in Fig. 1.14.
To ensure that size and position of the figures generated by the MATLAB scripts are generally consistent
and their fonts easily read, the following statements are added to all scripts producing graphical output
except for Figs. 1.14, 1.15, and 1.16.

set(0,’defaultaxesfontsize’,16)
set(0,’defaultaxesfontname’,’Times New Roman’)
set(0,’defaulttextfontsize’,12)
set(0,’defaulttextfontname’,’Times New Roman’)
axes(’position’,[0.30 0.30 0.50 0.50])

These statements are examples of handle graphics. The first and second statements set the fonts used
for the axes to 16 point Times New Roman. The third and fourth statements set the fonts used in the
plot to 12 point Times New Roman and the fifth statement controls the size of the graph within the
graphs window. Finally, we add a statement such as print -depsc Fig101.eps at the end of each
script that generates a graph. This statement saves the plot as an extended postscript (eps) format file
for inclusion in the manuscript.

This was used in the creation and placement of the MATLAB graphs in this book. These are not
shown in the text listings because they are the same for each script.

1.18 SCRIPTING IN MATLAB
In some of the previous sections we have created some simple MATLAB scripts that have allowed
a series of commands to be executed sequentially. However, many of the features usually found in
programming languages are also provided in MATLAB to allow the user to create versatile scripts. The
more important of these features are described in this section. It must be noted that scripting is done
in the edit window using a text editor appropriate to the system, not in the command window which
only allows the execution of statements one at a time or several statements provided that they are on
the same line.

MATLAB does not require the declaration of variable types, but for the sake of clarity the role
and nature of key variables may be indicated by using comments. Any text following the symbol %
is considered a comment. In addition, there are certain variable names which have predefined special
values for the convenience of the user. They can, however, be redefined if required. These are

pi which equals π

inf the result of dividing by zero
eps which is set to the particular machine accuracy
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realmax largest positive floating-point number
realmin smallest positive floating-point number
NaN which is not a number produced on dividing zero by zero
i,j both equal

√−1.

Assignment statements in a MATLAB script take the form

variable = <expression>;

The expression is calculated and the value assigned to the variable on the left-hand side. If the semi-
colon is omitted from the end of these statements, the names of the variable(s) and the assigned value(s)
are displayed on the screen. If an expression is not assigned explicitly to a variable then the value of
the expression is calculated, assigned to the variable ans and displayed.

In previous sections it was stated that generally a variable in MATLAB is assumed to be a matrix
of some kind; its name must start with a letter and may be followed by any combination of digits and
letters; a maximum of 32 characters is recognized. It is good practice to use a meaningful variable
name. The variable name must not include spaces or hyphens. However, the underscore character is
a useful replacement for a space. For example, test_run is acceptable; test run and test-run are
not. It is very important to avoid the use of existing MATLAB commands, function names, or even the
word MATLAB itself! MATLAB does not prevent their use but using them can lead to problems and
inconsistencies. An expression in MATLAB is a valid combination of variables, constants, operators,
and functions. Brackets can be used to alter or clarify the precedence of operations. The precedence of
operation for simple operators is first \, second *, third /, and finally + and - where

^ raises to a power
* multiplies
/ divides
+ adds
- subtracts

The effects of these operators in MATLAB have already been discussed.
Unless there are instructions to the contrary, a set of MATLAB statements in a script is executed in

sequence. This is the case in script e4s110.m.

% e4s110.m
% Matrix calculations for two matrices A and B
A = [1 2 3;4 5 6;7 8 9];
B = [5 -6 -9;1 1 0;24 1 0];
% Addition. Result assigned to C
C = A+B; disp(C)
% Multiplication. Result assigned to D
D = A*B; disp(D)
% Division. Result assigned to E
E = A\B; disp(E)

To allow the repeated execution of one or more statements, a for loop is used. This takes the form
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for <loop_variable> = <loop_expression>

<statements>

end

The <loop_variable> is a suitably named variable and <loop_expression> is usually of the form n:m

or m:i:n where n, i, and m are the initial, incremental, and final values of <loop_variable>. They
may be constants, variables, or expressions; they can be negative or positive but clearly they should be
chosen to take values consistent with the logic of the script. This structure should be used when the
loop is to be repeated a predetermined number of times.

Examples:

for i = 1:n

for j = 1:m

C(i,j) = A(i,j)+cos((i+j)*pi/(n+m))*B(i,j);

end

end

for k = n+2:-1:n/2

a(k) = sin(pi*k);

b(k) = cos(pi*k);

end

p = 1;

for a = [2 13 5 11 7 3]

p = p*a;

end

p

p = 1;

prime_numbs = [2 13 5 11 7 3];

for a = prime_numbs

p = p*a;

end

p

The first example illustrates the use of nested for loops, the second illustrates that upper and lower
limits can be expressions and the step value can be negative. The third example shows that the loop
does not have to use a uniform step and the fourth example, which gives an identical result to the third,
illustrates that the <loop_expression> can be any previously defined vector.

When assigning values to a vector in a for loop, the reader should note that the vector generated is
a row vector. For example,
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for i = 1:4
d(i) = i^3;

end

gives the row vector d = 1 8 27 64 but in this case it is not displayed.
The while statement is used when the repetition is subject to a condition being satisfied which is

dependent on values generated within the loop. This has the form

while <while_expression>
<statements>

end

The <while_expression> is a relational expression of the form e1 ◦ e2 where e1 and e2 are ordinary
arithmetic expressions as described before and ◦ is a relational operator defined as follows:

== equals
<= less than or equals
>= greater than or equals
~= not equals
< less than
> greater than

Relational expressions may be combined using the following logical operators:

& the and operator
| the or operator
~ the not operator
&& the scalar and operator. If the first condition is false then the second is not evaluated.
|| the scalar or operator. If the first condition is true then the second is not evaluated.

Note that false is zero and true is non-zero. Relational operators have a higher order of precedence than
logical operators.

Examples of while loops:

dif = 1;
x2 = 1;
while dif>0.0005

x1 = x2-cos(x2)/(1+x2);
dif = abs(x2-x1);
x2 = x1;

end

x = [1 2 3];
y = [4 5 8];
while sum(x) ~= max(y)

x = x.^2;
y = y+x;

end
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Note also that break stops the execution (and hence allows exit from) a while or for loop and that
break cannot be used outside of a while or for loop. The statement return must be used in these
circumstances.

A vital feature of all programming languages is the ability to change the sequence in which instruc-
tions are executed within the program. In MATLAB the if statement is used to achieve this and has the
general form

if < if_expression1 >
< statements >

elseif < if_expression2 >
< statements >
elseif < if_expression3 >

< statements >
...
...
else
< statements >
end

Here < if_expression1 >, etc., are relational expressions of the form e1 ◦ e2 where e1 and e2 are or-
dinary arithmetic expressions and ◦ is a relational operator as described before. Relational expressions
may be combined using logical operators.

Examples:

for k = 1:n
for p = 1:m

if k == p
z(k,p) = 1;

total = total+z(k,p);
elseif k<p

z(k,p) = -1;
total = total+z(k,p);

else
z(k,p) = 0;

end
end

end

if (x~=0) & (x<y)
b = sqrt(y-x)/x;
disp(b)

end

The MATLAB function switch provides an alternative to the if structure and is particularly useful
when many options must be considered. This has the form:
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switch < condition >
case ref1
< statements >

case ref2
< statements >

case ref3
< statements >

otherwise
< statements >

end

The following fragment of code allows the user to choose a particular plot, dependent on the value of n.
In the following script, the second plot has been chosen by setting n = 2.

x = 1:.01:10; n = 2
switch n
case 1
plot(x,log(x));
case 2
plot(x,x.*log(x));
case 3
plot(x,x./(1+log(x)));
otherwise
disp(’That was an invalid selection.’)
end

As a further example of the switch function, the following fragment of code allows the user to convert
an astronomical distance x given in AU (an astronomical unit), LY (a light year) or pc (a parsec) to km
by setting the string variable units to AU, LY, or pc respectively.

x = 2;
units = ’LY’
switch units

case {’AU’ ’Astronomical Units’}
km = 149597871*x

case {’LY’,’lightyear’}
km = 149597871*63241*x

case {’pc’ ’parsec’}
km = 149597871*63241*3.26156*x

otherwise
disp(’That was an invalid selection.’)

end

Note that if any statement in a MATLAB script is longer than one line then it must be continued by
using an ellipsis (...) at the end of the line.

The menu function creates a menu window with buttons to allow the user to select options. For
example:
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frequency = 123;
units = menu(’Select units for output data’, ’rad/s’,’Hz’, ’rev/min’)
switch units

case 1
disp(frequency)

case 2
disp(frequency/(2*pi))

case 3
disp(frequency*60/(2*pi))

end

creates a small window (called MENU) with three buttons, labeled ‘rad/s’, ‘Hz’, and ‘rev/min’. ‘click-
ing’ a particular button with the mouse provides a frequency converted to the chosen units.

1.19 USER-DEFINED FUNCTIONS IN MATLAB
MATLAB allows users to define their own functions but a specific form of definition must be followed.
The first form of function is the function m-file and is described as follows:

function < output_params > = func_name(< input_params >)
< func body >

< input_params > is either a single variable or a set of variable names separated by commas and
< output_params > is either a single variable or a list of variables separated by commas or spaces and
placed in square brackets. The function body consists of the statements defining the user’s function.
These statements will utilize the values of the input arguments and must include statements assigning
values to the output parameters. Once the function is defined it must be saved as an M-file under
the same name as the given < function_name >. Then the function can then be used as required. It
is good practice to put some comments describing the nature of the function immediately after the
function heading. Writing help followed by the function name in the command window will access
these comments.

To execute the function for specific parameters we write

< specific_out_params > = < func_name >(< assigned_input_params >)

where the < assigned_input_params > term is either a single parameter or a list of parameters sepa-
rated by commas. The < assigned_input_params > must match the <input_params > in the function
definition.

We now provide two examples of named functions.

Example 1.1. The Fourier series for a sawtooth wave is

y(t) = 1

2
−

∞∑
n=1

1

nπ
sin

(
2πnt

T

)
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where T is the period of the waveform. We can create a function to evaluate this for given values of t

and T . Since we cannot sum to infinity, we will sum to m terms, where m is a relatively large value.
Thus we can define the MATLAB function sawblade as follows. Note that this function has three input
arguments and one output.

function y = sawblade(t,T,n_trms)
% Evaluates, at instant t, the Fourier approximation of a sawtooth wave of
% period T using the first n_trms terms in the infinte series.
y = 1/2;
for n = 1:n_trms

y = y - (1/(n*pi))*sin(2*n*pi*t/T);
end

We can now use this function for a specific purpose. For example, if we wish to plot this waveform and
a period of T = 2 over the range t = 0 to 4 using only 50 terms in the series, we have

>> c = 1;
>> for t = 0:0.01:4, y(c) = sawblade(t,2,50); c = c+1; end
>> plot([0:0.01:4],y)

Further valid function calls are

>> y = sawblade(0.2*period,period,terms)

where period and terms have previously assigned values, or

>> y = sawblade(2,5.7,60)

or using the function feval

>> y = feval(’sawblade’,2,5.7,60)

A more important application of feval, which is widely used in this text, is in the process of defin-
ing functions which themselves have functions as parameters. These function m-files can be evaluated
internally in the body of the calling function by using feval.

Example 1.2. We now consider a further example which involves the generation of a matrix within
a function. The essential features of the finite element method applied to the static and/or dynamic
analysis of structures is to express the stiffness and inertia properties of a small section or element
of the structure in matrix form. These element matrices are then assembled to obtain matrices that
describe the overall stiffness and inertia for the whole structure. Knowing the forces acting on the
structure, we can obtain the static or dynamic response of the structure. One such element is a uniform
circular shaft. For this element the inertia matrix and the stiffness matrix, relating angular accelerations
and displacements, respectively, to applied torques are given by

K = GJ

L

[
1 −1

−1 1

]
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and

M = ρJL

6

[
2 1
1 2

]

where L is the length of the shaft, G and ρ are material properties and J is the polar second moment
of area of the shaft; a geometric property related to the diameter of the shaft, d . If we intend to create a
finite element package in MATLAB, which includes torsional elements then these matrices are required.
The following function generates them from the shaft properties as follows:

function [K,M] = tors_el(L,d,rho,G)
J = pi*d^4/32;
K = (G*J/L)*[1 -1;-1 1];
M = (rho*J*L/6)*[2 1;1 2];

Note that this function has four input arguments and outputs two matrices.

MATLAB allows the inclusion of the definition of any functions, called by a function, at the end
of the main function definition. This is convenient for the user since it allows all the elements of the
function definition to be presented together, rather than saved separately. This is only useful if the
nested function is only required by the main function. An example of this is shown in Section 3.11.1.
Here the function solveq is not a generally useful function but it is required by the function bairstow.
Therefore it is nested in bairstow. This arrangement has the advantage that bairstow is a complete
entity, it does not require solveq to be stored and available. Conversely, it has the minor disadvantage
that since it is not stored separately it cannot be used independently of bairstow.

In MATLAB release 2016b this feature was extended to allow scripts to call one or more functions.
Thus, if a particular script includes five function calls, then each of these functions can be defined after
the main calling script. This is a very useful development since it allows all the elements can be kept
and saved together rather than saved separately.

To illustrate this feature we provide the script e4s111.m, which uses two functions called fexlive
and fitnesslive to calculate a range of numerical values. The first group of statements is the script in
which the two functions are called. This is followed by the definitions of the two functions.

%e4s111.m
% Calling script
x = rand(5,2);
for i = 1:5

p(i) = x(i,2);
fv(i) = fexlive(p(i));

end
for i = 1:5

fitv(i) = fitnesslive(fv(i));
end
for i = 1:5

pr(i) = fitv(i)/sum(fitv);
end
fv
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fitv

disp(’Probabilities’)

pr

disp(’sum of probabilities = ’)

spr = sum(pr)

% The functions called in the above script are defined here

% ------------------------

function res1 = fexlive(x)

res1 = x.^2+cos(x);

end

% -----------------------------

function res2 = fitnesslive(val)

if val<=0

res2 = abs(val);

else

res2 = 1/val;

end

end

The script e4s111.m, including the functions, are saved together with an appropriate name and run.
Output from running script e4s111.m is shown here.

fv =

1.1223 1.1009 1.2160 1.2620 1.2980

fitv =

0.8910 0.9083 0.8223 0.7924 0.7704

Probabilities

pr =

0.2129 0.2171 0.1965 0.1894 0.1841

sum of probabilities =

spr =

1

We note that this is the expected valid output and illustrates that the script and the two function defini-
tions have been saved as a single entity.

MATLAB allows functions to be defined recursively. The technique provides a useful approach to
the definition of a range of functions, although in many cases a recursive approach is less efficient than
the standard iterative approach. Essentially in a recursive function definition the function definition
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calls within it the function itself. This is a natural approach for some mathematical functions which are
defined in this way. For example the Fibonacci series is

Fk+1 = Fk + Fk−1, for k = 2, 3, 4, ...

where F2 = F1 = 1.
One of the simplest recursive function definitions is based on the factorial formula f (n) =

nf (n− 1) where f (0) = 1. The following MATLAB function defines the factorial function recursively:

function y = facr(n)
% Factorial function implemented recurcively
if n<0

disp(’n must be positive’)
return

end
if n==0

y=1;
return

end
for i = 1:n

% here the function calls itself
y = n*facr(n-1);
end
end

Using this function we obtain the results

>> facr(4)

ans =
24

>> facr(-5)
n must be positive

>> facr(0)

ans =
1

Thus we obtain the expected results for various cases of using the factorial function. A more interesting
example is given for the evaluation of trigonometric integrals of the form:

In =
∫ b

a

cosn θ dθ
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or, alternatively, the same expression but with the sine function. The expression is evaluated using
simple integration by parts and takes the form:

In =
[
sin θ cos(n−1) θ/n

]b

a
+ n − 1

n

∫ b

a

cos(n−2) θ dθ

Taking limits between 0 and π/2, the first term vanishes and this equation may be rewritten in the form:

In =
(

n − 1

n

)
In−2

The same formula applies for the sine integral. We now provide a MATLAB recursive function for this
integral.

function I = cosnr(n)
% This function written recursively provides the integral of
% the nth degree cosine function in the range 0 to pi/2 if n >=2
if n==1

I = 1;
return

end
if n==2

I = pi/4;
return

end
% Here we call the function within the defintion of the function
I = (n-1)/n*cosnr(n-2);
end

We now calculate some values of the cosine integral for a range of values of the power n using
the recursive function cosnr and compare the results with those obtained using a MATLAB numerical
integration function integral. This is achieved using the script e4s112.m:

%e4s112.m
fprintf(’%1s %12s %12s\n’,’n’,’I1’,’I2’);
for n = 1:10

I1 = cosnr(n); I2 = integral(@(x) cos(x).^n,0,pi/2);
fprintf(’%2.0f %12.4f %12.4f\n’,n,I1,I2);

end

Running script e4s112.m produces the table of results for the integration of cosn(x) to the powers of
n = 0 to 10.

n I1 I2
1 1.0000 1.0000
2 0.7854 0.7854
3 0.6667 0.6667



1.19 USER-DEFINED FUNCTIONS IN MATLAB 57

4 0.5890 0.5890
5 0.5333 0.5333
6 0.4909 0.4909
7 0.4571 0.4571
8 0.4295 0.4295
9 0.4063 0.4063

10 0.3866 0.3866

Note that there is complete agreement to 4 decimal places between the two sets of results for the
integration.

An alternative and simpler form of the MATLAB user-defined function is the anonymous function.
This function is not saved as an m-file; it is either entered into the workspace from the command
window or from a script. For example, suppose we wish to define the function

( x

2.4

)3 − 2x

2.4
+ cos

(πx

2.4

)

This mathematical expression may be defined as an anonymous function in MATLAB as follows:

>> f = @(x) (x/2.4).^3-2*x/2.4+cos(pi*x/2.4);

An example calls of this function is f([1 2]) which produces two values corresponding to x = 1 and
x = 2. Another way of using this function is as an input parameter to another function. For example,

>> solution = fzero(f,2.9)
solution =

3.4825

This gives the zero of f closest to 2.9. A further example of its use is

>> x = 0:0.1:5; plot(x,f(x))

Here we must call f(x) because the plot function needs all the values of the function over the range
of x. Another form is

>> solution = fzero(@(x) (x/2.4).^3-2*x/2.4+cos(pi*x/2.4), 2.9)

Here we have used the anonymous function definition directly, rather than assigning it to a handle
(f in this case) and then using the handle.

If an m-file function has an anonymous function as one of its input arguments, then this anonymous
function can be evaluated directly without the use of the MATLAB function feval. If, however, the
function in the parameter list requires a multi-statement definition, a function m-file must be used, and
in this case feval must be used. In this text, to allow flexibility, when defining function m-files we have
used feval so that the user can input a function as an m-file function or as an anonymous function.

For example, we define the m-file functions sp_cubic and minandmax thus:

function y = sp_cubic(x)
y = x.^3-2*x.^2-6;
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function [minimum maximum] = minandmax(f,v)
% v is a vector with the start, increment and end value
y = feval(f,v); minimum = min(y); maximum = max(y);

Using this definition of minandmax means that f can be an anonymous or an m-file function. Thus,
using the anonymous function’s definition for f given before, we have

>> [lo hi] = minandmax(f,[-5:0.1:5]);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,lo,hi)

lo = -181.0000 hi = 69.0000

Alternatively, using the other form of the function

>> [lo hi] = minandmax(’sp_cubic’,[-5:0.1:5]);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,lo,hi)

lo = -181.0000 hi = 69.0000

give identical answers. However, suppose we define m-file function minandmax without the use of
feval as follows

function [minimum maximum] = minandmax(f,v)
% v is a vector with the start, increment and end value
y = f(v); minimum = min(y); maximum = max(y);

Then, if f is an anonymous function, we obtain the preceding results, but if f is the m-file function
sp_cubic, the function minandmax fails as shown below:

>> [lo hi] = minandmax(’sp_cubic’,[-5:0.1:5]);
>> fprintf(’lo = %8.4f hi = %8.4f\n’,lo,hi)
??? Subscript indices must either be real positive integers or logicals.

Error in ==> minandmax at 4
y = f(v);

1.20 DATA STRUCTURES IN MATLAB
Previous sections discussed the use of numerical and non-numerical data. We now introduce the cell
array structure which allows a more complex data structure. The cell data structure is indicated by curly
brackets, i.e., { }. As an example,

>> A = cell(4,1);
>> A = {’maths’; ’physics’; ’history’; ’IT’}
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A =
’maths’
’physics’
’history’
’IT’

We may refer to the individual components

>> p = A(2)

p =
’physics’

>> A(3:4)

ans =
’history’
’IT’

To access the contents of the cell we use curly brackets thus:

>> cont = A{3}

cont =
history

Note that history is no longer in quotes and thus we can reference individual characters as follows:

>> cont(4)

ans =
t

A cell array can include both numeric and string data and can also be generated using the cell function.
For example, to generate a cell with 2 rows and 2 columns we have

>> F = cell(2,2)

F =
[ ] [ ]
[ ] [ ]

To assign a scalar, an array, or a character string to a cell we write

>> F{1,1} = 2;
>> F{1,2} = ’test’;
>> F{2,1} = ones(3);
>> F
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F =
[ 2] ’test’
[3x3 double] [ ]

An equivalent way of generating F is

>> F = {[2] ’test’; [ones(3)] [ ]}

Because we cannot see the detailed content of F{2,1} in the preceding, we use the function celldisp
thus:

>> celldisp(F)

F{1,1} =
2

F{2,1} =
1 1 1
1 1 1
1 1 1

F{1,2} =
test

F{2,2} =
[ ]

The cell array allows us to group data of different sizes and types together in the form of an array and
access its elements by using subscripts.

The last form of data we consider is the structure, implemented in MATLAB using struct. This is
similar to a cell array but individual cells are indexed by name. A structure combines a number of fields,
each of which may be a different type. There is a general name for the field, for example, ’name’ or
’phone number’. Each of these fields can have specific values such as ’George Brown’ or ’12719’. To
illustrate these points consider the following example which sets up a structure called StudentRecords
containing three fields: NameField, FeesField, and SubjectField.

Note that we begin by setting up the information for three students as specific values held in the
cell arrays: names, fees, and subjects.

>> names = {’A Best’, ’D Good’, ’S Green’, ’J Jones’}

names =
’A Best’ ’D Good’ ’S Green’ ’J Jones’

>> fees = {333 450 200 800}
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fees =
[333] [450] [200] [800]

>> subjects = {’cs’,’cs’,’maths’,’eng’}

subjects =
’cs’ ’cs’ ’maths’ ’eng’

>> StudentRecords = struct(’NameField’,names,’FeesField’,fees,...
’SubjectField’,subjects)

StudentRecords =
1x4 struct array with fields:

NameField
FeesField
SubjectField

Now, having set up our structure, we can refer to each individual record using a subscript thus:

>> StudentRecords(1)

ans =
NameField: ’A Best’
FeesField: 333

SubjectField: ’cs’

Further we can examine the contents of the components of each record thus:

>> StudentRecords(1).NameField

ans =
A Best

>> StudentRecords(2).SubjectField

ans =
cs

We can change or update the values of the components of the records thus:

>> StudentRecords(3).FeeField = 1000;

Now we check the contents of this student’s FeesField

>> StudentRecords(3).FeeField

ans =
1000
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MATLAB provides functions that allow us to convert from one data structure to another and some of
these are listed here.

cell2struct
struct2cell
num2cell
str2num
num2str
int2str
double
single

Most of these conversions are self-explanatory. For example, num2str converts a double precision
number to an equivalent string. The function double converts to double precision and examples of its
usage are given in Chapter 10.

The use of cells and structures is not usually essential in the development of numerical algorithms
although they can be used to enhance an algorithm’s ease of use. There is an example of the use of
structures in Chapter 10.

1.21 EDITING MATLAB SCRIPTS
To help the user develop scripts MATLAB provides a comprehensive selection of debugging tools.
These can be listed using the command help debug.

When a typing in a script into the MATLAB editor the user should note that the small colored square
is displayed at the top right of the text window. This square is colored red if the script contains one
or more fatal syntactic errors, orange warns of possible non-fatal problems, and green indicates no
syntactic errors. Each error or warning is also indicated by an appropriately colored dash beneath the
square. Touching these dashes will provide a description of the error or warning and the line in which
it occurs.

Errors can be found by using checkcode. The mlint function can also be used but is now obso-
lete and is replaced by checkcode. The following script, e4s113.m, contains numerous errors and is
provided to illustrate the use of checkcode:

% e4s113.m A script full of errors!!!
A = [1 2 3; 4 5 6
B = [2 3; 7 6 5]
c(1) = 1; c(1) = 2;
for k = 3:9

c(k) = c(k-1)+c(k-2)
if k = 3

displ(’k = 3, working well)
end
c

Running and checking script e4s113.m gives the following output:
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>> e4s113
Error: File: e4s112.m Line: 3 Column: 3
The expression to the left of the equals sign is not a valid target

for an assignment.

Applying checkcode to script e4s113.m gives

>> checkcode e4s113
L 3 (C 3): Invalid syntax at ’=’. Possibly, a ), }, or ] is missing.
L 3 (C 16): Parse error at ’]’: usage might be invalid MATLAB syntax.
L 5 (C 1-3): Invalid use of a reserved word.
L 7 (C 5-6): IF might not be aligned with its matching END (line 9).
L 7 (C 10): Parse error at ’=’: usage might be invalid MATLAB syntax.
L 8 (C 15-35): A quoted string is unterminated.
L 11 (C 0): Program might end prematurely (or an earlier error

confused Code Analyzer).

Note how both line (L), character position (C), and nature of the error are given so the errors are clearly
identified. Of course, some errors cannot be detected at this stage. For example, the following script,
e4s113c.m, is a partially corrected version of script e4s113.m.

% e4s113c.m A script less full of errors!!!
A = [1 2 3; 4 5 6];
B = [2 3; 7 6];
c(1) = 1; c(1) = 2;
for k = 3:9

c(k) = c(k-1)+c(k-2)
if k == 3

disp(’k = 3, working well’)
end

end
c

Running script e4s113c.m gives

>> e4s113c
Attempted to access c(2); index out of bounds because numel(c)=1.

Error in e4s112c (line 6)
c(k) = c(k-1)+c(k-2)

>> checkcode e4s112c
L 6 (C 5): The variable ’c’ appears to change size on every loop

iteration (within a script). Consider pre-allocating for speed.
L 6 (C 10): Terminate statement with semicolon to suppress output

(within a script).
L 11 (C 1): Terminate statement with semicolon to suppress output

(within a script).
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Now the script can be run as far as line 6 other possible errors now are detected.
In addition, a menu option “Debug” is provided in the MATLAB text editor.

1.22 SOME PITFALLS IN MATLAB
We now list five important points which if observed enable the MATLAB user to avoid some significant
difficulties. This list is not exhaustive.

• It is important to take care when naming files and functions. File names and function names follow
the rules for variable names; that is, they must start with a letter followed by a combination of letters
or digits and names of existing functions must not be used.

• Do not use MATLAB function names or commands for variable names. For example, if we were so
foolish as to assign a number to a variable which we will call sin, access to the sine function would
be lost. For example,

>> sin = 4

sin =
4

>> 3*sin

ans =
12

>> sin(1)

ans =
4

>> sin(2)
??? Index exceeds matrix dimensions.

>> sin(1.1)
??? Subscript indices must either be real positive integers or logicals.

• Matrix sizes are set by assignment so it is vital to ensure that matrix sizes are compatible. Often it
is a good idea initially to assign a matrix to an appropriately sized matrix of zeros; this also makes
code execution more efficient. For example, consider the following simple script:

for i = 1:2
b(i) = i*i;

end
A = [4 5; 6 7];
A*b’
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We assign two elements to b in the for loop and define A to be a 2 × 2 array, so we would expect this
script to succeed. However, if b had in the same session been previously set to be a different size
matrix, then this script would fail. To ensure that it works correctly we must either assign b to be a
null matrix using b = [ ], or make b a column vector of two elements by using b = zeros(2,1)

or by using the clear statement to clear all variables from the system.
• Take care with dot products. For example, when creating a user-defined function where any of the

input parameters may be vectors, dot products must be used. Note also that 2.^x and 2. ^x are
different because the space is important. The first example gives the dot power while the second
gives 2.0 to the power x, not the dot power. Similar care with spaces must be taken when using
complex numbers. For example, A = [1 2-4i] assigns two elements: 1 and the complex number
2 − ı4. In contrast B = [1 2 -4i] assigns three elements: 1, 2, and the imaginary number −4ı.

• At the beginning of a script, it is often good practice to clear variables or set arrays equal to the
empty matrix e.g., A = [ ]. This avoids incompatibility in matrix operations.

1.23 SPEEDING UP CALCULATIONS IN MATLAB
Calculations can be greatly speeded up by using vector operations rather than using a loop to repeat a
calculation. To illustrate this consider the following simple examples.

Example 1.3. The script e4s114.m fills the vector b using a for loop.

% e4s114.m

% Fill b with square roots of 1 to 100000 using a for loop

tic;

for i = 1:200000

b(i) = sqrt(i);

end

t = toc;

disp([’Time taken for loop method is ’, num2str(t)]);

Example 1.4. The script e4s115.m fills the vector b using a vector operation.

% e4s115.m

% Fill b with square roots of 1 to 200000 using a vector

tic

a = 1:200000; b = sqrt(a);

t = toc;

disp([’Time taken for vector method is ’,num2str(t)]);

If the reader runs scripts e4s114.m and e4s115.m and compares the time taken they will notice the
vector method is generally faster than the loop method. There is a need to think very carefully about
the way algorithms are implemented in MATLAB, particularly with regard to the use of vectors and
arrays.
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1.24 LIVE EDITOR
Here we give a brief description of the Live Editor which was first introduced into MATLAB in release
2016a.

The Live Editor allows the user to turn their MATLAB code into an interactive document and thereby
provide a vivid platform for project and other presentations. Bare code can be enhanced to create a
story. Text, equations, images, numerical and graphical output from the code, and even hyperlinks can
all be added to the code in the Live Editor document. Thus, for example, a Live Editor document might
begin with some text and possibly some images, describing the background to a problem. This might
be followed by text and equations, providing detailed description of the proposed mathematical model
for the problem. Having established the mathematical model the MATLAB code required to solve the
problem is given, together with any numerical or graphical output from the code. This output is created
as the code is executed. It is not a piece of text or a diagram inserted into the file, it is actually generated
by running the code and it changes if the code is changed.

The Live Editor is extremely easy to use. Opening an existing Live Editor file automatically acti-
vates the Live Editor. Then the code, text, equations, and image options can be accessed from the Live
Editor menu. The output from the MATLAB code is included in the Live Editor file and may be placed
in the same column as the code or placed in the other column to suit the user’s requirements.

1.25 SUMMARY
In this chapter we have provided some of the key features of MATLAB. Clearly a user new to MATLAB

would need to support this description of the language with reference to the user manuals and lots of
computer based experimentation. In the introduction to this chapter it is stated that the original version
of MATLAB had only 80 functions. Currently, including the many toolboxes, it has over 8000 functions.
Obviously users are, or will become, familiar only with the subset of these functions appropriate to
the problems they wish to solve. This might, for example, be the core of MATLAB and two or three
toolboxes.

1.26 PROBLEMS
1.1. (a) Start up MATLAB. In the command window type x = -1:0.1:1 and then execute each of

the following statements by typing them in and pressing return:

sqrt(x) cos(x)

sin(x) 2./x

x.\ 3 plot(x, sin(x.^3))

plot(x, cos(x.^4))

Examine the effects of each statement carefully.
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(b) Execute the following and explain the results:

x = [2 3 4 5]
y = -1:1:2
x.^y
x.*y
x./y

1.2. (a) Set up the matrix A = [1 5 8;84 81 7;12 34 71] in the command window and examine
the contents of A(1,1), A(2,1), A(1,2), A(3,3), A(1:2,:), A(:,1), A(3,:), and A(:,2:3).
(b) What do the following MATLAB statements produce?

x = 1:1:10
z = rand(10)
y = [z;x]
c = rand(4)
e = [c eye(size(c)); eye(size(c)) ones(size(c))]
d = sqrt(c)
t1 = d*d
t2 = d.*d

1.3. Set up a 4 × 4 matrix. Given that the function sum(x) gives the sum of the elements of the
vector x, use the function sum to find the sums of the first row and second column of the matrix.

1.4. Solve the following system of equations using the MATLAB function inv and also using the
operators \ and / in the command window:

2x + y + 5z = 5

2x + 2y + 3z = 7

x + 3y + 3z = 6

Verify the solution is correct using matrix multiplication.
1.5. Write a simple script to input two square matrices A and B; then add, subtract, and multiply

them. Comment the script and use disp to output suitable titles.
1.6. Write a MATLAB script to set up a 4 × 4 random matrix A and a four-element column vector b.

Calculate x = A\b and display the result. Calculate A*x and compare it with b.
1.7. Write a simple script to plot the two functions y1 = x2 cosx and y2 = x2 sinx on the same graph.

Use comments in your script and take x = −2 : 0.1 : 2.
1.8. Write a MATLAB script to produce graphs of the functions y = cosx and y = cos(x3) in the

range x = −4 : 0.02 : 4 using the same axes. Use the MATLAB functions xlabel, ylabel, and
title to annotate your graphs clearly.

1.9. Draw the function y = exp(−x2) cos(20x) in the range x = −2 : 0.1 : 2. All axes should be
labeled and a title included. Compare the results of using the functions fplot and plot to plot
this function.

1.10. Write a MATLAB script to draw the functions y = 3 sin(πx) and y = exp(−0.2x) on the same
graph for x = 0 : 0.02 : 4. All axes should be labeled. Use gtext to label one of the several
points of intersection of the graphs.
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1.11. Use the functions meshgrid and mesh to obtain a three-dimensional plot of the function

z = 2xy/(x2 + y2) for x = 1 : 0.1 : 3 and y = 1 : 0.1 : 3

Redraw the surface using the function surf, surfl, and contour.
1.12. An iterative equation for solving the equation x2 − x − 1 = 0 is given by

xr+1 = 1 + (1/xr) for r = 0,1,2, . . .

Given x0 is 2 write a MATLAB script to solve the equation. Sufficient accuracy is obtained when
|xr+1 − xr | < 0.0005. Include a check on the answer.

1.13. Given a 4 × 5 matrix A, write a script to find the sums of each of the columns using:
(a) the for ... end construction
(b) the function sum

1.14. Given a vector x with n elements, write a MATLAB script to form the products

pk = x1x2 . . . xk−1xk+1 . . . xn

for k = 1,2, ..., n. That is, pk contains the products of all the vector elements except the kth.
Run your script with specific values of x and n.

1.15. The series for loge(1 + x) is given by

loge(1 + x) = x − x2/2 + x3/3 − . . . + (−1)k+1xk/k . . .

Write a MATLAB script to input a value for x and sum the series while the value of the current
term is greater than or equal to the variable tol. Use values of x = 0.5 and 0.82 and tol =
0.005 and 0.0005. The result should be checked by using the MATLAB function log. The script
should display the value of x and tol and the value of loge(1 + x) obtained. Use input and disp
functions to obtain clear output and prompts.

1.16. Write a MATLAB script to generate a matrix which has the values d along the main diagonal
and the values c on the diagonals above and below the main diagonal and zero elsewhere. Your
script should allow the user to input any values for c and d and work for any size of matrix n.
The script should give clear prompts for input and display the results with a suitable heading.

1.17. Write a MATLAB function to solve the quadratic equation

ax2 + bx + c = 0

The function will use three input parameters a, b, c and output the values of the two roots. You
should take account of the three cases:
(a) no real roots
(b) real and different roots
(c) equal roots
Hint: Develop the function rootquad given in Section 1.19.

1.18. Adjust the function of Problem 1.17 to deal with the case when a = 0. That is, when the equation
is non-quadratic. In this case include a third output parameter which will have the value 1 if the
equation is quadratic and 0 otherwise.
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1.19. Write a simple function to define f (x) = x2 − cos(x) − x and plot the graph of the function in
the range 0 to 2. Use this graph to find an initial approximation to the root and then apply the
function fzero to find the root to tolerance 0.0005.

1.20. Write a script to generate the sequence of values given by

xr+1 =
{

xr

/
2 if xr is even

3xr + 1 if xr is odd
where r = 0,1,2, ...

where x0 is any positive integer. The sequence terminates when xr = 1. Show after a sufficient
number of steps that the sequence terminates for any value of x0 you choose. It is interesting to
plot the values of xr against r .

1.21. Write a MATLAB script to plot the surface z = f (x, y) over the ranges x = −4 : 0.1 : 4 and
y = −4 : 0.1 : 4 where z is given by:

z = f (x, y) = (1 − x2)e−p − pe−p − e−(x+1)2−y2

and p = x2 + y2. The script should provide mesh, contour, and surf plots and use the function
subplot to layout the three plots one above the other.

1.22. The following three functions are presented in parametric form:

x = a(t − sin(t)) and y = a(1 − cos(t))

x = 2at and y = 2a/(1 + t2)

x = a cos(t) − b cos(at/b) and y = a sin(t) − b sin(at/b)

Write a MATLAB script to plot each of these functions one above the other using the
MATLAB subplot function given a = 2 and b = 3; t is assigned the range of values
−10 : 0.1 : 10.

1.23. The Riemann ζ function may be defined as the sum of an infinite series:

ζ(s) = 1 + 1

2s
+ 1

3s
+ 1

4s
+ ... + 1

ns
+ ...

Write a MATLAB script zetainf(s,acc) to sum terms of this series until a term is less than acc
and where s is an integer

1.24. Write a MATLAB function to sum the series:

S = 1 + 22/2! + 32/3! + ... + n2/n!
to n terms. The function should take the form sumfac(n) where n is the number of terms used.
You may use the MATLAB function factorial to evaluate the factorial terms. Write MATLAB

statements using this function to sum the series to 5 and 10 terms.
Rewrite your script avoiding the need to use the function factorial by noting that the k + 1th
term Tk+1 is given by Tk × (k + 1)/k2.

1.25. Given the matrix D = [1 -1; 3 2], give the values which will be assigned to A, B, C, and E
by executing the following MATLAB statements:
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(a) A = D*(D*inv(D))
(b) B = D.*D
(c) C = [D,ones(2);eye(2),zeros(2)]
(d) E = D’*ones(2)*eye(2)

1.26. The following matrices, called the Dirac matrices are defined by:

P1 =
[

0 I2

I2 0

]
, P2 =

[
0 −ıI2

ıI2 0

]
, P3 =

[
I2 0
0 −I2

]

where the 0 represents a 2 × 2 matrix of zeros and I2 represents a 2 × 2 unit matrix and ı =√
(−1). A related set of matrices is given by:

Qk =
[

0 Pk

−Pk 0

]
for k = 1,2,3

Write MATLAB statements to generate the matrices P1, P2, P3 and the matrices Qk for
k = 1, 2, 3. Note that in Qk the 0 represents a 4 × 4 matrix of zeros.

1.27. Plot the function

y = 1

(x + 2.5)2(x − 3.5)2

for values of x = −4 : 0.001 : 4. Then use the MATLAB functions xlim and ylim in the form:
ylim([0,20]) and xlim([-3,-2]) to illustrate how this allows considerable clarification of the
nature of the function.

1.28. Write user-defined functions for the following functions:

(a) y = x2 cos(1 + x2)

(b) y = 1 + ex

cos(x) + sin(x)

(c) z = cos(x2 + y2)

Rewrite each of the previous functions as anonymous functions and illustrate of the use of these
anonymous functions by using the function the MATLAB subplot to plot graphs of the functions
(a) and (b) in the range for x = 0 to 2.

1.29. Consider the following MATLAB script which contains some errors. Use the MATLAB function
checkcode to find these errors.

function sol = solvepoly(x0, acc)
%poly solver
d = 1+acc;
whil abs(d)>acc

x1 = (2*x0^2-1))/x0^2;
d = x1-x0;
x0 = x1/x2

end
sol = x0;
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1.30. The symmetric hyperbolic Fibonacci sine and cosine functions are defined as follows:

sFs(x) = γ x − γ −x

√
5

and cFs(x) = γ x + γ −x

√
5

where γ = (1 + √
5)/2. Also, the complex quasi-sine Fibonacci function is defined as

cqsF(x,n) = γ x − cos(nπx)γ −x

√
5

+ ı
sin(nπx)γ −x

√
5

where γ is defined as before.
Write a MATLAB script that begins by defining these three functions as anonymous functions.
Then, using these anonymous functions, carry out the following operations within the script:
(a) In a single figure, plot the graphs of sFs(x) and cFs(x) against x over the range −5 to 5.
(b) Plot the real and imaginary parts of the function cqsF(x,5) in 3D space. Plot the real part of
the function in the y direction, the imaginary part in the z direction. Plot the function over the
range −5 to 5. Use the MATLAB function plot3.
Stakhov and Rozin (2005, 2007) provide more information on these functions.

1.31. The Fibonacci series is defined by the equations:

Fk+1 = Fk + Fk−1, for k = 2,3,4, ..., n

where F2 = F1 = 1.
Write a MATLAB recursive function to evaluate the elements of this series to any number of
steps n. Use this function to produce a table of the values of the Fibonacci series, Fk for k =
1,2, ...,10.

1.32. Use the MATLAB function fimplicit to provide a plot of the two-dimensional implicit function:

cos(x2 + y2) + xy = 0

for values of x and y in the range x = −4 to 4; y = −4 to 4.
1.33. For the three-dimensional implicit function

sin(x2 + y2 + z2) − x2y2z2 = 0

use the MATLAB function fimplicit3 to plot this function for x and y in the range x = −4 to 4;
y = −4 to 4.

1.34. For the three-dimensional implicit function

(x2 + y2 + z2) − 6xyz = 0

use the MATLAB function fimplicit3 to plot this function for x and y in the range x = −4 to 4;
y = −4 to 4.

1.35. Use the MATLAB polar scatter function to plot the data given by:

r = cos(θ) sin(θ) for θ = −2π to 2π
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using the MATLAB polarscatter function. Replot this data again but introducing extra param-
eter values so that the face color is green and the size of the points is 200.

1.36. Draw a polar histogram figure for the data:

xi = 2πri i = 1,2,3, ...,100

where ri is a random number in the range 0 to 1. Using the MATLAB polarhistogram function
you should use 15 bins and the necessary parameters to provide a face color red and transparency
of 0.5.

1.37. Write a MATLAB function to calculate the values of f (x) where

f (x) = x2 sin(x2)

for any vector x. In addition write a function which takes the vector x and finds the element
with the minimum value, xmin, and the element with the maximum value, xmax , and returns the
value of the scalar r where:

r = (xmax − xmin)/(xmax + xmin)

Write a MATLAB script which will obtain the values of the function, f (x), for x = 0 to 10
in increments 0.1 and plot a graph of this function. Then use the function you have written to
calculate the value of r . Save the MATLAB script together with the functions using the name
functiontest and run it.

1.38. Use the function fimplicit3 to draw the implicit function

(x2 + y2 − 3x)2 − 4x2(2 − x) = 0

Use the ranges of values for x and y as 0 to 2, and −3 to 3 respectively. Label the x and y axes
appropriately and give the graph a title.

1.39. Write a MATLAB script to determine the sum of the series

S = (1/e)[1 + 1/(3 × 1!) + 1/(5 × 2!) + 1/(7 × 3!) + ....∞]
to a prescribed accuracy. Take sufficient terms to obtain 6 decimal places of accuracy. The sum to
infinity is equal to the value of the integral given in Problem 4.35. See Jolley (1961), Eq. (1004).

1.40. Determine the output from executing the MATLAB command why. You should execute this com-
mand more than once.
When you have become bored with this, try logo, spy, penny, and image.



2
CHAPTER

LINEAR EQUATIONS AND
EIGENSYSTEMS

Abstract

When physical systems are modeled mathematically, they are sometimes described by linear equation
systems or alternatively by eigensystems and in this chapter we examine how such equation systems
are solved.
MATLAB is an ideal environment for studying linear algebra, including linear equation systems and
eigenvalue problems, because MATLAB functions and operators can work directly on vectors and
matrices. MATLAB is rich in functions and operators which facilitate the manipulation of matri-
ces.

2.1 INTRODUCTION
We now discuss linear equation systems and defer discussion of eigensystems until Section 2.15. To
illustrate how linear equation systems arise in the modeling of certain physical problems, we will
consider how current flows are calculated in a simple electrical network. The necessary equations
can be developed using one of several techniques; here we use the loop-current method together with
Ohm’s law and Kirchhoff’s voltage law. A loop current is assumed to circulate around each loop in the
network. Thus, in the network given in Fig. 2.1, the loop current I1 circulates around the closed loop
abcd. Thus the current I1 − I2 flows in the link connecting b to c. Ohm’s law states that the voltage
across an ideal resistor is proportional to the current flow through the resistor. For example, for the link
connecting b to c

Vbc = R2(I1 − I2)

where R2 is the value of the resistor in the link connecting b to c. Kirchhoff’s voltage law states that the
algebraic sum of the voltages around a loop is zero. Applying these laws to the circuit abcd of Fig. 2.1
we have

Vab + Vbc + Vcd = V

Substituting the product of current and resistance for voltage gives

R1I1 + R2(I1 − I2) + R4I1 = V

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00011-7
Copyright © 2019 Elsevier Inc. All rights reserved.
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FIGURE 2.1

Electrical network.

We can repeat this process for each loop to obtain the following four equations:

(R1 + R2 + R4) I1 − R2I2 = V

(R1 + 2R2 + R4) I2 − R2I1 − R2I3 = 0

(R1 + 2R2 + R4) I3 − R2I2 − R2I4 = 0 (2.1)

(R1 + R2 + R3 + R4) I4 − R2I3 = 0

Letting R1 = R4 = 1 �, R2 = 2 �, R3 = 4 � and V = 5 volts, (2.1) becomes

4I1 − 2I2 = 5

−2I1 + 6I2 − 2I3 = 0

−2I2 + 6I3 − 2I4 = 0

−2I3 + 8I4 = 0

This is a system of linear equations in four variables, I1, ..., I4. In matrix notation it becomes

⎡
⎢⎢⎣

4 −2 0 0
−2 6 −2 0

0 −2 6 −2
0 0 −2 8

⎤
⎥⎥⎦
⎡
⎢⎢⎣

I1

I2

I3

I4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

5
0
0
0

⎤
⎥⎥⎦ (2.2)

This equation has the form Ax = b where A is a square matrix of known coefficients, in this case
relating to the values of the resistors in the circuit. The vector b is a vector of known coefficients,
in this case the voltage applied to each current loop. The vector x is the vector of unknown cur-
rents. Although this set of equations can be solved by hand, the process is time consuming and
error prone. Using MATLAB we simply enter matrix A and vector b and use the command A\b as
follows:

>> A = [4 -2 0 0;-2 6 -2 0;0 -2 6 -2;0 0 -2 8];
>> b = [5 0 0 0].’;
>> x = A\b
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x =
1.5426
0.5851
0.2128
0.0532

>> A*x

ans =
5.0000

-0.0000
0.0000

-0.0000

The sequence of operations that are invoked by this apparently simple command is examined in Sec-
tion 2.3.

In many electrical networks the ideal resistors of Fig. 2.1 are more accurately represented by elec-
trical impedances. When a harmonic alternating current (AC) supply is connected to the network,
electrical engineers represent the impedances by complex quantities. This is to account for the effect
of capacitance and/or inductance. To illustrate this we will replace the 5 volt DC supply to the network
of Fig. 2.1 by a 5 volt AC supply and replace the ideal resistors R1, ...,R4 by impedances Z1, ...,Z4.
Thus, (2.1) becomes

(Z1 + Z2 + Z4)I1 − Z2I2 = V

(Z1 + 2Z2 + Z4)I2 − Z2I1 − Z2I3 = 0

(Z1 + 2Z2 + Z4)I3 − Z2I2 − Z2I4 = 0 (2.3)

(Z1 + Z2 + Z3 + Z4)I4 − Z2I3 = 0

At the frequency of the 5 volt AC supply we will assume that Z1 = Z4 = (1 + 0.5j) �, Z2 = (2 +
0.5j) �, Z3 = (4 + 1j) � where j = √−1. Electrical engineers prefer to use j rather than ı for

√−1.
This avoids any possible confusion with i (or I ) which is normally used to denote the current in a
circuit. Thus, (2.3) becomes

(4 + 1.5j)I1 − (2 + 0.5j)I2 = 5
−(2 + 0.5j)I1 + (6 + 2.0j)I2 − (2 + 0.5j)I3 = 0
−(2 + 0.5j)I2 + (6 + 2.0j)I3 − (2 + 0.5j)I4 = 0

−(2 + 0.5j)I3 + (8 + 2.5j)I4 = 0

This system of linear equations becomes, in matrix notation,

⎡
⎢⎢⎣

(4 + 1.5j) −(2 + 0.5j) 0 0
−(2 + 0.5j) (6 + 2.0j) −(2 + 0.5j) 0

0 −(2 + 0.5j) (6 + 2.0j) −(2 + 0.5j)

0 0 −(2 + 0.5j) (8 + 2.5j)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

I1

I2

I3

I4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

5
0
0
0

⎤
⎥⎥⎦ (2.4)
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Note that the coefficient matrix is now complex. This does not present any difficulty for MATLAB

because the operation A\b works directly with both real and complex numbers. Thus:

>> p = 4+1.5i; q = -2-0.5i;

>> r = 6+2i; s = 8+2.5i;

>> A = [p q 0 0;q r q 0;0 q r q;0 0 q s];

>> b = [5 0 0 0].’;

>> A\b

ans =

1.3008 - 0.5560i

0.4560 - 0.2504i

0.1530 - 0.1026i

0.0361 - 0.0274i

Note that strictly we have no need to re-enter the values in vector b, assuming that we have not cleared
the memory, reassigned the vector b or quit MATLAB. The answer shows that currents flowing in the
network are complex. This means that there is a phase difference between the applied harmonic voltage
and the currents flowing.

We will now begin a more detailed examination of linear equation systems.

2.2 LINEAR EQUATION SYSTEMS
In general, a linear equation system can be written in matrix form as

Ax = b (2.5)

where A is an n×n matrix of known coefficients, b is a column vector of n known coefficients and x is
the column vector of n unknowns. We have already seen an example of this type of equation system in
Section 2.1 where the matrix equation (2.2) is the matrix equivalent of the set of linear equations (2.1).

The equation system (2.5) is called homogeneous if b = 0 and inhomogeneous if b �= 0. Before
attempting to solve an equation system it is reasonable to ask if it has a solution and if so is it unique?
A linear inhomogeneous equation system may be consistent and have one or an infinity of solutions
or be inconsistent and have no solution. This is illustrated in Fig. 2.2 for a system of three equations
in three variables x1, x2, and x3. Each equation represents a plane surface in the x1, x2, x3 space.
In Fig. 2.2A the three planes have a common point of intersection. The coordinates of the point of
intersection give the unique solution for the three equations. In Fig. 2.2B the three planes intersect in
a line. Any point on the line of intersection represents a solution so there is no unique solution but an
infinite number of solutions satisfying the three equations. In Fig. 2.2C two of the surfaces are parallel
to each other and therefore they never intersect while in Fig. 2.2D the line of intersection of each pair
of surfaces is different. In both of these cases there is no solution and the equations these surfaces
represent are inconsistent.
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FIGURE 2.2

Three intersecting planes representing three equations in three variables. (A) Three plane surfaces intersecting
in a point. (B) Three plane surfaces intersecting in a line. (C) Three plane surfaces, two of which do not
intersect. (D) Three plane surfaces intersecting in three lines.

To obtain an algebraic solution to the inhomogeneous equation system (2.5) we multiply both sides
of (2.5) by a matrix called the inverse of A, denoted by A−1, thus:

A−1Ax = A−1b (2.6)

where A−1 is defined by

A−1A = AA−1 = I (2.7)

and I is the identity matrix. Thus, we obtain

x = A−1b (2.8)

The standard algebraic formula for the inverse of A is

A−1 = adj(A)/|A| (2.9)
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where |A| is the determinant of A and adj(A) is the adjoint of A. The determinant and the adjoint
of a matrix are defined in Appendix A. Eqs. (2.8) and (2.9) are algebraic statements allowing us to
determine x but they do not provide an efficient means of solving the system because computing A−1

using (2.9) is extremely inefficient, involving an order (n + 1)! multiplications where n is the number
of equations. However, (2.9) is theoretically important because it shows that if |A| = 0 then A does not
have an inverse. The matrix A is then said to be singular and a unique solution for x does not exist.
Thus, establishing that |A| is non-zero is one way of showing that an inhomogeneous equation system
is a consistent system with a unique solution. It is shown in Sections 2.6 and 2.7 that (2.5) can be solved
without formally determining the inverse of A.

An important concept in linear algebra is the rank of a matrix. For a square matrix, the rank is the
number of independent rows or columns of the matrix. Independence can be explained as follows. The
rows (or columns) of a matrix can clearly be viewed as a set of vectors. A set of vectors is said to be
linearly independent if none of them can be expressed as a linear combination of any of the others. By
linear combination we mean a sum of scalar multiples of the vectors. For example, the matrix

⎡
⎣ 1 2 3

−2 1 4
−1 3 7

⎤
⎦ or

⎡
⎢⎢⎣

[
1 2 3

]
[ −2 1 4

]
[ −1 3 7

]

⎤
⎥⎥⎦ or

⎡
⎣
⎡
⎣ 1

−2
−1

⎤
⎦

⎡
⎣ 2

1
3

⎤
⎦

⎡
⎣ 3

4
7

⎤
⎦
⎤
⎦

has linearly dependent rows and columns. This is because row 3 − row 1 − row 2 = 0 and column 3 −
2(column 2) + column 1 = 0. There is only one equation relating the rows and thus there are two
independent rows. Similarly with the columns. Hence, this matrix has a rank of 2. Now consider

⎡
⎣ 1 2 3

2 4 6
3 6 9

⎤
⎦

Here row 2 = 2(row 1) and row 3 = 3(row 1). There are two equations relating the rows and hence only
one row is independent so that the matrix has a rank of 1. Note that the number of independent rows
and columns in a square matrix is identical; that is, its row rank and column rank are equal. In general,
matrices may be non-square and the rank of an m × n matrix A is written rank(A). Matrix A is said
to be of full rank if rank(A) = min(m,n); otherwise rank(A) < min(m,n) and A is said to be rank
deficient.

MATLAB provides the function rank which works with both square and non-square matrices to find
the rank of a matrix. In practice, MATLAB determines the rank of a matrix from its singular values; see
Section 2.10. For example, consider the following MATLAB statements:

>> D = [1 2 3;3 4 7;4 -3 1;-2 5 3;1 -7 6]

D =
1 2 3
3 4 7
4 -3 1
-2 5 3
1 -7 6
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>> rank(D)

ans =
3

Thus D is of full rank, since its rank is equal to the minimum number of rows or column of D.
A useful operation in linear algebra is the conversion of a matrix to its reduced row echelon form

(RREF). The RREF is defined in Appendix A. In MATLAB we can use the rref function to compute
the RREF of a matrix thus:

>> rref(D)

ans =
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

It is a property of the RREF of a matrix that the number of rows with at least one non-zero element
equals the rank of the matrix. In this example we see that there are three rows in the RREF of the
matrix containing a non-zero element, confirming that the matrix rank is 3. The RREF also allows us
to determine whether a system has a unique solution or not.

We have discussed a number of important concepts relating to the nature of linear equations and
their solutions. We now summarize the equivalencies between these concepts. Let A be an n×n matrix.
If Ax = b is consistent and has a unique solution, then all of the following statements are true:

Ax = 0 has only the trivial solution x = 0.
A is non-singular and det(A) �= 0.
The RREF of A is the identity matrix.
A has n linearly independent rows and columns.
A has full rank, that is rank(A) = n.

In contrast, if Ax = b is either inconsistent or consistent but with more than one solution, then all of
the following statements are true:

Ax = 0 has more than one solution.
A is singular and det(A) = 0.
The RREF of A contains at least one zero row.
A has linearly dependent rows and columns.
A is rank deficient, that is rank(A) < n.

So far we have only considered the case where there are as many equations as unknowns. Now we
consider the cases where there are fewer or more equations than the number of unknown variables.

If there are fewer equations than unknowns, then the system is said to be under-determined. The
equation system does not have a unique solution; it is either consistent with an infinity of solutions,
or inconsistent with no solution. These conditions are illustrated by Fig. 2.3. The diagram shows two
plane surfaces in three-dimensional space, representing two equations in three variables. It is seen that
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FIGURE 2.3

Planes representing an under-determined system of equations. (A) Two plane surfaces intersecting in a line.
(B) Two plane surfaces which do not intersect.

the planes either intersect in a line so that the equations are consistent with an infinity of solutions
represented by the line of intersection, or the surfaces do not intersect and the equations they represent
are inconsistent.

Consider the following system of equations:

[
1 2 3 4

−4 2 −3 7

]⎡⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦=

[
1
3

]

This under-determined system can be rearranged thus:
[

1 2
−4 2

][
x1
x2

]
+
[

3 4
−3 7

][
x3
x4

]
=
[

1
3

]

or [
1 2

−4 2

][
x1
x2

]
=
[

1
3

]
−
[

3 4
−3 7

][
x3
x4

]

Thus, we have reduced this to a system of two equations in two unknowns, provided values are assumed
for x3 and x4. Since x3 and x4 can take an infinity of values, the problem has an infinity of solutions.

If a system has more equations than unknowns, then the system is said to be over-determined.
Fig. 2.4 shows four plane surfaces in three-dimensional space, representing four equations in three
variables. Fig. 2.4A shows all four planes intersecting in a single point so that the system of equations
is consistent with a unique solution. Fig. 2.4B shows all the planes intersecting in a line and this
represents a consistent system with an infinity of solutions. Fig. 2.4D shows planes that represent
an inconsistent system of equations with no solution. In Fig. 2.4C the planes do not intersect in a
single point and so the system of equations is inconsistent. However, in this example the points of
intersection of groups of three planes, (S1, S2, S3), (S1, S2, S4), (S1, S3, S4), and (S2, S3, S4), are
close to each other and a mean point of intersection could be determined and used as an approximate
solution. This example of marginal inconsistency often arises because the coefficients in the equations
are determined experimentally; if the coefficients were known exactly, it is likely that the equations
would be consistent with a unique solution. Rather than accepting that the system is inconsistent, we
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FIGURE 2.4

Planes representing an over-determined system of equations. (A) Four plane surfaces intersecting in a point.
(B) Four plane surfaces intersecting in a line. (C) Four plane surfaces not intersecting at a single point. Point of
intersection of (S1, S2, S3) and (S1, S2, S4) are visible. (D) Four plane surfaces representing inconsistent
equations.

may ask which solution best satisfies the equations approximately. In Sections 2.11 and 2.12 we deal
with the problem of over-determined and under-determined systems in more detail.

2.3 OPERATORS \ AND / FOR SOLVING Ax = b
The purpose of this section is to introduce the reader to the MATLAB operator \. A detailed discussion
of the algorithms behind its operation will be given in later sections. This operator is a very powerful
one which provides a unified approach to the solution of many categories of linear equation systems.
The operators / and \ perform matrix “division” and have identical effects. Thus, to solve Ax = b we
may write either x=A\b or x’=b’/A’. In the latter case the solution x is expressed as a row rather than
a column vector. The algorithm chosen to solve a system of linear equations is dependent on the form
of the matrix A. These cases are outlined as follows:

• if A is a triangular matrix, the system is solved by back or forward substitution alone, described in
Section 2.6.
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• elseif A is a positive definite, square symmetric or Hermitian matrix (see Appendix A.7 for defi-
nitions of these matrices) Cholesky decomposition (described in Section 2.8) is applied. When A
is sparse, Cholesky decomposition is preceded by a symmetric minimum degree preordering (de-
scribed in Section 2.14).

• elseif A is a square matrix, general LU decomposition (described in Section 2.7) is applied. If A
is sparse, this is preceded by a non-symmetric minimum degree preordering (described in Sec-
tion 2.14).

• elseif A is a full non-square matrix, QR decomposition (described in Section 2.9) is applied.
• elseif A is a sparse non-square matrix, it is augmented and then a minimum degree preordering is

applied, followed by sparse Gaussian elimination (described in Section 2.14).

The MATLAB \ operator can also be used to solve AX = B where B and the unknown X are m × n

matrices. This could provide a simple method of finding the inverse of A. If we make B the identity
matrix I then we have

AX = I

and X must be the inverse of A since AA−1 = I. Thus, in MATLAB we could determine the inverse of A
by using the statement A\eye(size(A)). Alternatively, MATLAB provides the function inv(A) to find
the inverse of a matrix. It is important to stress that the inverse of a matrix should only be determined
if it is specifically required. If we require the solution of a set of linear equations it is more efficient to
use the operators \ or /.

We now give some example which show how the \ operator works, beginning with the solution of
a system where the system matrix is triangular. The experiment in this case examines the time taken by
the operator \ to solve a system when it is full and then when the same system is converted to triangular
form by zeroing appropriate elements to produce a triangular matrix. The script e4s201, used for this
experiment, is

% e4s201.m
disp(’ n full-time full-time/n^3 tri-time tri-time/n^2’);
A = [ ]; b = [ ];
for n = 2000:500:6000

A = 100*rand(n); b = [1:n].’;
tic, x = A\b; t1 = toc;
t1n = 5e9*t1/n^3;
for i = 1:n

for j = i+1:n
A(i,j) = 0;

end
end
tic, x = A\b; t2 = toc;
t2n = 1e9*t2/n^2;
fprintf(’%6.0f %9.4f %12.4f %12.4f %11.4f\n’,n,t1,t1n,t2,t2n)

end

The results for a series of randomly generated n × n matrices are as follows:
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n full-time full-time/n^3 tri-time tri-time/n^2
2000 0.3845 0.2403 0.0080 2.0041
2500 0.7833 0.2507 0.0089 1.4182
3000 0.9172 0.1698 0.0122 1.3560
3500 1.3808 0.1610 0.0178 1.4504
4000 2.0325 0.1588 0.0243 1.5215
4500 2.4460 0.1342 0.0277 1.3696
5000 3.5037 0.1401 0.0344 1.3741
5500 4.7222 0.1419 0.0394 1.3016
6000 5.9742 0.1383 0.0556 1.5444

Column 1 of this table gives n, the size of the square matrix. Columns 2 and 4 give the times taken
to solve the full system and the triangular system respectively. Note that the triangular times are much
smaller. Column 3 gives the time divided by n3 and shows that the time take is closely proportional
to n3, whereas Column 5 is multiplied by 109 and divided by n2. We see that the time required to solve
a triangular system is approximately proportional to n2.

We now perform experiments to examine the effects of using the operator \ with positive definite
symmetric systems. This is a more complex problem than those previously discussed and the script
e4s202.m implements this test. It is based on comparing the application of the \ operator to a positive
definite system and a non-positive definite system of equations. We can create a positive define matrix
by letting A = M*M’ where M is any matrix, but in this case M will be a matrix of random numbers, A will
then be a positive define matrix. To generate a non-positive definite system we add a random matrix
to the positive define matrix and we compare the time required to solve the two forms of matrix. The
script for e4s202.m is of the form

% e4s202.m
disp(’ n time-pos time-pos/n^3 time-npos time-b/n^3’);
for n = 500:500:5000

A = [ ]; M = 100*randn(n,n);
A = M*M’; b = [1:n].’;
tic, x = A\b; t1 = toc*1000;
t1d = t1/n^3;
A = A+rand(size(A));
tic, x = A\b; t2 = toc*1000;
t2d = t2/n^3;
fprintf(’%4.0f %10.4f %14.4e %11.4f %13.4e\n’,n,t1,t1d,t2,t2d)

end

The result of running this script is

n time-pos time-pos/n^3 time-npos time-b/n^3
500 9.9106 7.9285e-08 10.6241 8.4993e-08

1000 46.7403 4.6740e-08 60.0436 6.0044e-08
1500 122.6701 3.6347e-08 164.9225 4.8866e-08
2000 191.2798 2.3910e-08 334.4048 4.1801e-08
2500 374.3233 2.3957e-08 736.9797 4.7167e-08
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3000 619.7430 2.2953e-08 974.7610 3.6102e-08
3500 769.8043 1.7955e-08 1354.9658 3.1603e-08
4000 1040.6866 1.6261e-08 1976.1037 3.0877e-08
4500 1474.6506 1.6183e-08 2518.8017 2.7641e-08
5000 1934.6456 1.5477e-08 3437.0971 2.7497e-08

Column 1 of this table gives n, the size of the matrix. Column 2 gives the time taken multiplied by
1000 for the positive definite matrix and column 4 gives the time taken, again multiplied by 1000, for
the non-positive definite matrix. These results show that the time taken to determine the solution for the
system is somewhat faster for the positive definite system. This is because the operator \ checks to see
if the matrix is positive definite and if so uses the more efficient Cholesky decomposition. Columns 3
and 5 give the times divided by the size of the matrix cubed to illustrate that the processing times are
approximately proportional to n3.

The next test we perform examines how the operator \ succeeds with the very badly conditioned
Hilbert matrix. The test gives the time taken to solve the system and the accuracy of the solution
given by the Euclidean norm of the residuals, that is norm(Ax − b). For the definition of the norm see
Appendix A, Section A.10. In addition the test compares these results for the \ operator with the results
obtained using the inverse, that is x = A−1b. The script e4s203.m performs this test.

% e4s203.m
disp(’ n time-slash acc-slash time-inv acc-inv condition’);
for n = 4:2:20

A = hilb(n); b = [1:n].’;
tic, x = A\b; t1 = toc; t1 = t1*10000;
nm1 = norm(b-A*x);
tic, x = inv(A)*b; t2 = toc; t2 = t2*10000;
nm2 = norm(b-A*x);
c = cond(A);
fprintf(’%2.0f %10.4f %10.2e %8.4f %11.2e %11.2e \n’,n,t1,nm1,t2,nm2,c)

end

Script e4s203.m produces the following table of results:

n time-slash acc-slash time-inv acc-inv condition
4 0.8389 4.11e-14 0.6961 8.89e-13 1.55e+04
6 0.4730 2.89e-12 0.6649 3.74e-10 1.50e+07
8 0.4462 1.89e-10 0.7229 5.60e-07 1.53e+10

10 0.4641 9.81e-09 0.8479 2.97e-04 1.60e+13
12 10.2279 5.66e-07 9.4157 3.42e-01 1.62e+16
14 9.0498 1.33e-05 8.5991 5.33e+01 2.55e+17
16 8.7687 4.57e-05 8.6035 1.01e+03 4.89e+17
18 8.7776 2.25e-05 8.6660 1.92e+02 1.35e+18
20 9.5094 6.91e-05 8.9784 7.04e+01 2.11e+18

This output has been edited to remove warnings about the ill-conditioning of the matrix for n >= 10.
Column 1 gives the size of the matrix. Columns 2 and 3 give the time taken multiplied by 10,000 and



2.4 ACCURACY OF SOLUTIONS AND ILL-CONDITIONING 85

the accuracy when using the \ operator, respectively. Columns 4 and 5 give the same information when
using the inv function. Column 6 gives the condition number of the system matrix. When the condition
number is large, the matrix is nearly singular and the equations are ill-conditioned. Ill-conditioning is
fully described in Section 2.4.

The results in the preceding table demonstrate convincingly the superiority of the \ operator over the
inv function for solving a system of linear equations. It is considerably more accurate than using matrix
inversion. However, it should be noted that the accuracy falls off as the matrix becomes increasingly
ill-conditioned.

The MATLAB operator \ can also be used to solve under- and over-determined systems. In this case
the operator \ uses a least squares approximation, discussed in detail in Section 2.12.

2.4 ACCURACY OF SOLUTIONS AND ILL-CONDITIONING
We now consider factors which affect the accuracy of the solution of Ax = b and how any inaccuracies
can be detected. A further discussion on the accuracy of the solution of this equation system is given
in Appendix B, Section B.3. We begin with the following examples.

Example 2.1. Consider the following MATLAB statements:

>> A = [3.021 2.714 6.913;1.031 -4.273 1.121;5.084 -5.832 9.155]

A =

3.0210 2.7140 6.9130

1.0310 -4.2730 1.1210

5.0840 -5.8320 9.1550

>> b = [12.648 -2.121 8.407].’

b =

12.6480

-2.1210

8.4070

>> A\b

ans =

1.0000

1.0000

1.0000

This result is correct and easily verified by substitution into the original equations.
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Example 2.2. This example is obtained from Example 2.1 with A(2,2) changed from −4.2730 to
−4.2750 thus:

>> A(2,2) = -4.2750

A =

3.0210 2.7140 6.9130

1.0310 -4.2750 1.1210

5.0840 -5.8320 9.1550

>> A\b

ans =

-1.7403

0.6851

2.3212

Here we have a solution which is very different from that of Example 2.1, even though the only change
in the equation system is less than 0.1% in coefficient a(2,2).

The two examples just shown have dramatically different solutions because the coefficient matrix A
is ill-conditioned. Ill-conditioning can be interpreted graphically by representing each of the equation
systems by three plane surfaces, in the manner shown in Fig. 2.2. In an ill-conditioned system at least
two of the surfaces will be almost parallel so that the point of intersection of the surfaces will be very
sensitive to small changes in slope, caused by small changes in coefficient values.

A system of equations is said to be ill-conditioned if a relatively small change in the elements of the
coefficient matrix A causes a relatively large change in the solution. Conversely, a system of equations
is said to be well-conditioned if a relatively small change in the elements of the coefficient matrix A
causes a relatively small change in the solution. Clearly, we require a measure of the condition of a
system of equations. We know that a system of equations without a solution – the very worst condition
possible – has a coefficient matrix with a determinant of zero. It is therefore tempting to think that
the size of the determinant of A can be used as a measure of condition. However, if Ax = b and A
is an n × n diagonal matrix with each element on the leading diagonal equal to s, then A is perfectly
conditioned, regardless of the value of s. But the determinant of A in this case is sn. Thus, the size of
the determinant of A is not a suitable measure of condition because in this example it changes with s

even though the condition of the system is constant.
Two of the functions MATLAB provides to estimate the condition of a matrix are cond and rcond.

The function cond is a sophisticated function and is based on singular value decomposition, discussed
in Section 2.10. For a perfect condition cond is unity but gives a large value for a matrix which is ill-
conditioned. The function rcond is less reliable but usually faster. This function gives a value between
zero and one. The smaller the value, the worse the conditioning. The reciprocal of rcond is usually of
the same order of magnitude as cond. We now illustrate these points with two examples.
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Example 2.3. Illustration of a perfectly conditioned system:

>> A = diag([20 20 20])
A =

20 0 0
0 20 0
0 0 20

>> [det(A) rcond(A) cond(A)]

ans =
8000 1 1

Example 2.4. Illustration of a badly conditioned system:

>> A = [1 2 3;4 5 6;7 8 9.000001];
>> format short e
>> [det(A) rcond(A) 1/rcond(A) cond(A)]

ans =
-3.0000e-06 6.9444e-09 1.4400e+08 1.0109e+08

Note that the reciprocal of the rcond value is close to the value of cond. Using the MATLAB

functions cond and rcond we now investigate the condition number of the Hilbert matrix (defined
in Problem 2.1), using the script e4s204.m:

% e4s204.m Hilbert matrix test.
disp(’ n cond rcond log10(cond)’)
for n = 4:2:20

A = hilb(n);
fprintf(’%5.0f %16.4e’,n,cond(A));
fprintf(’%16.4e %10.2f\n’,rcond(A),log10(cond(A)));

end

Running script e4s204.m gives

n cond rcond log10(cond)
n cond rcond log10(cond)
4 1.5514e+04 3.5242e-05 4.19
6 1.4951e+07 3.4399e-08 7.17
8 1.5258e+10 2.9522e-11 10.18

10 1.6025e+13 2.8285e-14 13.20
12 1.6212e+16 2.5334e-17 16.21
14 2.5515e+17 6.9286e-19 17.41
16 4.8875e+17 1.3275e-18 17.69
18 1.3500e+18 2.5084e-19 18.13
20 2.1065e+18 1.2761e-19 18.32
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This shows that the Hilbert matrix is ill-conditioned even for relatively small values of n, the size of the
matrix. The last column of the output of e4s204.m gives the value of log10 of the condition number of
the appropriate Hilbert matrix. This gives a rule of thumb estimate of the number of significant figures
lost in solving an equation system with this matrix or inverting the matrix.

The Hilbert matrix of order n was generated in the preceding script using the MATLAB function
hilb(n). Other important matrices with interesting structure and properties, such as the Hadamard ma-
trix and the Wilkinson matrix can be obtained using, in these cases the MATLAB function hadamard(n)

and wilkinson(n) where n is the required size of the matrix. In addition, many other interesting ma-
trices can be accessed using the gallery function. In almost every case, we can choose the size of
the matrix and in many cases we can also choose other parameters within the matrix. Example calls
are

gallery(’hanowa’,6,4)

gallery(’cauchy’,6)

gallery(’forsythe’,6,8)

The next section begins the detailed examination of one of the algorithms used by the \ operator.

2.5 ELEMENTARY ROW OPERATIONS
We now examine the operations that can usefully be carried out on each equation of a system of
equations. Such a system will have the form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x2 + a22x2 + . . . + a2nxn = b2

. . . . . . . . . . . . . . .

an1xn + an2x2 + . . . + annxn = bn

or in matrix notation

Ax = b

where

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

b1

b2

...

bn

⎤
⎥⎥⎥⎦ x =

⎡
⎢⎢⎢⎣

x1
x2

...

xn

⎤
⎥⎥⎥⎦

A is called the coefficient matrix. Any operation performed on an equation must be applied to both its
left and right sides. With this in mind it is helpful to combine the coefficient matrix A with the right
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side vector b thus:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

...
...

an1 an2 . . . ann bn

⎤
⎥⎥⎥⎦

This new matrix is called the augmented matrix and we will write it as [A b]. We have chosen to adopt
this notation because it is consistent with MATLAB notation for combining A and b. Note that if A is
an n×n matrix, then the augmented matrix is an n× (n+1) matrix. Each row of the augmented matrix
holds all the coefficients of an equation and any operation must be applied to every element in the row.
The three elementary row operations described in 1, 2, and 3 can be applied to individual equations in
a system without altering the solution of the equation system. They are:

1. Interchange the position of any two rows (that is any two equations).
2. Multiply a row (that is an equation) by a non-zero scalar.
3. Replace a row by the sum of the row and a scalar multiple of another row.

These elementary row operations can be used to solve some important problems in linear algebra and
we now discuss an application of them.

2.6 SOLUTION OF Ax = b BY GAUSSIAN ELIMINATION
Gaussian elimination is an efficient way to solve equation systems, particularly those with a non-
symmetric coefficient matrix having a relatively small number of zero elements. The method depends
entirely on using the three elementary row operations, described in Section 2.5. Essentially the proce-
dure is to form the augmented matrix for the system and then reduce the coefficient matrix part to an
upper triangular form. To illustrate the systematic use of the elementary row operations we consider
the application of Gaussian elimination to solve the following equation system:

⎡
⎣ 3 6 9

2 (4 + p) 2
−3 −4 −11

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦=

⎡
⎣ 3

4
−5

⎤
⎦ (2.10)

where the value of p is known. Table 2.1 shows the sequence of operations, beginning at Stage 1 with
the augmented matrix. In Stage 1 the element in the first column of the first row (enclosed in a box in
the table) is designated the pivot. We wish to make the elements of column 1 in rows 2 and 3 zero. To
achieve this, we divide row 1 by the pivot and then add or subtract a suitable multiple of the modified
row 1 to or from rows 2 and 3. The result of this is shown in Stage 2 of the table. We then select the
next pivot. This is the element in the second column of the new second row, which in Stage 2 is equal
to p. If p is large, this does not present a problem, but if p is small, then numerical problems may
arise because we will be dividing all the elements of the new row 2 by this small quantity p. If p is
small then we are in effect multiplying the pivot by a large number. This not only multiplies the pivot
element by this value but also amplifies any rounding error in the element by the same amount. If p
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Table 2.1 Gaussian elimination used to transform an augmented
matrix to upper triangular form

A1 3 6 9 3 Stage 1:
A2 2 (4 + p) 2 4 Initial matrix
A3 −3 −4 −11 −5
A1 3 6 9 3 Stage 2: Reduce
B2 = A2 − 2(A1)/3 0 p −4 2 col 1 of row
B3 = A3 + 3(A1)/3 0 2 −2 −2 2 & 3 to zero
A1 3 6 9 3 Stage 3:
B3 0 2 −2 −2 Interchange
B2 0 p −4 2 rows 2 & 3
A1 3 6 9 3 Stage 4: Reduce
B3 0 2 −2 −2 col 2 of row
C3 = B2 − p(B3)/2 0 0 (−4 + p) (2 + p) 3 to zero

is zero, then we have an impossible situation because we cannot divide by zero. This difficulty is not
related to ill-conditioning; indeed this particular equation system is quite well conditioned when p is
zero. To circumvent these problems the usual procedure is to interchange the row in question with the
row containing the element of largest modulus in the column below the pivot. In this way we provide
a new and larger pivot. This procedure is called partial pivoting. If we assume in this case that p < 2,
then we interchange rows 2 and 3 as shown in Stage 3 of the table to replace p by 2 as the pivot. From
row 3 we now subtract row 2 divided by the pivot and multiplied by a coefficient in order to make the
element of column 2, row 3, zero. Thus, in Stage 4 of the table it can be seen that the original coefficient
matrix has been reduced to an upper triangular matrix. If, for example, p = 0, we obtain

3x1 + 6x2 + 9x3 = 3 (2.11)

2x2 − 2x3 = −2 (2.12)

−4x3 = 2 (2.13)

We can obtain the values of the unknowns x1, x2, and x3 by a process called back substitution. We
solve the equations in reversed order. Thus, from (2.13), x3 = −0.5. From (2.12), knowing x3, we have
x2 = −1.5. Finally from (2.11), knowing x2 and x3, we have x1 = 5.5.

It can be shown that the determinant of a matrix can be evaluated from the product of the elements
on the main diagonal provided at Stage 3 in Table 2.1. This product must be multiplied by (−1)m

where m is the number of row interchanges used. For example, in the preceding problem, with p = 0,
one row interchange is used so that m = 1 and the determinant of the coefficient matrix is given by
3 × 2 × (−4) × (−1)1 = 24.

A method for solving a linear equation system that is closely related to Gaussian elimination is
Gauss–Jordan elimination. The method uses the same elementary row operations but differs from Gaus-
sian elimination because elements both below and above the leading diagonal are reduced to zero. This
means that back substitution is avoided. For example, solving system (2.10) with p = 0 leads to the
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following augmented matrix: ⎡
⎣ 3 0 0 16.5

0 2 0 −3.0
0 0 −4 2.0

⎤
⎦

Thus x1 = 16.5/3 = 5.5, x2 = −3/2 = −1.5, and x3 = 2/ − 4 = −0.5.
Gaussian elimination requires order n3/3 multiplications followed by back substitution requiring

order n2 multiplications. Gauss–Jordan elimination requires order n3/2 multiplications. Thus, for large
systems of equations (say n > 10), Gauss–Jordan elimination requires approximately 50% more oper-
ations than Gaussian elimination.

2.7 LU DECOMPOSITION
LU decomposition (or factorization) is a similar process to Gaussian elimination and is equivalent in
terms of elementary row operations. The matrix A can be decomposed so that

A = LU (2.14)

where L is a lower triangular matrix with a leading diagonal of ones and U is an upper triangular
matrix. Matrix A may be real or complex. Compared with Gaussian elimination, LU decomposition
has a particular advantage when the equation system we wish to solve, Ax = b, has more than one
right side or when the right sides are not known in advance. This is because the factors L and U are
obtained explicitly and they can be used for any right sides as they arise without recalculating L and U.
Gaussian elimination does not determine L explicitly but rather forms L−1b so that all right sides must
be known when the equation is solved.

The major steps required to solve an equation system by LU decomposition are as follows. Since
A = LU, then Ax = b becomes

LUx = b

where b is not restricted to a single column. Letting y = Ux leads to

Ly = b

Because L is a lower triangular matrix this equation is solved efficiently by forward substitution. To
find x we then solve

Ux = y

Because U is an upper triangular matrix, this equation can also be solved efficiently by back substitu-
tion.

We now illustrate the LU decomposition process by solving (2.10) with p = 1. We are not con-
cerned with b and we do not form an augmented matrix. We proceed exactly as with Gaussian
elimination, see Table 2.1, except that we keep a record of the elementary row operations performed at
the ith stage in T(i) and place the results of these operations in a matrix U(i) rather than over-writing A.
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We begin with the matrix

A =
⎡
⎣ 3 6 9

2 5 2
−3 −4 −11

⎤
⎦ (2.15)

Following the same operations as used in Table 2.1, we will create a matrix U(1) with zeros below the
leading diagonal in the first column using the following elementary row operations:

row 2 of U(1) = row 2 of A − 2(row 1 of A)/3 (2.16)

and

row 3 of U(1) = row 3 of A + 3(row 1 of A)/3 (2.17)

Now A can be expressed as the product T(1) U(1) as follows:
⎡
⎣ 3 6 9

2 5 2
−3 −4 −11

⎤
⎦=

⎡
⎣ 1 0 0

2/3 1 0
−1 0 1

⎤
⎦
⎡
⎣ 3 6 9

0 1 −4
0 2 −2

⎤
⎦

Note that row 1 of A and row 1 of U(1) are identical. Thus row 1 of T(1) has a unit entry in column 1
and zero elsewhere. The remaining rows of T(1) are determined from (2.16) and (2.17). For example,
row 2 of T(1) is derived by rearranging (2.16); thus:

row 2 of A = row 2 of U(1) − 2(row 1 of A)/3 (2.18)

or

row 2 of A = 2(row 1 of U(1))/3 + row 2 of U(1) (2.19)

since row 1 of U(1) is identical to row 1 of A. Hence row 2 of T(1) is [2/3 1 0].
We now move to the next stage of the decomposition process. In order to bring the largest element

of column 2 in U(1) onto the leading diagonal we must interchange rows 2 and 3. Thus U(1) becomes
the product T(2)U(2) as follows:

⎡
⎣ 3 6 9

0 1 −4
0 2 −2

⎤
⎦=

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦
⎡
⎣ 3 6 9

0 2 −2
0 1 −4

⎤
⎦

Finally, to complete the process of obtaining an upper triangular matrix we make

row 3 of U = row 3 of U(2) − (row 2 of U(2))/2

Hence, U(2) becomes the product T(3)U as follows:
⎡
⎣ 3 6 9

0 2 −2
0 1 −4

⎤
⎦=

⎡
⎣ 1 0 0

0 1 0
0 1/2 1

⎤
⎦
⎡
⎣ 3 6 9

0 2 −2
0 0 −3

⎤
⎦
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Thus A = T(1)T(2)T(3)U, implying that L = T(1)T(2)T(3) as follows:

⎡
⎣ 1 0 0

2/3 1 0
−1 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦
⎡
⎣ 1 0 0

0 1 0
0 1/2 1

⎤
⎦=

⎡
⎣ 1 0 0

2/3 1/2 1
−1 1 0

⎤
⎦

Note that owing to the row interchanges L is not strictly a lower triangular matrix but it can be made
so by interchanging rows.

MATLAB implements LU factorization by using the function lu and may produce a matrix that is
not strictly a lower triangular matrix. However, a permutation matrix P may be produced, if required,
such that LU = PA with L lower triangular.

We now show how the MATLAB function lu solves the example based on the matrix given in
(2.15):

>> A = [3 6 9;2 5 2;-3 -4 -11]

A =
3 6 9
2 5 2

-3 -4 -11

To obtain the L and U matrices, we must use that MATLAB facility of assigning two parameters simul-
taneously as follows:

>> [L1 U] = lu(A)

L1 =
1.0000 0 0
0.6667 0.5000 1.0000

-1.0000 1.0000 0

U =
3.0000 6.0000 9.0000

0 2.0000 -2.0000
0 0 -3.0000

Note that the L1 matrix is not in lower triangular form, although its true form can easily be deduced by
interchanging rows 2 and 3 to form a triangle. To obtain a true lower triangular matrix we must assign
three parameters as follows:

>> [L U P] = lu(A)

L =
1.0000 0 0

-1.0000 1.0000 0
0.6667 0.5000 1.0000
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U =
3.0000 6.0000 9.0000

0 2.0000 -2.0000
0 0 -3.0000

P =
1 0 0
0 0 1
0 1 0

In the preceding output, P is the permutation matrix such that L*U = P*A or P’*L*U = A. Thus P’*L is
equal to L1.

The MATLAB operator \ determines the solution of Ax = b using LU factorization. As an example
of an equation system with multiple right sides we solve AX = B where

A =
⎡
⎣ 3 4 −5

6 −3 4
8 9 −2

⎤
⎦ and B =

⎡
⎣ 1 3

9 5
9 4

⎤
⎦

Performing LU decomposition such that LU = A gives

L =
⎡
⎣ 0.375 −0.064 1

0.750 1 0
1 0 0

⎤
⎦ and U =

⎡
⎣ 8 9 −2

0 −9.75 5.5
0 0 −3.897

⎤
⎦

Thus LY = B is given by

⎡
⎣ 0.375 −0.064 1

0.750 1 0
1 0 0

⎤
⎦
⎡
⎣ y11 y12

y21 y22
y31 y32

⎤
⎦=

⎡
⎣ 1 3

9 5
9 4

⎤
⎦

We note that implicitly we have two systems of equations which when separated can be written:

L

⎡
⎣ y11

y21
y31

⎤
⎦=

⎡
⎣ 1

9
9

⎤
⎦ and L

⎡
⎣ y12

y22
y32

⎤
⎦=

⎡
⎣ 3

5
4

⎤
⎦

In this example, L is not strictly a lower triangular matrix owing to the reordering of the rows. However,
the solution of this equation is still found by forward substitution. For example, 1y11 = b31 = 9, so that
y11 = 9. Then 0.75y11 + 1y21 = b21 = 9. Hence y21 = 2.25, etc. The complete Y matrix is

Y =
⎡
⎣ 9.000 4.000

2.250 2.000
−2.231 1.628

⎤
⎦



2.8 CHOLESKY DECOMPOSITION 95

Finally solving UX = Y by back substitution gives

X =
⎡
⎣ 1.165 0.891

0.092 −0.441
0.572 −0.418

⎤
⎦

The MATLAB function det determines the determinant of a matrix using LU factorization as follows.
Since A = LU then |A| = |L| |U|. The elements of the leading diagonal of L are all ones so that |L| = 1.
Since U is upper triangular, its determinant is the product of the elements of its leading diagonal. Thus,
taking account of row interchanges the appropriately signed product of the diagonal elements of U
gives the determinant.

2.8 CHOLESKY DECOMPOSITION
Cholesky decomposition or factorization is a form of triangular decomposition that can only be applied
to either a positive definite symmetric matrix or a positive definite Hermitian matrix. A symmetric
matrix A is said to be positive definite if xTAx > 0 for any non-zero x. Similarly, if A is Hermitian,
then xHAx > 0. A more useful definition of a positive definite matrix is one that has all eigenvalues
greater than zero. The eigenvalue problem is discussed in Section 2.15. If A is symmetric or Hermitian,
we can write

A = PTP (or A = PHP when A is Hermitian) (2.20)

where P is an upper triangular matrix. The algorithm computes P row by row by equating coefficients
of each side of (2.20). Thus p11, p12, p13, ..., p22, p23, ... are determined in sequence, ending with pnn.
Coefficients on the leading diagonal of P are computed from expressions that involve determining a
square root. For example,

p22 =
√

a22 − p2
12

A property of positive definite matrices is that the term under the square root is always positive and
so the square root will be real. Furthermore, row interchanges are not required because the dominant
coefficients will always be on the main diagonal. The whole process requires only about half as many
multiplications as LU decomposition. Cholesky factorization is implemented for positive definite sym-
metric matrices in MATLAB by the function chol. For example, consider the Cholesky factorization of
the following positive definite Hermitian matrix:

>> A = [2 -i 0;i 2 0;0 0 3]

A =
2.0000 + 0.0000i 0.0000 - 1.0000i 0.0000 + 0.0000i
0.0000 + 1.0000i 2.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 3.0000 + 0.0000i

>> P = chol(A)
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P =
1.4142 + 0.0000i 0.0000 - 0.7071i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.2247 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.7321 + 0.0000i

When the operator \ detects a symmetric positive definite or Hermitian positive definite system matrix,
it solves Ax = b using the following sequence of operations. A is factorized into PTP, y is set to Px;
then PTy = b. The algorithm solves for y by forward substitution since PT is a lower triangular matrix.
Then x can be determined from y by backward substitution since P is an upper triangular matrix. We
can illustrate the steps in this process by the following example:

A =
⎡
⎣ 2 3 4

3 6 7
4 7 10

⎤
⎦ and b =

⎡
⎣ 2

4
8

⎤
⎦

Then by Cholesky factorization

P =
⎡
⎣ 1.414 2.121 2.828

0 1.225 0.817
0 0 1.155

⎤
⎦

Now since PTy = b solving for y by forward substitution gives

y =
⎡
⎣ 1.414

0.817
2.887

⎤
⎦

Finally solving Px = y by back substitution gives

x =
⎡
⎣ −2.5

−1.0
2.5

⎤
⎦

We now compare the performance of the operator \ with the function chol. Clearly, their perfor-
mance should be similar in the case of a positive definite matrix. To generate a symmetric positive
definite matrix in script e4s205.m, we multiply a matrix by its transpose:

% e4s205.m
disp(’ n time-backslash time-chol’);
for n = 1000:100:2000

A = [ ]; M = 100*randn(n,n);
A = M*M’; b = [1:n].’;
tic, x = A\b; t1 = toc;
tic, R = chol(A);
v = R.’\b; x = R\b;
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t2 = toc;

fprintf(’%4.0f %14.4f %13.4f \n’,n,t1,t2)

end

Running script e4s205.m gives

n time-backslash time-chol

1000 0.0320 0.0232

1100 0.0388 0.0246

1200 0.0447 0.0271

1300 0.0603 0.0341

1400 0.0650 0.0475

1500 0.0723 0.0420

1600 0.0723 0.0521

1700 0.0965 0.0552

1800 0.1142 0.0679

1900 0.1312 0.0825

2000 0.1538 0.1107

The similarity in performance of the function chol and the operator \ is borne out in the preceding
table. In this table, column 1 gives the size of the matrix and column 2 gives the time taken using the \

operator. Column 3 gives the time taken using Cholesky decomposition to solve the same problem.
Cholesky factorization can be applied to a symmetric matrix which is not positive definite but the

process does not possess the numerical stability of the positive definite case. Furthermore, one or more
rows in P may be purely imaginary. For example,

If A =
⎡
⎣ 1 2 3

2 −5 9
3 9 4

⎤
⎦ then P =

⎡
⎣ 1 2 3

0 3ı −ı

0 0 2ı

⎤
⎦

This is not implemented in MATLAB.

2.9 QR DECOMPOSITION
We have seen how a square matrix can be decomposed or factorized into the product of a lower and an
upper triangular matrix by the use of elementary row operations. An alternative decomposition of A is
into an upper triangular matrix and an orthogonal matrix if A is real, or into an upper triangular matrix
and a unitary matrix if A is complex. This is called QR decomposition. Thus

A = QR

where R is the upper triangular matrix and Q is the orthogonal, or the unitary matrix. If Q is orthogonal,
Q−1 = QT, and if Q is unitary, Q−1 = QH. The preceding properties are very useful.
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There are several procedures which provide QR decomposition; here we present Householder’s
method. To decompose a real matrix, Householder’s method begins by defining a matrix P thus:

P = I − 2wwT (2.21)

where w is a column vector and P is symmetrical matrix. Provided wTw = 1, P is also orthogonal. The
orthogonality can easily be verified by expanding the product PTP = PP as follows:

PP =
(

I − 2wwT
)(

I − 2wwT
)

= I − 4wwT + 4wwT
(

wwT
)

= I − 4wwT + 4w
(

wTw
)

wT = I

since wTw = 1.
To decompose A into QR, we begin by forming the vector w1 from the coefficients of the first

column of A as follows:

wT
1 = μ1 [(a11 − s1) a21 a31 . . . an1]

where

μ1 = 1√
2s1(s1 − a11)

and s1 = ±
⎛
⎝ n∑

j=1

a2
j1

⎞
⎠

1/2

By substituting for μ1 and s1 in w1 it can be verified that the necessary orthogonality condition,
wT

1w1 = 1, is satisfied. Substituting w1 into (2.21) we generate an orthogonal matrix P(1).
The matrix A(1) is now created from the product P(1)A. It can easily be verified that all elements in

the first column of A(1) are zero except for the element on the leading diagonal which is equal to s1.
Thus,

A(1) = P(1)A =

⎡
⎢⎢⎢⎢⎢⎣

s1 + · · · +
0 + · · · +
...

...
...

0 + · · · +
0 + · · · +

⎤
⎥⎥⎥⎥⎥⎦

In the matrix A(1), + indicates a non-zero element.
We now begin the second stage of the orthogonalization process by forming w2 from the coefficients

of the second column of A(1) thus:

wT
2 = μ2

[
0
(
a

(1)
22 − s2

)
a

(1)
32 a

(1)
42 · · ·a(1)

n2

]
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where aij are the coefficients of A and

μ2 = 1√
2s2(s2 − a

(1)
22 )

and s2 = ±
⎛
⎝ n∑

j=2

(a
(1)
j2 )2

⎞
⎠

1/2

Then the orthogonal matrix P(2) is generated from

P(2) = I − 2w2wT
2

The matrix A(2) is then created from the product P(2)A(1) as follows:

A(2) = P(2)A(1) = P(2)P(1)A =

⎡
⎢⎢⎢⎢⎢⎣

s1 + · · · +
0 s2 · · · +
...

...
...

0 0 · · · +
0 0 · · · +

⎤
⎥⎥⎥⎥⎥⎦

Note that A(2) has zero elements in its first two columns except for the elements on and above the
leading diagonal. We can continue this process n−1 times until we obtain an upper triangular matrix R.
Thus,

R = P(n−1) . . .P(2)P(1)A (2.22)

Note that since P(i) is orthogonal, the product P(n−1) ... P(2)P(1) is also orthogonal.
We wish to determine the orthogonal matrix Q such that A = QR. Thus R = Q−1A or R = QTA.

Hence, from (2.22),

QT = P(n−1) . . .P(2)P(1)

Apart from the signs associated with the columns of Q and the rows of R, the decomposition is unique.
These signs are dependent on whether the positive or negative square root is taken in determining
s1, s2, etc. Complete decomposition of the matrix requires 2n3/3 multiplications and n square roots.
To illustrate this procedure consider the decomposition of the matrix

A =
⎡
⎣ 4 −2 7

6 2 −3
3 4 4

⎤
⎦

Thus,

s1 = √
42 + 62 + 32 = 7.8102

μ1 = 1√
2×7.8102×(7.8102−4)

= 0.1296

wT
1 = 0.1296[(4 − 7.8102) 6 3] = [−0.4939 0.7777 0.3889]
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Using (2.21) we generate P(1) and hence A(1) thus:

P(1) =
⎡
⎣ 0.5121 0.7682 0.3841

0.7682 −0.2097 −0.6049
0.3841 −0.6049 0.6976

⎤
⎦

A(1) = P(1)A =
⎡
⎣ 7.8102 2.0486 2.8168

0 −4.3753 3.5873
0 0.8123 7.2936

⎤
⎦

Note that we have reduced the elements of the first column of A(1) below the leading diagonal to zero.
We continue with the second stage thus:

s2 = √−4.37532 + 0.81232 = 4.4501

μ2 = 1√
2×4.4501×(4.4501+4.3753)

= 0.1128

wT
2 = 0.1128 [0 (−4.3753 − 4.4501) 0.8123] = [0 −0.9958 0.0917]

P(2) =
⎡
⎣ 1 0 0

0 −0.9832 0.1825
0 0.1825 0.9832

⎤
⎦

R = A(2) = P(2)A(1) =
⎡
⎣ 7.8102 2.0486 2.8168

0 4.4501 −2.1956
0 0 7.8259

⎤
⎦

Note that we have now reduced the first two columns of A(2) below the leading diagonal to zero. This
completes the process to determine the upper triangular matrix R. Finally, we determine the orthogonal
matrix Q as follows:

Q =
(

P(2)P(1)
)T =

⎡
⎣ 0.5121 −0.6852 0.5179

0.7682 0.0958 −0.6330
0.3841 0.7220 0.5754

⎤
⎦

It is not necessary for the reader to carry out the preceding calculations since MATLAB provides the
function qr to carry out this decomposition. For example,

>> A = [4 -2 7;6 2 -3;3 4 4]

A =
4 -2 7
6 2 -3
3 4 4

>> [Q R] = qr(A)
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Q =

-0.5121 0.6852 0.5179

-0.7682 -0.0958 -0.6330

-0.3841 -0.7220 0.5754

R =

-7.8102 -2.0486 -2.8168

0 -4.4501 2.1956

0 0 7.8259

Note that the matrices Q and R in the MATLAB output are the negative of the hand calculations of Q
and R above. This is not significant since their product is equal to A, and in the multiplication, the
signs cancel.

One advantage of QR decomposition is that it can be applied to non-square matrices, decomposing
an m × n matrix into an m × m orthogonal matrix and an m × n upper triangular matrix. Note that if
m > n, the decomposition is not unique.

2.10 SINGULAR VALUE DECOMPOSITION
The singular value decomposition (SVD) of an m × n matrix A is given by

A = USVT (or A = USVH if A is complex) (2.23)

where U is an orthogonal m × m matrix and V is an orthogonal n × n matrix. If A is complex then U
and V are unitary matrices. In all cases S is a real diagonal m × n matrix. The elements of the leading
diagonal of this matrix are called the singular values of A. Normally they are arranged in decreasing
value so that s1 > s2 > ... > sn. Thus,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 . . . 0
0 s2 . . . 0
...

...
...

0 0 . . . sn
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The singular values are the non-negative square roots of the eigenvalues of ATA. Because ATA is
symmetric or Hermitian these eigenvalues are real and non-negative so that the singular values are
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also real and non-negative. Algorithms for computing the SVD of a matrix are given by Golub and
Van Loan (1989).

The SVD of a matrix has several important applications. In Section 2.4, we introduced the reduced
row echelon form of a matrix and explained how the MATLAB function rref gave information from
which the rank of a matrix can be deduced. However, rank can be more effectively determined from
the SVD of a matrix since its rank is equal to the number of its non-zero singular values. Thus, for a
5 × 5 matrix of rank 3, s4 and s5 would be zero. In practice, rather than counting the non-zero singular
values, MATLAB determines rank from the SVD by counting the number of singular values greater
than some tolerance value. This is a more realistic approach to determining rank than counting any
non-zero value, however small.

To illustrate how singular value decomposition helps us to examine the properties of a matrix we
will use the MATLAB function svd to carry out a singular value decomposition and compare it with
the function rref. Consider the following example in which a Vandermonde matrix is created using
the MATLAB function vander. The Vandermonde matrix is known to be ill-conditioned. SVD allows
us to examine the nature of this ill-conditioning. In particular a zero or a very small singular value
indicates rank deficiency and this example shows that the singular values are becoming relatively close
to this condition. In addition SVD allows us to compute the condition number of the matrix. In fact,
the MATLAB function cond uses SVD to compute the condition number and this gives the same values
as obtained by dividing the largest singular value by the smallest singular value. Additionally, the
Euclidean norm of the matrix is supplied by the first singular value. Comparing the SVD with the
RREF process in the following script, we see that the result of using the MATLAB functions rref
and rank give the rank of this special Vandermonde matrix as 5 but tells us nothing else. There is no
warning that the matrix is badly conditioned.

>> c = [1 1.01 1.02 1.03 1.04];
>> V = vander(c)

V =
1.0000 1.0000 1.0000 1.0000 1.0000
1.0406 1.0303 1.0201 1.0100 1.0000
1.0824 1.0612 1.0404 1.0200 1.0000
1.1255 1.0927 1.0609 1.0300 1.0000
1.1699 1.1249 1.0816 1.0400 1.0000

>> format long
>> s = svd(V)

s =
5.210367051037899
0.101918335876689
0.000699698839445
0.000002352380295
0.000000003294983

>> norm(V)
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ans =
5.210367051037898

>> cond(V)

ans =
1.581303244929480e+09

>> s(1)/s(5)

ans =
1.581303244929480e+09

>> rank(V)

ans =
5

>> rref(V)

ans =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The following example is very similar to the preceding one but the Vandermonde matrix has now
been generated to be rank deficient. The smallest singular value, although not zero, is zero to machine
precision and rank returns the value of 4.

>> c = [1 1.01 1.02 1.03 1.03];
>> V = vander(c)

V =
1.0000 1.0000 1.0000 1.0000 1.0000
1.0406 1.0303 1.0201 1.0100 1.0000
1.0824 1.0612 1.0404 1.0200 1.0000
1.1255 1.0927 1.0609 1.0300 1.0000
1.1255 1.0927 1.0609 1.0300 1.0000

>> format long e
>> s = svd(V)
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s =
5.187797954424026e+00
8.336322098941423e-02
3.997349250041025e-04
8.462129966394409e-07
1.261104176071465e-23

>> format short
>> rank(V)

ans =
4

>> rref(V)

ans =
1.0000 0 0 0 -0.9424

0 1.0000 0 0 3.8262
0 0 1.0000 0 -5.8251
0 0 0 1.0000 3.9414
0 0 0 0 0

>> cond(V)

ans =
4.1137e+23

The rank function does allow the user to vary the tolerance using a second parameter, that is
rank(A,tol) where tol gives the tolerance for acceptance of the singular values of A to be taken
as non-zero. However, tolerance should be used with care since the rank function counts the number of
singular values greater than tolerance and this gives the rank of the matrix. If tolerance is very small,
that is, smaller than the machine precision, the rank may be miscounted.

2.11 THE PSEUDO-INVERSE
Here we discuss the pseudo-inverse and in Section 2.12 we apply it to solve over- and under-determined
systems.

If A is an m × n rectangular matrix, then the system

Ax = b (2.24)

cannot be solved by inverting A, since A is not a square matrix. Assuming an equation system with
more equations than variables, that is m > n, then by pre-multiplying (2.24) by AT we can convert the
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system matrix to a square matrix as follows:

ATAx = ATb

The product ATA is square and, provided it is non-singular, it can be inverted to give the solution to
(2.24) thus:

x =
(

ATA
)−1

ATb (2.25)

Let

A+ =
(

ATA
)−1

AT (2.26)

The matrix A+ is called the Moore–Penrose pseudo-inverse of A or just the pseudo inverse. Thus, the
solution of (2.24) is

x = (A+)b (2.27)

This definition of the pseudo-inverse, A+, requires A to have full rank. If A is full rank and m > n,
then rank(A) = n. Now rank(ATA) = rank(A) and hence rank(ATA) = n. Since ATA is an n×n array,
ATA is automatically full rank and A+ is then a unique m × n array. If A is rank deficient, then ATA is
rank deficient and cannot be inverted.

If A is square and non-singular, then A+ = A−1. If A is complex then

A+ =
(

AHA
)−1

AH (2.28)

where AH is the conjugate transpose, described in Appendix A, Section A.6. The product ATA has
a condition number which is the square of the condition number of A. This has implications for the
computations involved in A+.

It can be shown that the pseudo-inverse A+ has the following properties:

1. A(A+)A = A,
2. (A+)A(A+) = A+,
3. (A+)A and A(A+) are symmetrical matrices.

We must now consider the situation that occurs when A of (2.24) is an m × n array with m < n,
that is an equation system with more variables than equations. If A is a full rank, then rank(A) = m.
Now rank(ATA) = rank(A) and hence rank(ATA) = m. Since ATA is an n × n matrix, ATA is rank
deficient and cannot be inverted, even though A is of full rank. We can avoid this problem by recasting
(2.24) as follows:

Ax =
(

AAT
)(

AAT
)−1

b

and hence, multiplying by A−1

x = AT
(

AAT
)−1

b
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Thus,

x = (A+)b

where A+ = AT(AAT)−1 and is the pseudo-inverse. Note that AAT is an m × m array with rank m and
can thus be inverted.

Example 2.5. Consider the following matrix:

A =

⎡
⎢⎢⎣

1 2 3
4 5 9
5 6 7

−2 3 1

⎤
⎥⎥⎦

Computing the pseudo-inverse of A using a MATLAB implementation of (2.26) we have

>> A = [1 2 3;4 5 9;5 6 7;-2 3 1];
>> rank(A)

ans =
3

We note that A is full rank. Thus,

>> A_plus = inv(A.’*A)*A.’

A_plus =
-0.0747 -0.1467 0.2500 -0.2057
-0.0378 -0.2039 0.2500 0.1983
0.0858 0.2795 -0.2500 -0.0231

The MATLAB function pinv provides this result directly and with greater accuracy.

A*A_plus*A

ans =
1.0000 2.0000 3.0000
4.0000 5.0000 9.0000
5.0000 6.0000 7.0000

-2.0000 3.0000 1.0000

>> A*A_plus

ans =
0.1070 0.2841 0.0000 0.1218
0.2841 0.9096 0.0000 -0.0387
0.0000 0.0000 1.0000 -0.0000
0.1218 -0.0387 -0.0000 0.9834
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>> A_plus*A

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

-0.0000 -0.0000 1.0000

Note that these calculations verify that A*A_plus*A equals A and that both A*A_plus and A_plus*A are
symmetrical.

It has been shown that if A is rank deficient, then (2.26) cannot be used to determine the pseudo-
inverse of A. This doesn’t mean that the pseudo-inverse does not exist; it always exists but we must
use a different method to evaluate it. When A is rank deficient, or close to rank deficient, A+ is best
calculated from the singular value decomposition (SVD) of A. If A is real, the SVD of A is USVT

where U is an orthogonal m × m matrix and V is an orthogonal n × n matrix and S is an n × m matrix
of singular values. Thus, the SVD of AT is VSTUT so that

ATA = (VSTUT)(USVT) = VSTSVT since UTU = I

Hence,

A+ = (VSTSVT)−1VSTUT = V−T(STS)−1V−1VSTUT

= V(STS)−1STUT
(2.29)

We note that because of orthogonality VVT = I and hence VVTV−T = V−T.
Since V is an m × m matrix, U is an n × n matrix and S is an n × m matrix, then (2.29) is con-

formable, that is matrix multiplication is possible; see Appendix A, Section A.5. In this situation,
however, STS cannot be inverted because of the very small or zero singular values. To deal with this
problem we take only the r non-zero singular values of the matrix so that S is an r × r matrix where
r is the rank of A. To make the multiplications of (2.29) conformable (that is, possible) we take the
first r columns of V and the first r rows of UT, that is the first r columns of U. This is illustrated in
Example 2.6 where the pseudo-inverse of A is determined.

Example 2.6. Consider the following rank deficient matrix:

A =

⎡
⎢⎢⎢⎢⎣

1 2 3
4 5 9
7 11 18

−2 3 1
7 1 8

⎤
⎥⎥⎥⎥⎦

Using MATLAB, we have
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>> A = [1 2 3;4 5 9;7 11 18;-2 3 1;7 1 8]

A =
1 2 3
4 5 9
7 11 18
-2 3 1
7 1 8

>> rank(A)

ans =
2

Since A has a rank of 2 and is thus rank deficient. Hence we cannot use (2.26) to determine its pseudo-
inverse. We now find the SVD of A as follows

>> [U S V] = svd(A)

U =
-0.1381 0.0839 -0.1198 0.4305 -0.8799
-0.4115 0.0215 0.9092 0.0489 -0.0333
-0.8258 0.2732 -0.3607 -0.3341 0.0413
-0.0524 0.5650 -0.0599 0.7077 0.4165
-0.3563 -0.7737 -0.1588 0.4469 0.2224

S =
26.8394 0 0

0 6.1358 0
0 0 0.0000
0 0 0
0 0 0

V =
-0.3709 -0.7274 0.5774
-0.4445 0.6849 0.5774
-0.8154 -0.0425 -0.5774

We now select the two significant singular values for use in the subsequent computation:

>> SS = S(1:2,1:2)

SS =
26.8394 0

0 6.1358
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To make the multiplication conformable we use only the first two columns of U and V thus:

>> A_plus = V(:,1:2)*inv(SS.’*SS)*SS.’*U(:,1:2).’

A_plus =
-0.0080 0.0031 -0.0210 -0.0663 0.0966
0.0117 0.0092 0.0442 0.0639 -0.0805
0.0036 0.0124 0.0232 -0.0023 0.0162

This result can be obtained directly using the pinv function which is based on the singular value
decomposition of G.

>> A*A_plus

ans =
0.0261 0.0586 0.1369 0.0546 -0.0157
0.0586 0.1698 0.3457 0.0337 0.1300
0.1369 0.3457 0.7565 0.1977 0.0829
0.0546 0.0337 0.1977 0.3220 -0.4185

-0.0157 0.1300 0.0829 -0.4185 0.7256

>> A_plus*A

ans =
0.6667 -0.3333 0.3333

-0.3333 0.6667 0.3333
0.3333 0.3333 0.6667

Note that A*A_plus and A_plus*A are symmetric.
In Section 2.12, we will apply these methods to solve over- and under-determined systems and

discuss the meaning of the solution.

2.12 OVER- AND UNDER-DETERMINED SYSTEMS
We will begin by examining examples of over-determined systems, that is, systems of equations in
which there are more equations than unknown variables.

Although over-determined systems may have a unique solution, most often we are concerned with
equation systems that are generated from experimental data which can lead to a relatively small degree
of inconsistency between the equations. For example, consider the following over-determined system
of linear equations:

x1 + x2 = 1.98
2.05x1 − x2 = 0.95
3.06x1 + x2 = 3.98

−1.02x1 + 2x2 = 0.92
4.08x1 − x2 = 2.90

(2.30)
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FIGURE 2.5

Plot of an inconsistent equation system (2.30).

Fig. 2.5 shows that (2.30) is such a system; the lines do not intersect in a point, although there is a point
that nearly satisfies all the equations.

We would like to choose the best of all possible solutions of (2.30) in the region defined by the
intersections. One criterion for doing this is that the chosen solution should minimize the sum of
squares of the residual errors (or residuals) of the equations. For example, consider the equation system
(2.30). Letting r1, ..., r5 be the residuals, then

x1 + x2 − 1.98 = r1

2.05x1 − x2 − 0.95 = r2

3.06x1 + x2 − 3.98 = r3

−1.02x1 + 2x2 − 0.92 = r4

4.08x1 − x2 − 2.90 = r5

In this case the sum of the residuals squared is given by

S =
5∑

i=1

r2
i (2.31)

We wish to minimize S and we can do this by making

∂S

∂xk

= 0, k = 1, 2

Now

∂S

∂xk

=
5∑

i=1

2ri
∂ri

∂xk

, k = 1, 2
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and thus

5∑
i=1

ri
∂ri

∂xk

= 0, k = 1, 2 (2.32)

It can be shown that minimizing the sum of the squares of the residuals using (2.32) gives an identical
solution to that given by the pseudo-inverse method for solving the equation system.

When solving a set of over-determined equations, determining the pseudo-inverse of the system
matrix is only part of the process and normally we do not require this interim result. The MATLAB

operator \ solves over-determined systems automatically. Thus, the operator may be used to solve any
linear equation system.

In the following example, we compare the results obtained using the operator \ and using the
pseudo-inverse for solving (2.30). The MATLAB script e4s206.m follows:

% e4s206.m

A = [1 1;2.05 -1;3.06 1;-1.02 2;4.08 -1];

b = [1.98;0.95;3.98;0.92;2.90];

x = pinv(A)*b

norm_pinv = norm(A*x-b)

x = A\b

norm_op = norm(A*x-b)

Running script e4s206.m gives the following numeric output:

x =

0.9631

0.9885

norm_pinv =

0.1064

x =

0.9631

0.9885

norm_op =

0.1064

Here, both the MATLAB operator \ and the function pinv have provided the same “best fit” solution for
the inconsistent set of equations. Fig. 2.6 shows the region where these equations intersect in greater
detail than Fig. 2.5. The symbol “+” indicates the MATLAB solution which can be seen to lie in this
region. The norm of Ax − b is the square root of the sum of the squares of the residuals and provides
a measure of how well the equations are satisfied.
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FIGURE 2.6

Plot of inconsistent equation system (2.30) showing the region of intersection of the equations, where +
indicates “best” solution.

The MATLAB operator \ does not solve an over-determined system by using the pseudo-inverse,
as given in (2.26). Instead, it solves (2.24) directly by QR decomposition. QR decomposition can
be applied to both square and rectangular matrices providing the number of rows is greater than the
number of columns. For example, applying the MATLAB function qr to solve the over-determined
system (2.30) we have

>> A = [1 1;2.05 -1;3.06 1;-1.02 2;4.08 -1];

>> b = [1.98 0.95 3.98 0.92 2.90].’;

>> [Q R] = qr(A)

Q =

-0.1761 0.4123 -0.7157 -0.2339 -0.4818

-0.3610 -0.2702 0.0998 0.6751 -0.5753

-0.5388 0.5083 0.5991 -0.2780 -0.1230

0.1796 0.6839 -0.0615 0.6363 0.3021

-0.7184 -0.1756 -0.3394 0.0857 0.5749

R =

-5.6792 0.7237

0 2.7343

0 0

0 0

0 0

In the equation Ax = b we have replaced A by QR so that QRx = b. Let Rx = y. Thus, we have
y = Q−1b = QTb since Q is orthogonal. Once y is determined we can efficiently determine x by back
substitution since R is upper triangular. Thus, continuing the previous example,
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>> y = Q.’*b

y =
-4.7542
2.7029
0.0212

-0.0942
-0.0446

Using the second row of R and the second row of y we can determine x2. From the first row of R and
the first row of y we can determine x1 since x2 is known. Thus,

−5.6792x1 + 0.7237x2 = −4.7542

2.7343x2 = 2.7029

gives x1 = 0.9631 and x2 = 0.9885, as before. The MATLAB operator \ implements this sequence of
operations.

We now consider a case where the coefficient matrix of the over-determined system is rank defi-
cient. The following example is rank deficient and represents a system of parallel lines.

x1 + 2x2 = 1.00

x1 + 2x2 = 1.03

x1 + 2x2 = 0.97

x1 + 2x2 = 1.01

In MATLAB this becomes

>> A = [1 2;1 2;1 2;1 2]

A =
1 2
1 2
1 2
1 2

>> b = [1 1.03 0.97 1.01].’

b =
1.0000
1.0300
0.9700
1.0100

>> y = A\b
Warning: Rank deficient, rank = 1, tol = 3.552714e-015.
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y =
0

0.5012

>> norm(y)

ans =
0.5012

The user is warned that this system is rank deficient. We have solved the system using the \ operator
and now solve it using the pinv function as follows:

>> x = pinv(A)*b

x =
0.2005
0.4010

>> norm(x)

ans =
0.4483

We see that when the pinv function and \ operator are applied to rank deficient systems the pinv
function gives the solution with the smallest Euclidean norm; see Appendix A, Section A.10. Clearly
there is no unique solution to this system since it represents a set of parallel lines.

We now turn to the problem of under-determined systems. Here there is insufficient information to
determine a unique solution. For example, consider the equation system

x1 + 2x2 + 3x3 + 4x4 = 1

−5x1 + 3x2 + 2x3 + 7x4 = 2

Expressing these equations in MATLAB we have

>> A = [1 2 3 4;-5 3 2 7];
>> b = [1 2].’;
>> x1 = A\b

x1 =
-0.0370

0
0

0.2593

>> x2 = pinv(A)*b
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x2 =

-0.0780

0.0787

0.0729

0.1755

We calculate the norms:

>> norm(x1)

ans =

0.2619

>> norm(x2)

ans =

0.2199

The first solution vector, x1, is a solution which satisfies the system; the second solution vector, x2,
satisfies the system of equations but also gives the solution with the minimum norm.

The definition of the Euclidean or 2-norm of a vector is the square root of the sum of the squares
of the elements of the vector; see Appendix A, Section A.10. The shortest distance between a point in
space and the origin is given by Pythagoras’s theorem as the square root of the sum of squares of the
coordinates of the point. Thus, the Euclidean norm of a vector which is a point on a line, surface, or
hypersurface may be interpreted geometrically as the distance between this point and the origin. The
vector with the minimum norm must be the point on the line, surface, or hypersurface which is closest
to the origin. It can be shown that the line joining this vector to the origin must be perpendicular to the
line, surface, or hypersurface.

Giving the minimum norm solution has the advantage that, whereas there are an infinite number of
solutions to an under-determined problem, there is only one minimum norm solution. This provides a
standard result.

To complete the discussion of over- and under-determined systems we consider the use of the
lsqnonneg function which solves the least squares problem with a non-negative solution. This solves
the problem of finding a solution x to the linear equation system

Ax = b, subject to x ≥ 0

where A and b must be real. This is equivalent to the problem of finding the vector x that minimizes
norm(Ax − b) subject to x ≥ 0.
We can call the MATLAB function lsqnonneg for a specific problem using the statement

x = lsqnonneg(A,b)
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where A corresponds to A in our definition and b to b. The solution is given by x. Consider the example
which follows. Solve

[
1 1 1 1 0
1 2 3 0 1

]
⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦=

[
7

12

]

subject to xi ≥ 0, where i = 1,2, ...,5. In MATLAB this becomes

>> A = [1 1 1 1 0;1 2 3 0 1];
>> b = [7 12].’;

Solving this system gives

>> x = lsqnonneg(A,b)

x =
0
0
4
3
0

We can also solve this using \ but this will not ensure non-negative values for x.

>> x2 = A\b

x2 =
0
0

4.0000
3.0000

0

In this case, we do obtain a non-negative solution but this is fortuitous and cannot be guaranteed.
The following example illustrates how the lsqnonneg function forces a non-negative solution which

best satisfies the equations:
⎡
⎢⎢⎣

3.0501 4.8913
3.2311 −3.2379
1.6068 7.4565
2.4860 −0.9815

⎤
⎥⎥⎦
[

x1
x2

]
=

⎡
⎢⎢⎣

2.5
2.5
0.5
2.5

⎤
⎥⎥⎦ (2.33)

>> A = [3.0501 4.8913;3.2311 -3.2379; 1.6068 7.4565;2.4860 -0.9815];
>> b = [2.5 2.5 0.5 2.5].’;

We can compute the solution using \ or lsqnonneg function thus:
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>> x1 = A\b

x1 =

0.8307

-0.0684

>> x2 = lsqnonneg(A,b)

x2 =

0.7971

0

>> norm(A*x1-b)

ans =

0.7040

>> norm(A*x2-b)

ans =

0.9428

Thus, the best fit is given by using the operator \, but if we require all components of the solution to be
non-negative, then we must use the lsqnonneg function.

2.13 ITERATIVE METHODS
Except in special circumstances, it is unlikely that any function or script developed by the user will
outperform a function or operator that is an integral part of MATLAB. We cannot expect to develop a
function that will determine the solution of Ax = b more efficiently than by using the MATLAB oper-
ation A\b. However, we describe iterative methods here for the sake of completeness. These methods
are attractive if A is diagonally dominant.

Iterative methods of solution are developed as follows. We begin with a system of linear equations

a11x1+ a12x2+ . . . +a1nxn = b1

a21x1+ a22x2+ . . . +a2nxn = b2

...
...

...
...

an1x1+ an2x2+ . . . +annxn = bn

These can be rearranged to give
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x1 = (b1 − a12x2 − a13x3 − . . . − a1nxn) /a11

x2 = (b2 − a21x1 − a23x3 − . . . − a2nxn) /a22
...

...
...

...

xn = (bn − an1x1 − an2x2 − . . . − an,n−1xn−1
)
/ann

(2.34)

If we assume initial values for xi , where i = 1, ..., n, and substitute these values into the right side of
the preceding equations, we may determine new values for the xi from (2.34). The iterative process is
continued by substituting these values of xi into the right side of the equations, etc. There are several
variants of the process. For example, we can use old values of xi in the right side of the equations to
determine all the new values of xi in the left side of the equation. This is called Jacobi or simultaneous
iteration. Alternatively, we may use a new value of xi in the right side of the equation as soon as it is
determined, to obtain the other values of xi in the right side. For example, once a new value of x1 is
determined from the first equation of (2.34), it is used in the second equation, together with the old
x3, ..., xn to determine x2. This is called Gauss–Seidel or cyclic iteration.

The conditions for convergence for this type of iteration are

|aii | >>

n∑
j=1, j �=i

∣∣aij

∣∣ for i = 1, 2, . . . , n

Thus, these iterative methods are only guaranteed to work when the coefficient matrix is diagonally
dominant. An iterative method based on conjugate gradients for the solution of systems of linear equa-
tions is discussed in Chapter 9.

2.14 SPARSE MATRICES
Sparse matrices arise in many problems of science and engineering – for example, in linear program-
ming and the analysis of structures. Indeed, most large matrices that arise in the analysis of physical
systems are sparse and the recognition of this fact and its efficient exploitation makes the solution of
linear systems with millions of coefficients feasible. The aim of this section is to give a brief descrip-
tion of the extensive sparse matrix facilities available in MATLAB and to give practical illustrations of
their value through examples. For background information on how MATLAB implements the concept
of sparsity, see Gilbert et al. (1992).

It is difficult to give a simple quantitative answer to the question: when is a matrix sparse? A matrix
is sparse if it contains a high proportion of zero elements. However, this is significant only if the sparsity
is of such an extent that we can utilize this feature to reduce the computation time and storage facilities
required for operations used on such matrices. One major way in which time can be saved in dealing
with sparse matrices is to avoid unnecessary operations on zero elements.

MATLAB does not automatically treat a matrix as sparse and the sparsity features of MATLAB

are not introduced until invoked. Thus, the user determines whether a matrix is in the sparse class
or the full class. If the user considers a matrix to be sparse and wants to use this fact to advantage,
the matrix must first be converted to sparse form. This is achieved by using the function sparse.
Thus B = sparse(A) converts the matrix A to sparse form and assigns it to B and MATLAB operations
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on B will take account of this sparsity. If we wish to return this matrix to full form, we simply use
C = full(B). However, the sparse function can also be used directly to generate sparse matrices.

It is important to note that binary operators *, +, -, /, and \ produce sparse results if both operands
are sparse. Thus, the property of sparsity may survive a long sequence of matrix operations. In addition
such functions as chol(A) and lu(A) produce sparse results if the matrix A is sparse. However, in mixed
cases, where one operand is sparse and the other is full, the result is generally a full matrix. Thus, the
property of sparsity may be inadvertently lost. Notice in particular that eye(n) is not in the sparse class
of matrices in MATLAB but a sparse identity matrix can be created using speye(n). Thus, the latter
should be used in manipulations with sparse matrices.

We will now introduce some of the key MATLAB functions for dealing with sparse matrices, de-
scribe their use and, where appropriate, give examples of their application. The simplest MATLAB

function which helps in dealing with sparsity is the function nnz(a) which provides the number of
non-zero elements in a given matrix a, regardless of whether it is sparse or full. A function which en-
ables us to examine whether a given matrix has been defined or has been propagated as sparse is the
function issparse(a) which returns the value 1 if the matrix a is sparse or 0 if it is not sparse. The
function spy(a) allows the user to view the structure of a given matrix a by displaying symbolically
only its non-zero elements; see Fig. 2.7 later in the chapter for examples.

Before we can illustrate the action of these and other functions, it is useful to generate some sparse
matrices. This is easily done using a different form of the sparse function. This time the function is
supplied with the location of the non-zero entries in the matrix, the value of these entries, the size of
the sparse matrix and the space allocated for the non-zero entries. This function call takes the form
sparse(i, j, nzvals, m, n, nzmax). This generates an m × n matrix and allocates the non-zero
values in the vector nzvals to the positions in the matrix given by the vectors i and j. The row position
is given by i and the column position by j. Space is allocated for nzmax non-zeros. Since all but one
parameter is optional, there are many forms of this function. We cannot give examples of all these
forms but the following cases illustrate its use.

>> colpos = [1 2 1 2 5 3 4 3 4 5];
>> rowpos = [1 1 2 2 2 4 4 5 5 5];
>> value = [12 -4 7 3 -8 -13 11 2 7 -4];
>> A = sparse(rowpos,colpos,value,5,5)

These statements give the following output:

A =
(1,1) 12
(2,1) 7
(1,2) -4
(2,2) 3
(4,3) -13
(5,3) 2
(4,4) 11
(5,4) 7
(2,5) -8
(5,5) -4
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We see that a 5 × 5 sparse matrix with 10 non-zero elements has been generated with the required
coefficient values in the required positions. This sparse matrix can be converted to a full matrix as
follows:

>> B = full(A)

B =
12 -4 0 0 0
7 3 0 0 -8
0 0 0 0 0
0 0 -13 11 0
0 0 2 7 -4

This is the equivalent full matrix. Now the following statements test to see if the matrices A and B are
in the sparse class and give the number of non-zeros they contain.

>> [issparse(A) issparse(B) nnz(A) nnz(B)]

ans =
1 0 10 10

Clearly, these functions give the expected results. Since A is a member of the class of sparse matrices,
the value of issparse(A) is 1. However, although B looks sparse, it is not stored as a sparse matrix
and hence is not in the class sparse within the MATLAB environment. The next example shows how
to generate a large 10,000 × 10,000 sparse matrix and compares the time required to solve a linear
system of equations involving this sparse matrix with the time required for the equivalent full matrix.
This is provided in script e4s207.m.

% e4s207.m Generates a sparse triple diagonal matrix
n = 10000;
rowpos = 2:n; colpos = 1:n-1;
values = 2*ones(1,n-1);
Offdiag = sparse(rowpos,colpos,values,n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+Offdiag+Offdiag.’;
%generate full matrix
B = full(A);
%generate arbitrary right side for system of equations
rhs = [1:n].’;
tic, x = A\rhs; f1 = toc;
tic, x = B\rhs; f2 = toc;
fprintf(’Time to solve sparse matrix = %8.5f\n’,f1);
fprintf(’Time to solve full matrix = %8.5f\n’,f2);

Script e4s207.m provides the results

Time to solve sparse matrix = 0.00078
Time to solve full matrix = 9.66697
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In this example there is a massive reduction in the time taken to solve the system when using the sparse
class of matrix. We now perform a similar exercise, this time to determine the lu decomposition of a
10,000 × 10,000 matrix, using script e4s208:

% e4s208.m
n = 10000;
offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+offdiag+offdiag’;
%generate full matrix
B = full(A);
%generate arbitrary right side for system of equations
rhs = [1:n]’;
tic, lu1 = lu(A); f1 = toc;
tic, lu2 = lu(B); f2 = toc;
fprintf(’Time for sparse LU = %8.4f\n’,f1);
fprintf(’Time for full LU = %8.4f\n’,f2);

The time taken to solve the systems using script e4s208 are

Time for sparse LU = 0.0051
Time for full LU = 14.9198

Again this provides a considerable reduction in the time taken.
An alternative way to generate sparse matrices is to use the functions sprandn and sprandsym.

These provide random sparse matrices and random sparse symmetric matrices respectively. The call

A = sprandn(m,n,d)

produces an m × n random matrix with normally distributed non-zero entries of density d. The density
is the proportion of the non-zero entries to the total number of entries in the matrix. Thus d must be in
the range 0 to 1. To produce a symmetric random matrix with normally distributed non-zero entries of
density d, we use

A = sprandsys(n,d)

Examples of calls of these functions are given by

>> A = sprandn(5,5,0.25)

A =
(2,1) -0.4326
(3,3) -1.6656
(5,3) -1.1465
(4,4) 0.1253
(5,4) 1.1909
(4,5) 0.2877
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>> B = full(A)

B =
0 0 0 0 0

-0.4326 0 0 0 0
0 0 -1.6656 0 0
0 0 0 0.1253 0.2877
0 0 -1.1465 1.1909 0

>> As = sprandsym(5,0.25)

As =
(3,1) 0.3273
(1,3) 0.3273
(5,3) 0.1746
(5,4) -0.0376
(3,5) 0.1746
(4,5) -0.0376
(5,5) 1.1892

>> Bs = full(As)

Bs =
0 0 0.3273 0 0
0 0 0 0 0

0.3273 0 0 0 0.1746
0 0 0 0 -0.0376
0 0 0.1746 -0.0376 1.1892

An alternative call for sprandsym is given by

A = sprandsym(n,density,r)

If r is a scalar, then this produces a random sparse symmetric matrix with a condition number equal
to 1/r . Remarkably, if r is a vector of length n, a random sparse matrix with eigenvalues equal to the
elements of r is produced. Eigenvalues are discussed in Section 2.15. A positive definite matrix has
all its eigenvalues positive and consequently such a matrix can be generated by choosing each of the
n elements of r to be positive. An example of this form of call is

>> Apd = sprandsym(6,0.4,[1 2.5 6 9 2 4.3])

Apd =
(1,1) 1.0058
(2,1) -0.0294
(4,1) -0.0879
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(1,2) -0.0294
(2,2) 8.3477
(4,2) -1.9540
(3,3) 5.4937
(5,3) -1.3300
(1,4) -0.0879
(2,4) -1.9540
(4,4) 3.1465
(3,5) -1.3300
(5,5) 2.5063
(6,6) 4.3000

>> Bpd = full(Apd)

Bpd =
1.0058 -0.0294 0 -0.0879 0 0

-0.0294 8.3477 0 -1.9540 0 0
0 0 5.4937 0 -1.3300 0

-0.0879 -1.9540 0 3.1465 0 0
0 0 -1.3300 0 2.5063 0
0 0 0 0 0 4.3000

This provides an important method for generating test matrices with required properties since, by
providing a list of eigenvalues with a range of values, we can produce positive definite matrices that
are very badly conditioned.

We now examine further the value of using sparsity. The reasons for the very high level of improve-
ment in computing efficiency when using the \ operator, illustrated in the example at the beginning
of this section, are complex. The process includes a special preordering of the columns of the matrix.
This special preordering, called minimum degree ordering, is used in the case of the \ operator. This
preordering takes different forms depending on whether the matrix is symmetric or non-symmetric.
The aim of any preordering is to reduce the amount of fill-in from any subsequent matrix operations.
Fill-in is the introduction of additional non-zero elements.

We can examine this preordering process using the spy function and the function symamd which
implements symmetric minimum degree ordering in MATLAB. The function is automatically applied
when working on matrices which belong to the class of sparse matrices for the standard functions and
operators of MATLAB. However, if we are required to use this preordering in non-standard applications,
then we may use the symmmd function. The following examples illustrate the use of this function.

We first consider the simple process of multiplication applied to a full and a sparse matrix. The
sparse multiplication uses the minimum degree ordering. The following script e4s209.m generates a
sparse matrix, obtains a minimum degree ordering for it and then examines the result of multiplying the
matrix by itself transposed. This is compared with the same operations carried out on the full matrix,
and the time required for each operation is compared.

% e4s209.m
% generate a sparse matrix
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n = 5000;
offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);
offdiag2 = sparse(4:n,1:n-3,3*ones(1,n-3),n,n);
offdiag3 = sparse(n-5:n,1:6,7*ones(1,6),n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+offdiag+offdiag’+offdiag2+offdiag2’+offdiag3+offdiag3’;
A = A*A.’;
% generate full matrix
B = full(A);
m_order = symamd(A);
tic
spmult = A(m_order,m_order)*A(m_order,m_order).’;
flsp = toc;
tic, fulmult = B*B.’; flful = toc;
fprintf(’Time for sparse mult = %6.4f\n’,flsp)
fprintf(’Time for full mult = %6.4f\n’,flful)

Running this script e4s209.m results in the following output:

Time for sparse mult = 0.0073
Time for full mult = 3.2559

We now perform a similar experiment to that of e4s209.m, but for a more complex numerical
process than multiplication. In the script that follows we examine LU decomposition. We consider
the result of using a minimum degree ordering on the LU decomposition process by comparing the
performance of the lu function with and without preordering. This is illustrated in script e4s210.m.

% e4s210.m
% generate a sparse matrix
n = 100;
offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);
offdiag2 = sparse(4:n,1:n-3,3*ones(1,n-3),n,n);
offdiag3 = sparse(n-5:n,1:6,7*ones(1,6),n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+offdiag+offdiag’+offdiag2+offdiag2’+offdiag3+offdiag3’;
A = A*A.’;
A1 = flipud(A);
A = A+A1;
n1 = nnz(A)
B = full(A); %generate full matrix
m_order = symamd(A);
lud = lu(A(m_order,m_order));
n2 = nnz(lud)
fullu = lu(B);
n3 = nnz(fullu)
subplot(2,2,1), spy(A,’k’);
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FIGURE 2.7

Effect of minimum degree ordering on LU decomposition. The spy function shows the matrix, the ordered
matrix, and LU decomposition with and without preordering.

title(’Original matrix’)
subplot(2,2,2), spy(A(m_order,m_order),’k’)
title(’Ordered Matrix’)
subplot(2,2,3), spy(fullu,’k’)
title(’LU decomposition,unordered matrix’)
subplot(2,2,4), spy(lud,’k’)
title(’LU decomposition, ordered matrix’)

Running script e4s210.m gives

n1 =
2096

n2 =
1307

n3 =
4723

As expected, by using a sparse operation we achieve a reduction in the time taken to determine the LU
decomposition. Fig. 2.7 shows the original matrix with 2096 non-zero elements, the reordered matrix
(which has the same number of non-zeros), and the LU decomposition structure both with and without
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minimum degree ordering. Notice that the number of non-zeros in the LU matrices with preordering is
1307 and without is 4465. Thus, there is a large increase in the number of non-zero elements in the LU
matrices without preordering. In contrast, LU decomposition of the preordered matrix has produced
fewer non-zeros than the original matrix. The reduction of fill-in is an important feature of sparse
numerical processes and may ultimately lead to great savings in computational effort. Note that if the
size of the matrices are increased from 100 × 100 to 3000 × 3000 then the output from e4s210 is

n1 =
65896

n2 =
34657

n3 =
510266

Time for sparse lu = 0.0131
Time for full lu = 0.8313

Here we obtain a more substantial reduction by using sparse operations.
The MATLAB function symamd provides a minimum degree ordering for symmetric matrices. For

non-symmetric matrices MATLAB provides the function colmmd which gives the column minimum de-
gree ordering for non-symmetric matrices. An alternative ordering, which is used to reduce bandwidth,
is the reverse Cuthill–MacGee ordering. This is implemented in MATLAB by the function symrcm. The
execution of the statement p = symrcm(A) provides the permutation vector p to produce the required
preordering and A(p,p) is the reordered matrix.

We have shown that in general taking account of sparsity will provide savings in floating-point
operations. However, these savings fall off as the matrices on which we are operating become less
sparse as script e4s211.m illustrates.

% e4s211.m
n = 1000; b = 1:n;
disp(’ density time_sparse time_full’);
for density = 0.004:0.003:0.039

A = sprandsym(n,density)+0.1*speye(n);
density = density+1/n;
tic, x = A\b’; f1 = toc;
B = full(A);
tic, y = B\b’; f2 = toc;
fprintf(’%10.4f %12.4f %12.4f\n’,density,f1,f2);

end

In script e4s211 a diagonal of elements has been added to the randomly generated sparse matrix. This
is done to ensure that each row of the matrix contains a non-zero element; otherwise the matrix may
be singular. Adding this diagonal modifies the density. If the original n × n matrix has a density of d ,
then, assuming that this matrix has only zeros on the diagonal, the modified density is d + 1/n.
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density time_sparse time_full
0.0050 0.0204 0.1907
0.0080 0.0329 0.1318
0.0110 0.0508 0.1332
0.0140 0.0744 0.1399
0.0170 0.0892 0.1351
0.0200 0.1064 0.1372
0.0230 0.1179 0.1348
0.0260 0.1317 0.1381
0.0290 0.1444 0.1372
0.0320 0.1516 0.1369
0.0350 0.1789 0.1404
0.0380 0.1627 0.1450

This output shows that the advantage of using a sparse class of matrix diminishes as the density in-
creases.

Another application where sparsity is important is in solving the least squares problem. This
problem is known to be ill-conditioned and hence any saving in computational effort is particularly
beneficial. This is directly implemented by using A\b where A is non-square and sparse. To illustrate
the use of the \ operator with sparse matrices and compare its performance when no account is taken
of sparsity we use script e4s212.m:

% e4s212.m
% generate a sparse triple diagonal matrix
n = 2000;
rowpos = 2:n; colpos = 1:n-1;
values = ones(1,n-1);
offdiag = sparse(rowpos,colpos,values,n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+offdiag+offdiag’;
%Now generate a sparse least squares system
Als = A(:,1:n/2);
%generate full matrix
Cfl = full(Als);
rhs = 1:n;
tic, x = Als\rhs’; f1 = toc;
tic, x = Cfl\rhs’; f2 = toc;
fprintf(’Time for sparse least squares solve = %8.4f\n’,f1)
fprintf(’Time for full least squares solve = %8.4f\n’,f2)

Script e4s212.m provides the following results

Time for sparse least squares solve = 0.0027
Time for full least squares solve = 0.9444

Again we see the advantage of using sparsity.
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FIGURE 2.8

Mass-spring system with three degrees of freedom.

We have not covered all aspects of sparsity or described all the related functions. However, we
hope this section provides a helpful introduction to this difficult but important and valuable feature of
MATLAB.

2.15 THE EIGENVALUE PROBLEM
Eigenvalue problems arise in many branches of science and engineering. For example, the vibration
characteristics of structures are determined from the solution of an algebraic eigenvalue problem. Here,
we consider a particular example of a system of masses and springs shown in Fig. 2.8. The equations
of motion for this system are

m1q̈1 + (k1 + k2 + k4) q1 − k2q2 − k4q3 = 0
m2q̈2 − k2q1 + (k2 + k3) q2 − k3q3 = 0
m3q̈3 − k4q1 − k3q2 + (k3 + k4) q3 = 0

(2.35)

where m1, m2, and m3 are the system masses and k1, ..., k4 are the spring stiffnesses. If we assume a
harmonic solution for each coordinate, then qi(t) = ui exp(jωt) where j = √−1, for i = 1, 2, and 3.
Hence d2qi/dt2 = −ω2ui exp(jωt). Substituting in (2.35) and canceling the common factor exp(jωt)

gives

−ω2m1u1 + (k1 + k2 + k4)u1 − k2u2 − k4u3 = 0

−ω2m2u2 − k2u1 + (k2 + k3) u2 − k3u3 = 0

−ω2m3u3 − k4u1 − k3u2 + (k3 + k4) u3 = 0

(2.36)

If m1 = 10 kg, m2 = 20 kg, m3 = 30 kg, k1 = 10 kN/m, k2 = 20 kN/m, k3 = 25 kN/m, and k4 =
15 kN/m, then (2.36) becomes

−ω210u1 + 45,000u1 − 20,000u2 − 15,000u3 = 0

−ω220u1 − 20,000u1 + 45,000u2 − 25,000u3 = 0

−ω230u1 − 15,000u1 − 25,000u2 + 40,000u3 = 0
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This can be expressed in matrix notation as

−ω2Mu + Ku = 0 (2.37)

where

M =
⎡
⎣ 10 0 0

0 20 0
0 0 30

⎤
⎦ kg and K =

⎡
⎣ 45 −20 −15

−20 45 −25
−15 −25 40

⎤
⎦ kN/m (2.38)

Eq. (2.37) can be rearranged in a variety of ways. For example, it can be written

Mu = λKu where λ = 1

ω2
(2.39)

This is an algebraic eigenvalue problem and solving it determines values for the eigenvectors u and the
eigenvalues, λ. MATLAB provides a function eig to solve the eigenvalue problem and to illustrate its
use we apply it to the solution of (2.37).

>> M = [10 0 0;0 20 0;0 0 30];
>> K = 1000*[45 -20 -15;-20 45 -25;-15 -25 40];
>> lambda = eig(M,K).’

lambda =
0.0002 0.0004 0.0073

>> omega = sqrt(1./lambda)

omega =
72.2165 52.2551 11.7268

This result tells us that the system of Fig. 2.8 vibrates with natural frequencies 11.72, 52.25, and
72.21 rad/s. In this example we have chosen not to determine u, the eigenvectors. We will discuss
further the use of the function eig in Section 2.17.

Having provided an example of an eigenvalue problem, we consider the standard form of this
problem thus:

Ax = λx (2.40)

This equation is an algebraic eigenvalue problem where A is a given n × n matrix of coefficients, x is
an unknown column vector of n elements and λ is an unknown scalar. Eq. (2.40) can alternatively be
written as

(A − λI)x = 0 (2.41)

Our aim is to discover the values of x, called the characteristic vectors or eigenvectors, and the corre-
sponding values of λ, called the characteristic values or eigenvalues. The values of λ that satisfy (2.41)
are given by the roots of the equation

|A − λI| = 0 (2.42)
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These values of λ are such that (A − λI) is singular. Since (2.41) is a homogeneous equation system,
non-trivial solutions exist for these values of λ. Evaluation of the determinant (2.42) leads to an nth
degree polynomial in λ which is called the characteristic polynomial. This characteristic polynomial
has n roots, some of which may be repeated, giving the n values of λ. In MATLAB we can create
the coefficients of the characteristic polynomial using the function poly, and the roots of the resulting
characteristic polynomial can be found using the function roots. For example,

A =
⎡
⎣ 1 2 3

4 5 −6
7 −8 9

⎤
⎦

then we have

>> A = [1 2 3;4 5 -6;7 -8 9];
>> p = poly(A)

p =
1.0000 -15.0000 -18.0000 360.0000

Hence the characteristic equation is λ3 − 15λ2 − 18λ + 360 = 0. To find the roots of this equation we
use the statement

>> roots(p).’

ans =
14.5343 -4.7494 5.2152

We can verify this result using the function eig, thus:

>> eig(A).’

ans =
-4.7494 5.2152 14.5343

Having obtained the eigenvalues we can substitute back into (2.41) to obtain linear equations for the
characteristic vectors thus:

(A − λiI)x = 0 for i = 1,2, ..., n (2.43)

This homogeneous system provides n non-trivial solutions for x. However, the use of (2.42) and (2.43)
is not a practical means of solving eigenvalue problems.

If A is a symmetric real matrix or a Hermitian matrix, (such that A = AH), then its eigenvalues are
real, but not necessarily positive, and the corresponding eigenvectors are real if A is real and symmetric,
and complex if A is Hermitian. For such a system, if λi , xi and λj , xj satisfy the eigenvalue problem
and λi and λj are distinct, then

xH
i xj = 0 i �= j (2.44)
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and

xH
i Axj = 0 i �= j (2.45)

Eqs. (2.44) and (2.45) are called the orthogonality relationships. If A is real and symmetric, then in
(2.44) and (2.45) we take the transpose of the vectors denoted by (T), rather than the complex conjugate
transpose denoted by (H). If i = j , then in general xH

i xi and xH
i Axi are non-zero. The vector xi includes

an arbitrary scalar multiplier because the vector multiplies both sides of (2.40). Hence the product xH
i xi

must be arbitrary. However, if the arbitrary scalar multiplier is adjusted so that xH
i xi = 1 then the vectors

are said to be normalized. In fact, the MATLAB function eig normalizes the eigenvectors, so that

xH
i xi = 1 for i = 1,2, ..., n (2.46)

When the vectors are normalized so that (2.46) is valid, then

xH
i Axi = λi for i = 1,2, ..., n (2.47)

Note that the eigenvectors are orthogonal, that is (2.44) and (2.45) are valid, then they are orthogonal
irrespective of whether or not the eigenvectors are normalized according to (2.46).

Sometimes the eigenvalues are not distinct and the eigenvectors associated with these equal or re-
peated eigenvalues are not necessarily orthogonal. If λi = λj and the other eigenvalues, λk , are distinct,
then

xH
i xk = 0

xH
j xk = 0

⎫⎬
⎭ k = 1, 2, ..., n, k �= i, k �= j (2.48)

For consistency, we can choose to make xH
i xj = 0. When λi = λj , the eigenvectors xi and xj are not

unique and a linear combination of them, (αxi + γ xj ) where α and γ are arbitrary constants, also
satisfies the eigenvalue problem.

We can combine all the eigensolutions into a single matrix equation by placing all the normalized
eigenvectors into a single matrix, X and the eigenvalues in a diagonal matrix, D thus:

X = [ x1 x2 . . . xn

]
(2.49)

D =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...

0 0 . . . λn

⎤
⎥⎥⎥⎦ (2.50)

If A is an Hermitian matrix, then X is a unitary matrix, that is XH = X−1. Its determinant is either
+1 or −1 and its eigenvalues are complex but lie on a unit circle in the complex plane, that is their
amplitudes all equal one but their phases differ. If A is an n × n real symmetric matrix, then X is an
orthogonal matrix, that is XT = X−1. The determinant of X is +1 and its eigenvalues are complex
conjugate pairs if n is even, or complex conjugate pairs plus one real eigenvalue if n is odd. Again, all
the eigenvalues have an absolute value of one and thus lie on a unit circle in the complex plane.
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The n solutions (2.49) and (2.50) satisfy the eigenvalue problem (2.40). Assembling all the eigen-
solutions into one equation, we have:

AX = XD (2.51)

Using similar reasoning to that above, and substituting (2.49) and (2.50) in (2.46) gives

XHX = I (2.52)

Pre-multiplying (2.51) by XH, and noting the relationship given by (2.52) we have:

XHAX = D (2.53)

Example 2.7. Determine the eigenvalues of the Hermitian matrix

A =
[

1 + 0ı 2 + 2ı

2 − 2ı 3 + 0ı

]

Using MATLAB function eig we can determine both the eigenvalues and eigenvectors of this matrix as
follows:

>> A = [1 2;2 3]+j*[0 2;-2 0];
>> [X,D] = eig(A)

X =
0.5774 + 0.5774i 0.4082 + 0.4082i

-0.5774 + 0.0000i 0.8165 + 0.0000i

D =
-1.0000 0

0 5.0000

where the diagonal elements of D are the eigenvalues and the corresponding eigenvector are given by
X. We can verify, for this problem, the relationships given by (2.52) and (2.53) as follows:

>> X’*A*X

ans =
-1.0000 + 0.0000i -0.0000 - 0.0000i
-0.0000 + 0.0000i 5.0000 + 0.0000i

>> X’*X

ans =
1.0000 + 0.0000i -0.0000 - 0.0000i

-0.0000 + 0.0000i 1.0000 + 0.0000i
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In summary, if A is real, both its eigenvalues and eigenvectors are real, but the eigenvalues are not
necessarily positive. If A is a Hermitian matrix, its eigenvalues are real, but not necessarily positive,
but its eigenvectors are generally complex.

Consider now the case when A is a general complex square matrix (that is, not Hermitian) with a
set of eigenvalues xi and corresponding eigenvalues λi . A pair of related eigenvalue problems exist as
follows:

Ax = λx (2.54)

and

ATy = βy (2.55)

The second eigenvalue problem, (2.55), can be transposed to give

yTA = βyT (2.56)

The vectors x and y are called the right and left vectors of A, respectively. The equations |A − λI| = 0
and |AT − βI| = 0 must have the same solutions for λ and β because the determinant of a matrix and
the determinant of its transpose are equal. Thus, the eigenvalues of A and AT are identical but the
eigenvectors x and y will, in general, differ from each other. The eigenvalues and eigenvectors of a
non-symmetric real matrix are either real or pairs of complex conjugates. If λi , xi , yi and λj , xj , yj

are solutions that satisfy the eigenvalue problems of (2.54) and (2.55) and λi and λj are distinct, then

yT
i xj = 0 i �= j (2.57)

and

yT
i Axj = 0 i �= j (2.58)

Eqs. (2.57) and (2.58) are called the bi-orthogonal relationships. As with (2.46) and (2.47) if, in these
equations, i = j , then in general yT

i xi and yT
i Axi are not zero. The eigenvectors xi and yi include

arbitrary scaling factors and so the product of these vectors will also be arbitrary. However, if the
vectors are adjusted so that

yT
i xi = 1 for i = 1,2, ..., n (2.59)

then

yT
i Axi = λi for i = 1,2, ..., n (2.60)

We cannot, in these circumstances, describe either xi or yi as normalized; the vectors still include an
arbitrary scale factor; only their product can be chosen uniquely.

The eigensolutions can be combined us:

X = [ x1 x2 . . . xn

]
(2.61)

Y = [ y1 y2 . . . yn

]
(2.62)
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D =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...

0 0 . . . λn

⎤
⎥⎥⎥⎦ (2.63)

The n solutions (2.61) and (2.63) satisfy the eigenvalue problem (2.54). Assembling all the eigen-
solutions into one equation, we have:

AX = XD (2.64)

Similarly, noting that βi = λi , the n solutions (2.62) and (2.63) satisfy the eigenvalue problem (2.55).
Assembling all the eigensolutions into one equation, we have:

ATY = YD or YTA = DYT (2.65)

Using (2.49) and (2.50) we can write (2.59) in matrix form:

YTX = I (2.66)

Pre-multiplying (2.64) by YT and noting the relationship given by (2.66) we have

YTAX = D (2.67)

In summary, if A is real (but not symmetric) or complex (but not Hermitian) then both its eigenval-
ues and eigenvectors will be complex.

Example 2.8. determine the eigenvalues of the following complex matrix,

A =
[

1 + 2ı 2 + 3ı

4 − 1ı 3 + 1ı

]

>> A = [1 2;4 3]+j*[2 3;-1 1]

A =
1.0000 + 2.0000i 2.0000 + 3.0000i
4.0000 - 1.0000i 3.0000 + 1.0000i

>> [X,D] = eig(A)

X =
0.7518 + 0.0000i 0.4126 + 0.4473i

-0.6068 + 0.2580i 0.7935 + 0.0000i

D =
-1.6435 + 0.2649i 0.0000 + 0.0000i
0.0000 + 0.0000i 5.6435 + 2.7351i
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>> [Y,B] = eig(A.’)

Y =
0.7935 + 0.0000i 0.6068 - 0.2580i
-0.4126 - 0.4473i 0.7518 + 0.0000i

B =
-1.6435 + 0.2649i 0.0000 + 0.0000i
0.0000 + 0.0000i 5.6435 + 2.7351i

Note that the eigenvalues given by B and D are identical but the right and left eigenvalues given by
X and Y are different. We can verify, for this problem, the relationships given by (2.66) and (2.67) as
follows:

>> p = Y.’*X

p =
0.9623 + 0.1650i -0.0000 - 0.0000i
-0.0000 + 0.0000i 0.9623 + 0.1650i

>> X(:,1) = X(:,1)/p(1,1); X(:,2) = X(:,2)/p(2,2);
>> Y.’*X

ans =
1.0000 - 0.0000i -0.0000 - 0.0000i
-0.0000 + 0.0000i 1.0000 + 0.0000i

>> Y.’*A*X

ans =
-1.6435 + 0.2649i -0.0000 - 0.0000i
0.0000 - 0.0000i 5.6435 + 2.7351i

2.15.1 EIGENVALUE DECOMPOSITION
Consider the eigensolution of a Hermitian (or real symmetric matrix) given by (2.51). Then, post-
multiplying by X−1 gives

A = XDX−1

This is not a particularly useful decomposition of A since it involves a matrix inversion. However, from
(2.52), we have X−1 = XH and hence

A = XDXH (2.68)

Thus A has been decomposed into the product of two orthogonal or unitary matrices and a diagonal
matrix. This is useful decomposition. For example, to compute the square of a Hermitian matrix. We
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have

A2 = AA = (XDXH)(XDXH)

and thus

A2 = XDIDXH = XD2XH (2.69)

since XHX = I. Computing D2 is trivial since D is diagonal and so each element on the diagonal is
squared. In fact, this result can be generalized to

Ap = XDpXH (2.70)

Another useful result is obtained by take in inverse of (2.68) to give

A−1 = (XDXH)−1 = X−HD−1X−1 (2.71)

Since X−1 = XH, on inverting X = X−H so (2.71) becomes

A−1 = XD−1XH (2.72)

This is an efficient method of inverting a matrix since inverting the diagonal matrix D is trivial; it
is obtained by taking the reciprocal of each element on the diagonal. Of course, this assumes that the
eigenvalue problem has been solved.

Example 2.9. Eqs. (2.68) to (2.72) are illustrated in MATLAB by continuing Example 2.7

>> A = [1 2;2 3]+j*[0 2;-2 0];
>> [X D]= eig(A);
>> AA = X*D*X’

AA =
1.0000 + 0.0000i 2.0000 + 2.0000i
2.0000 - 2.0000i 3.0000 + 0.0000i

>> Ainv = X*inv(D)*X’

Ainv =
-0.6000 + 0.0000i 0.4000 + 0.4000i
0.4000 - 0.4000i -0.2000 + 0.0000i

>> inv(A)

ans =
-0.6000 + 0.0000i 0.4000 + 0.4000i
0.4000 - 0.4000i -0.2000 + 0.0000i



2.15 THE EIGENVALUE PROBLEM 137

Consider the decomposition of a general, complex matrix. By post-multiplying (2.64) by X−1 we
have

A = XDX−1 (2.73)

Similarly, pre-multiplying the second expression of (2.65) by Y−T we have

A = Y−TDYT (2.74)

Neither of these are particularly useful transforms since they both require matrix inversion. However,
from (2.66), X−1 = YT. Substituting in (2.73) gives

A = XDYT (2.75)

This decomposition avoids the need to invert a matrix, but it requires the solution of two eigenvalue
problems for A and AT.

Example 2.10. Consider the matrices of Example 2.8

>> A = [1 2;4 3]+j*[2 3;-1 1];
>> [X,D] = eig(A);
>> [Y,B] = eig(A.’);
>> p = Y.’*X;
>> X(:,1) = X(:,1)/p(1,1); X(:,2) = X(:,2)/p(2,2);
>> A1 = X*D*inv(X)

A1 =
1.0000 + 2.0000i 2.0000 + 3.0000i
4.0000 - 1.0000i 3.0000 + 1.0000i

>> A2 = inv(Y.’)*D*Y.’

A2 =
1.0000 + 2.0000i 2.0000 + 3.0000i
4.0000 - 1.0000i 3.0000 + 1.0000i

>> A3 = X*D*Y.’

A3 =
1.0000 + 2.0000i 2.0000 + 3.0000i
4.0000 - 1.0000i 3.0000 + 1.0000i

Eigenvalue decomposition will fail if the matrix being decomposed is defective. A defective matrix
is a square matrix that does not have a full set of linearly independent eigenvectors and consequently
can not be diagonalized. A is a normal matrix if AHA = AAH. A normal matrix (which includes
Hermitian and real symmetric matrices as special cases) is never defective.
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2.15.2 COMPARING EIGENVALUE AND SINGULAR VALUE DECOMPOSITION
Eigenvalue decomposition (EVD) can only decompose square matrices whereas singular value de-
composition (SVD) can decompose rectangular or square matrices. There is, however, a relationship
between singular values and eigenvalues. Consider a general, n × m matrix A. The SVD of A is

A = USVT (2.76)

From this SVD we can write

AAT = (USVT)(VSTUT) = USSTUT

because VTV = I. Let the EVD of AAT be

AAT = XDXT (2.77)

Comparing (2.76) and (2.77), we see D = SST and U = X. That is U is equal to the eigenvector of AAT

and SST is equal to the eigenvalues of AAT.
From the SVD of A we can also write

ATA = (VSUT)(USTVT) = VSSTVT

since UTU = I. Let the EVD of ATA be

ATA = YDYT

Then V = Y and again D = SST.
The fact that the eigenvalues of ATA are the square of the non-zero singular values of A has im-

plications for the condition number A. The condition number of AAT is the condition number of A
squared. Thus if A is ill-conditioned, working with ATA will make the ill-conditioning worse. Thus, in
difficult cases singular values are computed more accurately than eigenvalues.

Example 2.11. Determine the eigenvalues and condition number of AAT and the SVD and condition
number of A. Note that A is a 3 × 4 matrix.

>> A = [4 -2 0 7;-2 7 -5 3;0 -5 12 -2];
>> [X,D] = eig(A*A’)

X =
0.0620 0.9979 -0.0163
0.8321 -0.0607 -0.5512
0.5511 -0.0206 0.8342

D =
20.0386 0 0

0 69.1435 0
0 0 239.8179
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>> [U,S,V] = svd(A)

U =
-0.0163 0.9979 0.0620
-0.5512 -0.0607 0.8321
0.8342 -0.0206 0.5511

S =
15.4861 0 0 0

0 8.3153 0 0
0 0 4.4764 0

V =
0.0670 0.4947 -0.3164 -0.8067

-0.5164 -0.2787 0.6580 -0.4719
0.8244 0.0068 0.5478 -0.1423

-0.2219 0.8231 0.4084 0.3261

>> S*S’

ans =
239.8179 0 0

0 69.1435 0
0 0 20.0386

>> cond(A)

ans =
3.4595

>> cond(A*A’)

ans =
11.9678

We note that S2 is equal to D (but the eigenvalues are listed in a different order) and the condition
number of AAT is the square of the condition number of A.

There is a special case when A is a square, symmetric, positive definite matrix, illustrated in the
following example.

Example 2.12. The matrix A is square and symmetric. Determining its eigensolution we have

>> A = [4 -2 0;-2 7 -5; 0 -5 12];
>> [X,D] = eig(A)
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X =
-0.7055 -0.7022 0.0957
-0.6312 0.5611 -0.5355
-0.3224 0.4382 0.8391

D =
2.2107 0 0

0 5.5980 0
0 0 15.1913

Since all the eigenvalues of the square matrix A are positive, it must be a positive definite matrix.
Determining its SVD we have

>> [U,S,V] = svd(A)

U =
-0.0957 -0.7022 0.7055
0.5355 0.5611 0.6312

-0.8391 0.4382 0.3224

S =
15.1913 0 0

0 5.5980 0
0 0 2.2107

V =
-0.0957 -0.7022 0.7055
0.5355 0.5611 0.6312

-0.8391 0.4382 0.3224

This example has illustrated the fact that the eigenvalues and singular values of a square, sym-
metrical, positive definite matrix are identical. Because the eigenvalue and singular values have been
computed in different orders it isn’t immediately obvious that X is equivalent to V. However, if we
rearrange X so that it becomes equal to [−x3 x2 −x1] then X does equal V. Note that the columns
of X have been reordered in line with the order of the singular values, and two columns have been
multiplied by −1. Recall that each eigenvector can be multiplied by a constant, in this case −1, and
still be a solution to the eigenvalue problem.

2.16 ITERATIVE METHODS FOR SOLVING THE EIGENVALUE PROBLEM
The first of two simple iterative procedures described here determines the dominant or largest eigen-
value. The method, which is called the power method or matrix iteration, can be used on both sym-
metric and non-symmetric matrices. However, for a non-symmetric matrix the user must be alert to
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the possibility that there is not a single real dominant eigenvalue value but a complex conjugate pair.
Under these conditions simple iteration does not converge.

Consider the eigenvalue problem defined by (2.40) and let the vector u0 be an initial trial solution.
The vector u0 is an unknown linear combination of all the eigenvectors of the system provided they are
linearly independent. Thus:

u0 =
n∑

i=1

αi xi (2.78)

where αi are unknown coefficients and xi are the unknown eigenvectors. Let the iterative scheme be

u1 = Au0, u2 = Au1, ..., up = Aup−1 (2.79)

Substituting (2.78) into the sequence (2.79) we have

u1 =
n∑

i=1

αiAxi =
n∑

i=1

αiλixi since Axi = λixi

u2 =
n∑

i=1

αiλiAxi =
n∑

i=1

αiλ
2
i xi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.80)

up =
n∑

i=1

αiλ
p−1
i Axi =

n∑
i=1

αiλ
p
i xi

The final equation can be rearranged, thus:

up = λ
p

1

[
α1x1 +

n∑
i=2

αi

(
λi

λ1

)p

xi

]
(2.81)

It is the accepted convention that the n eigenvalues, λi of a matrix are numbered such that

|λ1| > |λ2| > ... > |λn|
Hence [

λi

λ1

]p

tends to zero as p tends to infinity for i = 2,3, ..., n. As p becomes large, we have from (2.81)

up ⇒ λ
p

1 α1x1 (2.82)

Thus up becomes proportional to x1 and the ratio between corresponding components of up and up−1
tends to λ1.

The algorithm, often referred to as the Power Method, is not usually implemented exactly as de-
scribed previously because problems could arise due to numeric overflows. Usually, after each iteration,
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the resulting trial vector is normalized by dividing it by its largest element, thereby reducing the largest
element in the vector to unity. This can be expressed mathematically as

vp = Aup

up+1 =
(

1

max(vp)

)
vp

⎫⎬
⎭ p = 0,1,2, . . . (2.83)

where max(vp) is the element of vp with the maximum modulus. The pair of Eqs. (2.83) are iterated
until convergence is achieved. This modification to the algorithm does not affect the rate of conver-
gence of the iteration. In addition to preventing the build up of very large numbers, the modification
described before has the added advantage that it is now much easier to decide at what stage the iter-
ation should be terminated. Post-multiplying the coefficient matrix A by one of its eigenvectors gives
the eigenvector multiplied by the corresponding eigenvalue. Thus, when we stop the iteration because
up+1 is sufficiently close to up to ensure convergence, max(vp) will be an estimate of the eigenvalue.

The rate of convergence of the iteration is primarily dependent on the distribution of the eigenval-
ues; the smaller the ratios |λi/λ1| where i = 2,3, ..., n, the faster the convergence.

The following MATLAB function eigit implements the iterative method to find the dominant eigen-
value and the associated eigenvector.

function [lam u iter] = eigit(A,tol)
% Solves EVP to determine dominant eigensolution by the power method
% Sample call: [lam u iter]=eigit(A,tol)
% A is a square matrix, tol is the accuracy
% lam is the dominant eigenvalue, u is the associated vector
% iter is the number of iterations required
[n n] = size(A);
err = 100*tol;
u0 = ones(n,1); iter = 0;
while err>tol

v = A*u0;
u1 = (1/max(v))*v;
err = max(abs(u1-u0));
u0 = u1; iter = iter+1;

end
u = u0; lam = max(v);

We now apply the power method to find the dominant eigenvalue and corresponding vector for
following eigenvalue problem.

⎡
⎣ 1 2 3

2 5 −6
3 −6 9

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦= λ

⎡
⎣x1

x2
x3

⎤
⎦ (2.84)

>> A = [1 2 3;2 5 -6;3 -6 9];
>> [lam u iterations] = eigit(A,1e-8)



2.16 ITERATIVE METHODS FOR SOLVING THE EIGENVALUE PROBLEM 143

lam =

13.4627

u =

0.1319

-0.6778

1.0000

iterations =

18

The dominant eigenvalue, to eight decimal places, is 13.46269899.
The power method can also be used to determine the smallest eigenvalue of a system. The eigen-

value problem Ax = λx can be rearranged to give

A−1x = (1/λ)x

Here the iterations will converge to the largest value of 1/λ, that is, the smallest value of λ. However,
as a general rule, matrix inversion should be avoided, particularly in large systems.

We have seen that direct iteration of Ax = λx leads to the largest or dominant eigenvalue. A second
iterative procedure, called inverse iteration, provides a powerful method of determining subdominant
eigensolutions. Consider again the eigenvalue problem of (2.40). Subtracting μx from both sides of
this equation we have

(A − μI)x = (λ − μ)x (2.85)

(A − μI)−1 x =
(

1

λ − μ

)
x (2.86)

Consider the iterative scheme that begins with a trial vector u0. Then using the equivalent of (2.83) to
(2.86) we have

vs = (A − μI)−1 us

us+1 =
(

1

max(vs)

)
vs

⎫⎪⎬
⎪⎭ s = 0,1,2, . . . (2.87)

Iteration will lead to the largest value of 1/(λ − μ), that is the smallest value of (λ − μ). The smallest
value of (λ−μ) implies that the value of λ will be the eigenvalue closest to μ and u will have converged
to the eigenvector x corresponding to this particular eigenvalue. Thus, by a suitable choice of μ, we
have a procedure for finding subdominant eigensolutions.
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Iteration is terminated when us+1 is sufficiently close to us . When convergence is complete
1

λ − μ
= max (vs)

Thus, the value of λ nearest to μ is given by

λ = μ + 1

max (vs)
(2.88)

The rate of convergence is fast, provided the chosen value of μ is close to an eigenvalue. If μ is equal
to an eigenvalue, then (A − μI) is singular. In practice this seldom presents difficulties because it is
unlikely that μ would be chosen, by chance, to exactly equal an eigenvalue. However, if A − μI is
singular then we have confirmation that the eigenvalue is known to a very high precision. The corre-
sponding eigenvector can then be obtained by changing μ by adding a small quantity and iterating to
determine the eigenvector.

Although inverse iteration can be used to find the eigensolutions of a system about which we have
no previous knowledge, it is more usual to use inverse iteration to refine the approximate eigensolution
obtained by some other technique. In practice (A − μI)−1 is not formed explicitly; instead, (A − μI)
is usually decomposed into the product of a lower and an upper triangular matrix; explicit matrix
inversion is avoided and is replaced by two efficient substitution procedures. In the simple MATLAB

implementation of this procedure shown next, the operator \ is used to avoid matrix inversion.

function [lam u iter] = eiginv(A,mu,tol)
% Determines eigenvalue of A closest to mu with a tolerance tol.
% Sample call: [lam u] = eiginv(A,mu,tol)
% lam is the eigenvalue and u the corresponding eigenvector.
[n,n] = size(A);
err = 100*tol;
B = A-mu*eye(n,n);
u0 = ones(n,1);
iter = 0;
while err>tol

v = B\u0; f = 1/max(v);
u1 = f*v;
err = max(abs(u1-u0));
u0 = u1; iter = iter+1;

end
u = u0; lam = mu+f;

We now apply this function to find the eigenvalue of (2.84) nearest to 4 and the corresponding eigen-
vector.

>> A = [1 2 3;2 5 -6;3 -6 9];
>> [lam u iterations] = eiginv(A,4,1e-8)

lam =
4.1283
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u =
1.0000
0.8737
0.4603

iterations =
6

The eigenvalue closest to 4 is 4.12827017 to eight decimal places. The functions eigit and eiginv
should be used with care when solving large-scale eigenvalue problems since convergence is not always
guaranteed and in adverse circumstances may be slow.

2.17 SOLUTION OF THE GENERAL EIGENVALUE PROBLEM
There are many algorithms available to solve the eigenvalue problem. The method chosen is influenced
by many factors such as the form and size of the eigenvalue problem, whether or not it is symmetric,
whether it is real or complex, whether or not only the eigenvalues are required, whether all or only
some of the eigenvalues and vectors are required.

We now describe the algorithms that are generally used to solve eigenvalue problems. The alterna-
tive approaches are as follows.

If A is a general matrix, it is first reduced to Hessenberg form using Householder’s transfor-
mation method. A Hessenberg matrix has zeros everywhere below the diagonal except for the first
sub-diagonal. If A is a symmetric matrix the transform creates a tridiagonal matrix. Then the eigen-
values and eigenvectors of the real upper Hessenberg matrix are found by the iterative application
of the QR procedure. The QR procedure involves decomposing the Hessenberg matrix into an upper
triangular matrix and a unitary matrix.

The following script, e4s213.m uses the MATLAB function hess to convert the original matrix to
a Hessenberg matrix, followed by the iterative application of the QR decomposition using MATLAB

function qr to determine the eigenvalues of a symmetric matrix. Note that in this script we have iterated
10 times, rather than use a formal test for convergence since the purpose of the script is merely to
illustrate the functioning of the iterative application of the QR procedure.

% e4s213.m
A = [5 4 1 1;4 5 1 1; 1 1 4 2;1 1 2 4];
H1 = hess(A);
for i = 1:10

[Q R] = qr(H1);
H2 = R*Q; H1 = H2;
p = diag(H1)’;
fprintf(’%2.0f %8.4f %8.4f’,i,p(1),p(2))
fprintf(’%8.4f %8.4f\n’,p(3),p(4))

end

Running script e4s213.m gives
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1 1.0000 8.3636 6.2420 2.3944
2 1.0000 9.4940 5.4433 2.0627
3 1.0000 9.8646 5.1255 2.0099
4 1.0000 9.9655 5.0329 2.0016
5 1.0000 9.9913 5.0084 2.0003
6 1.0000 9.9978 5.0021 2.0000
7 1.0000 9.9995 5.0005 2.0000
8 1.0000 9.9999 5.0001 2.0000
9 1.0000 10.0000 5.0000 2.0000

10 1.0000 10.0000 5.0000 2.0000

The iteration converges to the values 1, 10, 5, and 2 which are the correct. This QR iteration could be
applied directly to the full matrix A but in general it would be inefficient. We have not given details of
how the eigenvectors are computed.

When the arguments in the MATLAB function eig are two real or complex matrices, the QZ algo-
rithm is used instead of the QR algorithm. The QZ algorithm (Golub and Van Loan, 1989) has been
modified to deal with the complex case. When eig is called using a single complex matrix A then the
algorithm works by applying the QZ algorithm to eig(A,eye(size(A))). The QZ algorithm begins by
noting that there exists a unitary Q and Z such that QHAZ = T and QHBZ = S and hence both T and
S are both upper triangular. This is called generalized Schur decomposition. Providing skk is not zero
then the eigenvalues are computed from the ratio tkk/skk , where k = 1,2, ..., n. The script e4s214.m
demonstrates that the ratios of the diagonal elements of the T and S matrices give the required eigen-
values.

% e4s214.m
A = [10+2i 1 2;1-3i 2 -1;1 1 2];
B = [1 2-2i -2;4 5 6;7+3i 9 9];
[T S Q Z V] = qz(A,B);
r1 = diag(T)./diag(S)
r2 = eig(A,B)

Running script e4s214.m gives

r1 =
1.6154 + 2.7252i

-0.4882 - 1.3680i
0.1518 + 0.0193i

r2 =
1.6154 + 2.7252i

-0.4882 - 1.3680i
0.1518 + 0.0193i

Schur decomposition is closely related to the eigenvalue problem. The MATLAB function schur(a)
produces an upper triangular matrix T with real eigenvalues on its diagonal and complex eigenvalues
in 2 × 2 blocks on the diagonal. The matrix A decomposed to give

A = UTUH
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where U is a unitary matrix such that UHU = I. The output of the script e4s215 shows the similarity
between Schur decomposition given by the MATLAB function schur and the eigenvalues determined
using eig, of a given matrix.

% e4s215.m
A = [4 -5 0 3;0 4 -3 -5;5 -3 4 0;3 0 5 4];
T = schur(A), lam = eig(A)

Running script e4s215 gives

T =
12.0000 0.0000 -0.0000 -0.0000

0 1.0000 -5.0000 -0.0000
0 5.0000 1.0000 -0.0000
0 0 0 2.0000

lam =
12.0000 + 0.0000i
1.0000 + 5.0000i
1.0000 - 5.0000i
2.0000 + 0.0000i

We can readily identify the four eigenvalues in the matrix T. The real parts of the eigenvalues lie on the
diagonal of T and any non-zero elements in the sub- and super-diagonal of T are the imaginary parts
of the eigenvalues. The script e4s216.m compares the performance of the eig function when solving
various classes of problem.

% e4s216.m
disp(’ real1 realsym1 real2 realsym2 comp1 comp2’)
for n = 100:50:500

A = rand(n); C = rand(n);
S = A+C*i;
T = rand(n)+i*rand(n);
tic, [U,V] = eig(A); f1 = toc;
B = A+A.’; D = C+C.’;
tic, [U,V] = eig(B); f2 = toc;
tic, [U,V] = eig(A,C); f3 = toc;
tic, [U,V] = eig(B,D); f4 = toc;
tic, [U,V] = eig(S); f5 = toc;
tic, [U,V] = eig(S,T); f6 = toc;
fprintf(’%12.3f %10.3f %10.3f %10.3f %10.3f %10.3f\n’,f1,f2,f3,f4,f5,f6);

end

This script, e4s216.m gives the time taken (in seconds) to carry out the various operations. The output
is as follows:
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real1 realsym1 real2 realsym2 comp1 comp2
0.188 0.002 0.027 0.019 0.033 0.142
0.053 0.009 0.060 0.107 0.148 0.190
0.196 0.011 0.138 0.120 0.151 0.209
0.100 0.011 0.153 0.151 0.182 0.276
0.127 0.013 0.244 0.249 0.236 0.423
0.162 0.021 0.391 0.375 0.338 0.709
0.202 0.027 0.653 0.635 0.463 1.066
0.253 0.038 0.886 0.913 0.610 1.696
0.300 0.046 1.250 1.270 0.792 2.220

Note that each row is for a different size of n × n matrix, from 100 to 500 in steps of 50.
In some circumstances not all the eigenvalues and eigenvectors are required. For example, in a com-

plex engineering structure, modeled with many hundreds of degrees of freedom, we may only require
the first 15 eigenvalues, giving the natural frequencies of the model, and the corresponding eigenvec-
tors. MATLAB provides the function eigs which finds a selected number of eigenvalues, such as those
with the largest amplitude, the largest or smallest real or imaginary part, etc. This function is partic-
ularly useful when seeking a small number of eigenvalues of very large sparse matrices. Eigenvalue
reduction algorithms are used to reduce the size of eigenvalue problem (for example, Guyan, 1965) but
still allow selected eigenvalues to be computed to an acceptable level of accuracy.

MATLAB also includes the facility to find the eigenvalues of a sparse matrix. The script e4s217.m
compares the number of floating-point operations required to find the eigenvalues of a matrix treated as
sparse with the number of floating-point operations required to find the eigenvalues of the correspond-
ing full matrix.

% e4s217.m
% generate a sparse triple diagonal matrix
n = 4000;
rowpos = 2:n; colpos = 1:n-1;
values = ones(1,n-1);
offdiag = sparse(rowpos,colpos,values,n,n);
A = sparse(1:n,1:n,4*ones(1,n),n,n);
A = A+offdiag+offdiag.’;
% generate full matrix
B = full(A);
tic, eig(A); sptim = toc;
tic, eig(B); futim = toc;
fprintf(’Time for sparse eigen solve = %8.6f\n’,sptim)
fprintf(’Time for full eigen solve = %8.6f\n’,futim)

The results from running script e4s217.m are

Time for sparse eigen solve = 0.511121
Time for full eigen solve = 0.591209

Clearly a significant saving in time.
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2.18 THE GOOGLE ‘PAGERANK’ ALGORITHM
An interesting application of eigenvalue analysis is the Google algorithm for determining the most
important pages found in a web search.

Search engines use crawlers to continuously search the web, finding new pages and adding them
to the vast index of pages. When you undertake a web search, the search engine looks at the index
and finds the pages containing the key words used in your search. For example, a Google search for
“eigenvalue” finds about 1,670,000 results in 0.54 seconds. The next step is to decide in what order
to present these pages: clearly the most relevant pages should be shown first. Different search engines
use different ways of ranking the pages. What makes the Google search engine particularly attractive
is the ‘PageRank’ algorithm that decides which are the most important pages. The Google ‘PageRank’
algorithm was first described by Brin and Page (1998).

The pages containing the key search words can be viewed as a network where a large number of
nodes, representing topics or pages, are connected by edges. Such a network is often called a graph.
Certain nodes have more connections than others, depending on their importance and relevance. A node
which has many other node connections pointing to it, and thus referencing it, may be considered
more important than others with fewer references. When searching on the web for specific information
amongst the huge numbers of items, it would clearly be useful to rank the pages in terms of their
relevance to the user, since this is what the user requires. The Google algorithm provides an objective
and efficient page ranking process. It ranks the pages by relevance based on the number of citations a
page receives, assigns a page rank to each page, and lists the pages in order of relevance to the user.
A key feature of page rank is that a page has high rank if many other pages of high rank point to it, so
it is not only the issue of the number of pages which point to a page, the rank of these pages is also
important.

So how can an algorithm be built to implement this process? First a model of the network of
potentially interesting pages must be devised and then we must produce an objective mathematical
process to establish the required page ranking in numerical form. From our previous discussion it is
clear the model of the pages could be a connected network or graph and this is the approach adopted.
Since we wish to use a numerical process we must then represent the graph numerically. This can be
achieved by representing the graph as a matrix.

If we think of the matrix having elements at positions (i, j) where i is the row number of the matrix
and j is the column of the matrix then the elements of A may be denoted by Aij . In our model of the
internet, we may define the elements of the matrix as the probabilities that information will be sent
from page j to page i. We can set the probability values for each node i which has a connection to
node j , to 1/nj assuming each node j has nj outward pointing connections to other nodes i. If there
is no connection to any other node then the probability is of course zero. Thus the sum of probabilities
in each column must equal 1 and probabilities lie in the range zero to one. Such a matrix is a column
stochastic matrix, defined as one whose elements are less than or equal to one and the columns of
which sum to 1. A stochastic matrix has some specific properties, one of which is that its largest or
dominant eigenvalue is equal to one.

The question now arises, how can we use this model of the internet to rank the internet pages? It
can be shown that the dominant eigenvector of the stochastic matrix A which we have used to model
the internet links provides the page ranking we require. The numerical ordering of the individual values
of the eigenvector rank the relevance of the specific page on the web to the searcher; the largest being
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FIGURE 2.9

Connections of different strengths between five pages of the internet.

the most relevant and the smallest being the least relevant. However, this dominant eigenvector of
the stochastic matrix A is not unique. To ensure uniqueness the Google matrix G was introduced as
follows:

G = αA + (1 − α)UPT where 0 ≤ α < 1

where U is a matrix of 1s and P is sometimes called a personalization vector such that P ≥ 0 and
||P|| = 1. This may be taken as the initial probabilities each given by 1/n where n is the size of
the matrix. This matrix, G, the Google matrix, provides a unique dominant eigenvector and is also
stochastic. The Google page rank vector r may now be defined by the equations:

Gr = r where r ≥ 0 and ||r|| = 1

This is the standard eigenvalue problem, see (2.40), with the dominant eigenvalue equal to one.
The Google page rank vector r may now be used to rank the internet pages and display them in

order, largest value first and then in decreasing order of magnitude. The final question is: how can we
find the dominant eigenvector of G? Fortunately it can be found by using the relatively simple power
method, as described in Section 2.16. In the description of the power method in Section 2.16 it is
explained that in order to avoid a numeric overflow caused by effectively multiplying the eigenvector
by the eigenvalue raised to a power equal to the number of iterations performed, the iteration algorithm
must be modified as described by (2.83). This is implemented in the function eigit. In determining
the eigensolution of a stochastic matrix, since the dominant eigenvalue is close to and tending to unity,
this difficulty does not arise and the algorithm can be simplified.

In fact, since we iterate the equations r = Grtrial and rtrial = r this iteration is effectively r =
Gprtrial , where p is suitably large. Thus irrespective of rtrial the product Gprtrial is the same, but
scaled differently. This is because every column of Gp is identical.

Consider the graph shown in Fig. 2.9. The graph representing the connections between five scientific
papers on the internet with various links connecting each node. Then this diagram may be represented
by the stochastic matrix:
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⎡
⎢⎢⎢⎢⎣

0 0 0 0 1/2
1/3 0 1/2 0 1/2
1/3 0 0 0 0
1/3 1 1/2 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ (2.89)

Then the Google matrix is

⎡
⎢⎢⎢⎢⎣

0.0300 0.0300 0.0300 0.0300 0.4550
0.3133 0.0300 0.4550 0.0300 0.4550
0.3133 0.0300 0.0300 0.0300 0.0300
0.3133 0.8800 0.4550 0.0300 0.0300
0.0300 0.0300 0.0300 0.8800 0.0300

⎤
⎥⎥⎥⎥⎦ (2.90)

Note that the sum of each column is one and for each element Gij in the matrix the condition 0 ≤
Gij ≤ 1 is satisfied. Then G50 is

⎡
⎢⎢⎢⎢⎣

0.1468 0.1468 0.1468 0.1468 0.1468
0.2188 0.2188 0.2188 0.2188 0.2188
0.0716 0.0716 0.0716 0.0716 0.0716
0.2880 0.2880 0.2880 0.2880 0.2880
0.2748 0.2748 0.2748 0.2748 0.2748

⎤
⎥⎥⎥⎥⎦ (2.91)

If rtrial = [1 1 1 1 1]T then

G50rtrial = [0.7340 1.0940 0.3580 1.4400 1.3740]
In contrast, suppose rtrial = [1 −1 1 −1 1]T then

G50rtrial = [0.1468 0.2188 0.0716 0.2880 0.2748]
In both cases, the vectors can be normalized to give

r = [0.5097 0.7598 0.2486 1.0000 0.9542]
Thus the most important web location or paper is number 4, closely followed by number 5.

To implement these procedures as a formal algorithm a test must be included to determine if the
procedure has converged to a sufficiently accurate estimate for r.

2.19 SUMMARY
We have described many of the important algorithms related to computational matrix algebra and
shown how the power of MATLAB can be used to illustrate the application of these algorithms in a
revealing way. We have shown how to solve over- and under-determined systems and eigenvalue prob-
lems. We have drawn the attention of the reader to the importance of sparsity in linear systems and
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demonstrated its significance. The scripts provided should help readers to develop their own applica-
tions.

In Chapter 10, we show how the symbolic toolbox can be usefully applied to solve some problems
in linear algebra.

2.20 PROBLEMS
2.1. An n × n Hilbert matrix, A, is defined by

aij = 1/(i + j − 1) for i, j = 1,2, ..., n

Find the inverse of A and the inverse of ATA for n = 5. Then, noting that

(ATA)−1 = A−1(A−1)T

find the inverse of ATA using this result for values of n = 3, 4, ...,6. Compare the accuracy
of the two results by using the inverse Hilbert function invhilb to find the exact inverse using
(ATA)−1 = A−1(A−1)T. Hint: Compute norm(P − R) and norm(Q − R) where P = (ATA)−1

and Q = A−1(A−1)T and R is the exact value of Q.
2.2. Find the condition number of ATA where A is an n × n Hilbert matrix, defined in Problem 2.1,

for n = 3, 4, ...,6. How do these results relate to the results of Problem 2.1?
2.3. It can be proved that the series (I − A)−1 = I + A + A2 + A3 + ..., where A is an n × n matrix,

converges if the eigenvalues of A are all less than unity. The following n × n matrix satisfies
this condition if a + 2b < 1 and a and b are positive:

⎡
⎢⎢⎢⎢⎢⎣

a b 0 . . . 0 0
b a b . . . 0 0
...

...
...

...
...

0 0 0 . . . b a

0 0 0 . . . 0 b

0
0
...

b

a

⎤
⎥⎥⎥⎥⎥⎦

Experiment with this matrix for various values of n, a, and b to illustrate that the series converges
under the condition stated.

2.4. Use the function eig to find the eigenvalues of the following matrix:

⎡
⎣ 2 3 6

2 3 −4
6 11 4

⎤
⎦

Then use the rref function on the matrix (A − λI), taking λ equal to any of the eigenvalues.
Solve the resulting equations by hand to obtain the eigenvector of the matrix. Hint: Note that
an eigenvector is the solution of (A − λI)x = 0 for λ equal to specific eigenvalues. Assume an
arbitrary value for x3.
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2.5. For the system given in Problem 2.3, find the eigenvalues, assuming both full and sparse forms
with n = 10 : 10 : 30. Compare your results with the exact solution given by

λk = a + 2b cos {kπ/(n + 1)} , k = 1,2, . . .

2.6. Find the solution of the over-determined system that follows using pinv, qr, and the \ operator.
⎡
⎢⎢⎢⎢⎣

2.0 −3.0 2.0
1.9 −3.0 2.2
2.1 −2.9 2.0
6.1 2.1 −3.0

−3.0 5.0 2.1

⎤
⎥⎥⎥⎥⎦
⎡
⎣ x1

x2
x3

⎤
⎦=

⎡
⎢⎢⎢⎢⎣

1.01
1.01
0.98
4.94
4.10

⎤
⎥⎥⎥⎥⎦

2.7. Write a script to generate an n × n matrix E, where E = {1/(n + 1)}C where

cij = i(n − i + 1) if i = j

= ci,j−1 − i if j > i

= cji if j < i

Having generated E for n = 5, solve Ex = b where b = [1 : n]T by
(a) using the \ operator;
(b) using the lu function and solving Ux = y and Ly = b.

2.8. Determine the inverse of E of Problem 2.7 for n = 20 and 50. Compare with the exact in-
verse which is a matrix with 2 along the main diagonal and −1 along the upper and lower
sub-diagonals and zero elsewhere.

2.9. Determine the eigenvalues of E defined in Problem 2.7 for n = 20 and 50. The exact eigenvalues
for this system are given by λk = 1/[2 − 2 cos {kπ/(n + 1)}] where k = 1, ..., n.

2.10. Determine the condition number of E of Problem 2.7 using the MATLAB function cond, for
n = 20 and 50. Compare your results with the theoretical expression for the condition number
which is 4n2/π2.

2.11. Find the eigenvalues and the left and right eigenvectors using the MATLAB function eig for the
matrix

A =
⎡
⎣ 8 −1 −5

−4 4 −2
18 −5 −7

⎤
⎦

2.12. For the following matrix A, using eigit, eiginv, determine:
a. the largest eigenvalue
b. the eigenvalue nearest 100
c. the smallest eigenvalue

A =

⎡
⎢⎢⎢⎢⎣

122 41 40 26 25
40 170 25 14 24
27 26 172 7 3
32 22 9 106 6
31 28 −2 −1 165

⎤
⎥⎥⎥⎥⎦
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2.13. Given that

A =
⎡
⎣ 1 2 2

5 6 −2
1 −1 0

⎤
⎦ and B =

⎡
⎣ 2 0 1

4 −5 1
1 0 0

⎤
⎦

and defining C by

C =
[

A B
B A

]

verify using eig that the eigenvalues of C are given by a combination of the eigenvalues of
A + B and A − B.

2.14. Write a MATLAB script to generate the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n n − 1 n − 2 . . . 2 1
n − 1 n − 1 n − 2 . . . 2 1
n − 2 n − 2 n − 2 . . . 2 1

...
...

...
...

...
...

2 2 2 . . . 2 1
1 1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Taking n = 5 and n = 50 and using the MATLAB function eig, find the largest and smallest
eigenvalues.
The eigenvalues of this matrix are given by the formula

λi = 1

2

[
1 − cos

(2i − 1)π

2n + 1

]−1

, i = 1, 2 . . . n

Verify your results are correct using this formula.
2.15. Taking n = 10, find the eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 1
0 1 0 . . . 0 2
0 0 1 . . . 0 3
...

...
... . . .

...
...

0 0 0 . . . 1 n − 1
1 2 3 . . . n − 1 n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

using eig. As an alternative, find the eigenvalues of A by first generating the characteristic
polynomial using poly for the matrix A and then using roots to find the roots of the resulting
polynomial. What conclusions do you draw from these results?

2.16. For the matrix given in Problem 2.12, use eig to find the eigenvalues. Then find the eigenvalues
of A by first generating the characteristic polynomial for A using poly and then using roots to
find the roots of the resulting polynomial. Use sort to compare the results of the two approaches.
What conclusions do you draw from these results?
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2.17. For the matrix given in Problem 2.14, taking n = 10, show that the trace is equal to the sum of
the eigenvalues and the determinant is equal to the product of the eigenvalues. Use the MATLAB

functions det, trace, and eig.
2.18. The matrix A is defined as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

...
...

...
...

...

0 0 . . . −1 2 −1
0 0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The condition number, c, for this matrix is given by c = pnq where n is the size of the matrix
and p and q are constants. By computing the condition number for the matrix A for n = 5 : 5 : 50
using the MATLAB function cond, fit the function pnq to the set of results you produce. Hint:
Take logs of both sides of the equation for c and solve the system of over-determined equations
using the \ operator.

2.19. An approximation for the inverse of (I − A) where I is an n × n unit matrix and A is an n × n

matrix is given by

(I − A)−1 = I + A + A2 + A3 + ...

This series only converges and the approximation is valid only if the maximum eigenvalue of A
is less than 1. Write a MATLAB function invapprox(A,k) which obtains an approximation to
(I − A)−1 using k terms of the given series. The function must find all eigenvalues of A using
the MATLAB function eig. If the largest eigenvalue is greater than one then a message will be
output indicating the method fails. Otherwise the function will compute an approximation to
(I − A)−1 using k terms of the series expansion given. Taking k = 4, test the function on the
matrices: ⎡

⎣ 0.2 0.3 0
0.3 0.2 0.3

0 0.3 0.2

⎤
⎦ and

⎡
⎣ 1.0 0.3 0

0.3 1.0 0.3
0 0.3 1.0

⎤
⎦

Use the norm function to compare the accuracy of the inverse of the matrix (I − A) found using
the MATLAB inv function and the function invapprox(A,k) for k = 4, 8, 16.

2.20. The system of equations Ax = b, where A is a matrix of m rows and n columns, x is an n

element column vector, b an m element column vector, is said to be under-determined if n > m.
The direct use of the MATLAB inv function to solve this system fails since the matrix A is not
square. However, multiplying both sides of the equation by AT gives:

ATAx = ATb

ATA is a square matrix and the MATLAB inv function can now be used to solve the system.
Write a MATLAB function to use this result to solve under-determined systems. The function
should allow the input of the b vector and the A matrix, form the necessary matrix products
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and use the MATLAB inv function to solve the system. The accuracy of the solution should be
checked by using the MATLAB norm function to measure the difference between Ax and b. The
function must also include the direct use of the MATLAB \ symbol to solve the same under-
determined linear system, again include a check on the accuracy of the solution by using the
MATLAB norm function to measure the difference between Ax and b. The function should take
the form udsys(A,b) and return the solutions given by the different methods and the norms pro-
duced by the two methods. Test your program by using it to solve the under-determined system
of linear equations Ax = b where:

A =
[

1 −2 −5 3
3 4 2 −7

]
and b =

[ −10
20

]

What conclusions do you draw regarding the two methods by comparing the norms that the two
methods produce?

2.21. An orthogonal matrix A is defined as a square matrix such that the product of the matrix and its
transpose equals the unit matrix or

AAT = I

Use MATLAB to verify that the following matrices are orthogonal:

B =

⎡
⎢⎢⎣

1√
3

1√
6 − 1√

2
1√
3

−2√
6 0

1√
3

1√
6

1√
2

⎤
⎥⎥⎦

C =
[

cos(π/3) sin(π/3)

− sin(π/3) cos(π/3)

]

2.22. Write MATLAB scripts to implement both the Gauss–Seidel and the Jacobi method and use them
to solve, with an accuracy of 0.000005, the equation system Ax = b where the elements of A
are

aii = −4

aij = 2 if |i − j | = 1

aij = 0 if |i − j | ≥ 2 where i, j = 1,2, ...,10

and

bT = [2 3 4 ... 11]

Use initial values xi = 0, where i = 1, 2, ..., 10. (You might also like to experiment with other
initial values.) Check your results by solving the system using the MATLAB \ operator.
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CHAPTER

SOLUTION OF NON-LINEAR
EQUATIONS

Abstract

The problem of solving non-linear equations arises frequently and naturally from the study of a wide
range of practical problems. The problem may involve one or a system of non-linear equations in many
variables. In this chapter, general methods of solving non-linear equations are presented, together with
specific methods for polynomial equations.

3.1 INTRODUCTION
To illustrate our discussion and provide a practical insight into the solution of non-linear equations
we shall consider an equation described by Armstrong and Kulesza (1981). These authors report a
problem which arises from the study of resistive mixer circuits. Given an applied current and voltage,
it is necessary to find the current flowing in part of the circuit. This leads to a simple non-linear equation
which after some manipulation may be expressed in the form

x − exp(−x/c) = 0 or equivalently x = exp(−x/c) (3.1)

Here c is a given constant and x is the variable we wish to determine. The solution of such equations is
not obvious but Armstrong and Kulesza provide an approximate solution based on a series expansion
which gives a reasonably accurate solution for a large range of values of c. This approximation is given
in terms of c by

x = cu[1 − loge{(1 + c)u}/(1 + u)] (3.2)

where u = loge(1 + 1/c). This is an interesting and useful result since it is reasonably accurate for
values of c in the five-decade range [10−3,100] and gives a relatively efficient way of finding the
solutions of a whole family of equations generated by varying c. Although this result is useful for this
particular equation, when we attempt to use this type of ad hoc approach for the general solution of
non-linear equations, there are significant drawbacks. These are

1. Ad hoc approaches to the solutions of equations are rarely as successful as this example in finding
a formula for the solution of a given equation, usually it is impossible to obtain such formu-
lae.

2. Even when they exist, such formulae require considerable time and ingenuity to develop.
3. We may require greater accuracy than any ad hoc formula can provide.

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00012-9
Copyright © 2019 Elsevier Inc. All rights reserved.
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FIGURE 3.1

Solution of x = exp(−x/c). Results from the function fzero are indicated by o and those from the Armstrong
and Kulesza formula by +.

To illustrate point 3 consider Fig. 3.1 which is generated by the MATLAB script e4s301.m. This figure
shows the results obtained using the formula (3.2) together with the results using the MATLAB function
fzero to solve the same non-linear equation (3.1).

% e4s301.m
ro = [ ]; ve = [ ]; x = [ ];
c = 0.5:0.1:1.1; u = log(1+1./c);
x = c.*u.*(1-log((1+c).*u)./(1+u));
% solve equation using MATLAB function fzero
i = 0;
options = optimset(’TolFun’,0.00005);
for c1 = 0.5:0.1:1.1

i = i+1;
ro(i) = fzero(@(x) x-exp(-x/c1),1,options);

end
plot(x,c,’+’)
axis([0.4 0.6 0.5 1.2])
hold on
plot(ro,c,’o’)
xlabel(’Root x value’), ylabel(’c value’)
hold off

The function fzero is discussed in detail in Section 3.10. Note that the call of fzero takes the form
fzero(@(x) x-exp(-x/c1),1,options). This gives an accuracy of 0.00005 for the roots and uses an
initial approximation 1. The function fzero provides the root with up to 16-digit accuracy, if required,
whereas the formula (3.2) of Armstrong and Kulesza, although faster, gives the result to one or two
decimal places only. In fact, the method of Armstrong and Kulesza becomes more accurate for large
values of c.

From the preceding discussion, we conclude that, although occasionally ingenious alternatives may
be available, in the vast majority of cases we must use algorithms which provide, with reasonable



3.2 THE NATURE OF SOLUTIONS TO NON-LINEAR EQUATIONS 159

FIGURE 3.2

Plot of the function f (x) = (x − 1)3(x + 2)2(x − 3).

FIGURE 3.3

Plot of f (x) = exp(−x/10) sin(10x).

computational effort, the solutions of general problems to any specified accuracy. Before describing
the nature of these algorithms in detail, we consider different types of equations and the general nature
of their solutions.

3.2 THE NATURE OF SOLUTIONS TO NON-LINEAR EQUATIONS
We illustrate the nature of the solutions to non-linear equations by considering two equations which
we wish to solve for the variable x.

(a) (x − 1)3(x + 2)2(x − 3) = 0, – that is,

x6 − 2x5 − 8x4 + 14x3 + 11x2 − 28x + 12 = 0

(b) exp(−x/10) sin(10x) = 0

The first equation is a special type of non-linear equation known as a polynomial equation since it in-
volves only integer powers of the variable x and no other function. Such polynomial equations have the
important characteristic that they have n roots where n is the degree of the polynomial. In this example
the highest power of x, and hence the degree of the polynomial, is six. The solutions of a polynomial
may be complex or real, separate or coincident. Fig. 3.2 illustrates the nature of the solutions of this
equation. Although there must be six roots, three are coincident at x = 1 and two are coincident at
x = −2. There is also a single root at x = 3. Coincident roots may present difficulties for some algo-
rithms, as do roots which are very close together so it is important to appreciate their existence. The
user may require a particular root of the equation or all the roots. In the case of polynomial equations,
special algorithms exist to find all the roots simultaneously.

The example (b) is a non-linear equation involving transcendental functions. The task of finding all
the roots of this class of non-linear equation is a daunting one, since the number of roots may not be
known or there may be an infinity of roots. This situation is illustrated by Fig. 3.3 which shows the
graph of the second equation for x in the range [0, 20]. If we extended the range of x, more roots would
be revealed.

We now consider some simple algorithms to find a specific root of a given non-linear equation.
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3.3 THE BISECTION ALGORITHM
This simple algorithm assumes that an initial interval is known in which a root of the equation f (x) = 0
lies and then proceeds to reduce this interval until the required accuracy is achieved for the root. This
algorithm is mentioned only briefly since it is not in practice used by itself but in conjunction with
other algorithms to improve their reliability. The algorithm may be described by

input interval in which the root lies
while interval too large

(1) Bisect the current interval in which the root lies.
(2) Determine in which half of the interval the root lies.

end
display root

The principles on which this algorithm is based are simple. Given an initial interval in which a specific
root lies, the algorithm will provide an improved approximation for the root. However, the requirement
that an interval be known is sometimes difficult to achieve, and although the algorithm is reliable it is
extremely slow.

Alternative algorithms have been developed which converge more rapidly; this chapter is concerned
with describing some of the most important of these. All the algorithms we consider are iterative in
character, – that is they proceed by repeating the same sequence of steps until the root approximation
is accurate enough to satisfy the user. We now consider the general form of an iterative method, the
nature of the convergence of such methods and the problems they encounter.

3.4 ITERATIVE OR FIXED POINT METHODS
We wish to solve the general equation f (x) = 0; however, to illustrate iterative methods clearly we
consider a simple example. Suppose we wish to solve the quadratic

x2 − x − 1 = 0 (3.3)

This equation can be solved by using the standard formula for solving quadratics but we take a different
approach. Rearrange (3.3) as follows:

x = 1 + 1/x

Then rewrite it in iterative form using subscripts as follows:

xr+1 = 1 + 1/xr for r = 0,1,2, . . . (3.4)

Assuming we have an initial approximation x0 to the root we are seeking, we can proceed from one
approximation to another using this formula. The iterates we obtain in this way may or may not con-
verge to the solution of the original equation. This is not the only iterative procedure for attempting to
solve (3.3); we can generate two others from (3.3) as follows:

xr+1 = x2
r − 1 for r = 0,1,2, . . . (3.5)
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Table 3.1 Difference between exact root and
iterate for x2 − x − 1 = 0

Iteration (3.4) Iteration (3.5) Iteration (3.6)
−0.1180 1.3820 0.1140

0.0486 6.3820 0.0349
−0.0180 61.3820 0.0107

0.0070 3966.3820 0.0033
−0.0026 15,745,021.3820 0.0010

and

xr+1 = √
xr + 1 for r = 0,1,2, . . . (3.6)

Starting from the same initial approximation, these iterative procedures may or may not converge to
the same root. Table 3.1 shows what happens when we use the initial approximation x0 = 2 with the
iterative procedures (3.4), (3.5), and (3.6). It shows that iterations (3.4) and (3.6) converge but (3.5)
does not.

Note that when the root is reached no further improvement is possible and the point remains fixed.
Hence the roots of the equation are the fixed points of the iteration. To remove the unpredictability of
this approach we must be able to find general conditions which determine when such iterative schemes
converge, when they do not and the nature of this convergence.

3.5 THE CONVERGENCE OF ITERATIVE METHODS
The procedure described in Section 3.4 can be applied to any equation f (x) = 0 and has the general
form

xr+1 = g(xr) for r = 0,1,2, . . . (3.7)

It is not our purpose to give the details of the derivation of convergence conditions for this form of iter-
ation, but to point out some of the difficulties which may arise in using them even when this condition
is satisfied. The detailed derivation is given in many text books; see, for example, Lindfield and Penny
(1989). It can be shown that the approximate relation between the current error εr+1 at the (r + 1)th
iteration and the previous error εr is given by

εr+1 = εrg
′(tr )

where tr is a point lying between the exact root and the current approximation to the root. Thus, the
error will be decreasing if the absolute value of the derivative at these points is less than 1. However,
this does not guarantee convergence from all starting points and the initial approximation must be
sufficiently close to the root for convergence to occur.

In the case of the specific iterative procedures (3.4) and (3.5), Table 3.2 shows how the values of
the derivatives of the corresponding g(x) vary with the values of the approximations to xr . This table
provides numerical evidence for the theoretical assertion in the case of iterations (3.4) and (3.5).
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Table 3.2 Values of the derivatives for iterations given
by (3.4) and (3.5)

Iteration (3.4) Derivative Iteration (3.5) Derivative
−0.1180 −0.44 1.3820 6.00

0.0486 −0.36 6.3820 16.00
−0.0180 −0.39 61.3820 126.00

0.0070 −0.38 3966.3820 7936.00

However, the concept of convergence is more complex than this. We need to give some answer to
the crucial question: if an iterative procedure converges, how can we classify the rate of convergence?
We do not derive this result but refer the reader to Lindfield and Penny (1989) and state the answer
to the question. Suppose all derivatives of the function g(x) of order 1 to p − 1 are zero at the exact
root a. Then the relation between the current error εr+1 at the (r + 1)th iteration and the previous error
εr is given by

εr+1 = (εr )
pg(p)(tr )/p! (3.8)

where tr lies between the exact root and the current approximation to the root and g(p) denotes the
pth derivative of g. The importance of this result is that it means the current error is proportional to
the pth power of the previous error and clearly, on the basis of the reasonable assumption that the
errors are much smaller than 1, the higher the value of p, the faster the convergence. Such methods
are said to have pth-order convergence. In general it is cumbersome to derive iterative methods of
order higher than two or three and second-order methods, where the current error is proportional to
the square of the previous error, have proved very satisfactory in practice for solving a wide range
of non-linear equations. Note that if the current error is proportional to the previous error it is called
linear convergence and if the current error is proportional to the square of the previous error it is
called quadratic convergence. This provides a convenient classification for the convergence of iterative
methods but avoids the difficult questions: for what range of starting values will the process converge
and how sensitive is convergence to changes in the starting values?

3.6 RANGES FOR CONVERGENCE AND CHAOTIC BEHAVIOR
We illustrate some of the problems of convergence by considering a specific example which highlights
some of the difficulties. Short (1992) examined the behavior of the iterative process

xr+1 = −0.5(x3
r − 6x2

r + 9xr − 6) for r = 0,1,2, ...

for solving the equation (x − 1)(x − 2)(x − 3) = 0. This iterative procedure clearly has the form

xr+1 = g(xr), r = 0,1,2, ...
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FIGURE 3.4

Iterates in the solution of (x − 1)(x − 2)(x − 3) = 0 from close but different starting points.

and it is easy to verify that it has the following properties:

g′(1) = 0 and g′′(1) �= 0

g′(2) �= 0

g′(3) = 0 and g′′(3) �= 0

Thus, by taking p = 2 in result (3.8), we can expect, for appropriate starting values, quadratic con-
vergence for the roots at x = 1 and x = 3 but at best linear convergence for the root at x = 2. The
major problem is, however, to determine the ranges of initial approximation which will converge to the
different roots. This is not an easy task but one simple way of doing this is to draw a graph of y = x

and y = g(x). The points of intersection provide the roots. The line y = x has a slope of 1, and points
where the slope of g(x) is less than this provide a range of initial approximations which converge to
one or other of the roots.

This graphical analysis shows that points within the range 1 to 1.43 (approximately) converge to the
root 1 and points in the range 2.57 (approximately) to 3 converge to the root 3. This is the obvious part
of the analysis. However, Short demonstrates that there are many other ranges of convergence for this
iterative procedure, many of them very narrow indeed, which lead to chaotic behavior in the iterative
process. He demonstrates for example, that taking x0 = 4.236067968 will converge to the root x = 3
whereas taking x0 = 4.236067970 converges to the root x = 1, a remarkable change for such a small
variation in the initial approximation. This should serve as a warning to the reader that the study of
convergence properties is in general not an easy task.

Fig. 3.4 illustrates this point quite strikingly. It shows the graph of x and the graph of g(x) where

g(x) = −0.5(x3 − 6x2 + 9x − 6)

The x line intersects with g(x) to give the roots of the original equation. The graph also shows iterates
starting from x0 = 4.236067968, indicated by ◦, and iterates starting from x = 4.236067970, indicated
by +. The starting points are so close they are of course superimposed on the graph. However, the
iterates soon take their separate paths to converge on different roots of the equation. The path indicated
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by ◦ converges to the root x = 1 and the path indicated by + converges to the root x = 3. The sequence
of numbers on the graph shows the last nine iterates. The point referenced by zero is in fact all the
points which are initially very close together. This is a remarkable example and users should verify
these phenomena for themselves by running the following MATLAB script:

% e4s302.m
x = 0.75:0.1:4.5;
g = -0.5*(x.^3-6*x.^2+9*x-6);
plot(x,g)
axis([.75,4.5,-1,4])
hold on, plot(x,x)
xlabel(’x’), ylabel(’g(x)’), grid on
ch = [’o’,’+’];
num = [ ’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’];
ty = 0;
for x1 = [4.236067970 4.236067968]

ty = ty+1;
for i = 1:19

x2 = -0.5*(x1^3-6*x1^2+9*x1-6);
% First ten points very close, so represent by ’0’
if i==10

text(4.25,-0.2,’0’)
elseif i>10

text(x1,x2+0.1,num(i-9))
end
plot(x1,x2,ch(ty))
x1 = x2;

end
end
hold off

It is interesting to note that the iterative form

xr+1 = x2
r + c for r = 0,1,2, ...

demonstrates strikingly chaotic behavior when the iterates are plotted in the complex plane and for
complex ranges of values for c.

We now return to the more mundane task of developing algorithms that work in general for the
solution of non-linear equations. In the next section we shall consider a simple method of order 2.

3.7 NEWTON’S METHOD
This method for the solution of the equation f (x) = 0 is based on the simple geometric properties of
the tangent to the curve f (x). The method requires some initial approximation to the root and that the
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FIGURE 3.5

Geometric interpretation of Newton’s method.

derivative of f (x) exists in the range of interest. Fig. 3.5 illustrates the operation of the method. The
diagram shows the tangent to the curve at the current approximation x0. This tangent strikes the x-axis
at x1 and provides us with an improved approximation to the root. Similarly, the tangent at x1 gives the
improved approximation x2.

The process is repeated until some convergence criterion is satisfied. It is easy to translate this
geometrical procedure into a numerical method for finding the root since the tangent of the angle
between the x-axis and the tangent equals

f (x0)/(x1 − x0)

and the slope of this tangent itself equals f ′(x0), the derivative of f (x) at x0. So we have the equation

f ′(x0) = f (x0)/(x1 − x0)

Thus the improved approximation, x1, is given by

x1 = x0 − f (x0)/f
′(x0)

This may be written in iterative form as

xr+1 = xr − f (xr)/f
′(xr ) where r = 0,1,2, . . . (3.9)

We note that this method is of the general iterative form

xr+1 = g(xr) where r = 0,1,2, . . .

Consequently, the discussion of Section 3.5 applies to it. On computing g′(a), where a is the exact root,
we find it is zero. However, g′′(a) is in general non-zero so the method is of order 2 and we expect
convergence to be quadratic. For a sufficiently close initial approximation, convergence to the root will
be rapid.

A MATLAB function fnewton is supplied for Newton’s method. The function that forms the left
side of the equation we wish to solve and its derivative must be supplied by the user as functions; these
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become the first and second parameters of the function. The third parameter is an initial approximation
to the root. The convergence criterion used is that the difference between successive approximations to
the root is less than a small preset value. This value must be supplied by the user and is given as the
fourth parameter of the function fnewton

function [res, it] = fnewton(func,dfunc,x,tol)
% Finds a root of f(x) = 0 using Newton’s method.
% Example call: [res, it] = fnewton(func,dfunc,x,tol)
% The user defined function func is the function f(x),
% The user defined function dfunc is df/dx.
% x is an initial starting value, tol is required accuracy.
it = 0; x0 = x;
d = feval(func,x0)/feval(dfunc,x0);
while abs(d) > tol

x1 = x0-d; it = it+1; x0 = x1;
d = feval(func,x0)/feval(dfunc,x0);

end
res = x0;

We will now find a root of the equation

x3 − 10x2 + 29x − 20 = 0

To use Newton’s method we must define the function and its derivative thus:

>> f = @(x) x.^3-10*x.^2+29*x-20;
>> df = @(x) 3*x.^2-20*x+29;

We may call the function fnewton as follows:

>> [x,it] = fnewton(f,df,7,0.00005)

x =
5.0000

it =
6

The progress of the iterations when solving x3 − 10x2 + 29x − 20 = 0 by Newton’s method is shown
in Fig. 3.6.

Table 3.3 gives numerical results for this problem when Newton’s method is used to seek a root,
starting the iteration at −2. The second column of the table gives the current error εr by subtracting
the known exact root from the current iterate. The third column contains the value of 2εr+1/ε

2
r . This

value tends to a constant as the process proceeds. From theoretical considerations, this value should
approach the second derivative of the right side of the Newton iterative formula. This follows from
(3.8) with p = 2. The final column contains the value of the second-order derivative of g(x) calculated
as follows. From (3.9) we have g(x) = x − f (x)/f ′(x). Thus, on differentiating g(x), we have

g′(x) = 1 − [{f ′(x)}2 − f ′′(x)f (x)]/[f ′(x)]2 = f ′′(x)f (x)/[f ′(x)]2
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FIGURE 3.6

Plot of x3 − 10x2 + 29x − 20 = 0 with the iterates of Newton’s method shown by o.

Table 3.3 Newton’s method to solve x3 − 10x2 +
29x − 20 = 0 with an initial approximation of −2

Approximate

x value error εr 2εr+1/ε2
r Second derivative of g

−2.000000 3.000000 −0.320988 −0.395062
−0.444444 1.444444 −0.513956 −0.589028

0.463836 0.536164 −0.792621 −0.845260
0.886072 0.113928 −1.060275 −1.076987
0.993119 0.006881 −1.159637 −1.160775
0.999973 0.000027 −1.166639 −1.166643
1.000000 0.000000 −1.166639 −1.166667

On differentiating again,

g′′(x) = [{f ′(x)}2{f ′′′(x)f (x) + f ′′(x)f ′(x)} − 2f ′(x){f ′′(x)}2f (x)]/[f ′(x)]4

Putting x = a, where a is the exact root, since f (a) = 0, we have

g′(a) = 0 and g′′(a) = f ′′(a)/f ′(a) (3.10)

Thus, we have a value for the second derivative of g(x) when x = a. We note that as x approaches the
root, the final column of Table 3.3, which uses this formula, gives an increasingly accurate approxima-
tion to the second derivative of g(x). The table thus verifies our theoretical expectations.

We can find complex roots using Newton’s method, providing our initial approximation is complex.
For example, consider

cos(x) − x = 0. (3.11)

This equation has only one real root which is x = 0.7391, but it has an infinity of complex roots. Fig. 3.7
shows the distribution of the roots of (3.11) in the complex plane in the range −30 < Re(x) < 30.
Working with complex values presents no additional difficulty in the MATLAB environment since
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FIGURE 3.7

Plot showing the complex roots of cos(x) − x = 0.

FIGURE 3.8

Plot of the iterates for five complex initial
approximations for the solution of cos(x) − x = 0
using Newton’s method. Each iterate is shown by ◦.

MATLAB implements complex arithmetic and so we can use the function fnewton without modifi-
cation to deal with these cases.

Fig. 3.8 illustrates the fact that it is difficult to predict which root we will find from a given starting
value. This figure shows that the starting values 15 + j10, 15.2 + j10, 15.4 + j10, 15.8 + j10, and
16 + j10, which are close together, lead to a sequence of iterations which converge to very different
roots. In one case the complete trajectory is not shown because the complex part of the intermediate
iterates is well outside the range of the graph.

Newton’s method requires the first derivative of f (x) to be supplied by the user. To make the
procedure more self-contained we can use a standard approximation to the first derivative which takes
the form

f ′(xr ) = {f (xr) − f (xr−1)}/(xr − xr−1) (3.12)

Substituting this result in (3.9) gives the new procedure for calculating the improvements to x as

xr+1 = [xr−1f (xr) − xrf (xr−1)]/[f (xr) − f (xr−1)] (3.13)

This method does not require the calculation of the first derivative of f (x) but does require that we
know two initial approximations to the root, x0 and x1. Geometrically, we have simply approximated
the slope of the tangent to the curve by the slope of a secant. For this reason the method is known as the
secant method. The convergence of this method is slower than Newton’s method. Another procedure
similar to the secant method is called regula falsi. In this method two values of x which enclose the
root are chosen to start the next iteration rather than the most recent pair of x values as in the secant
method.

Newton’s method and the secant method work well on a wide range of problems. However, for
problems where the roots of an equation are close together or equal, the convergence may be slow. We
now consider a simple adjustment to Newton’s method which provides good convergence even with
multiple roots.
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3.8 SCHRODER’S METHOD
In Section 3.2 we described how coincident roots present significant problems for most algorithms. In
the case of Newton’s method its performance is no longer quadratic for finding a coincident root and
the procedure must be modified if it is to maintain this property. The iteration for Schroder’s method
for finding multiple roots has a form similar to that of Newton’s method given in (3.9) except for the
inclusion of a multiplying factor m. Thus,

xr+1 = xr − mf (xr)/f
′(xr ) where r = 0,1,2, . . . (3.14)

Here m is an integer equal to the multiplicity of the root to which we are trying to converge. Since the
user may not know the value of m, it may have to be found experimentally.

It can be verified by some simple but lengthy algebraic manipulation that for a function f (x) with
multiple roots at x = a, g′(a) = 0. Here g(x) is the right side of (3.14) and a is the exact root. This
modification is sufficient to preserve the quadratic convergence of Newton’s method

A MATLAB function for Schroder’s method, schroder, is provided as follows:

function [res, it] = schroder(func,dfunc,m,x,tol)
% Finds a multiple root of f(x) = 0 using Schroder’s method.
% Example call: [res, it] = schroder(func,dfunc,m,x,tol)
% The user defined function func is the function f(x),
% The user defined function dfunc is df/dx.
% x is an initial starting value, tol is required accuracy.
% function has a root of multiplicity m.
% x is a starting value, tol is required accuracy.
it = 0; x0 = x;
d = feval(func,x0)/feval(dfunc,x0);
while abs(d)>tol

x1 = x0-m*d; it = it+1; x0 = x1;
d = feval(func,x0)/feval(dfunc,x0);

end
res = x0;

We will now use the function schroder to solve f (x) = (e−x − x)2 = 0. In this case we must set the
multiplying factor m to 2. We write functions for f and its derivative df and call the function schroder
as follows:

>> f = @(x) (exp(-x)-x).^2;
>> df = @(x) 2*(exp(-x)-x).*(-exp(-x)-1);
>> [x, it] = schroder(f,df,2,-2,0.00005)

x =
0.5671

it =
5
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It is interesting to note that Newton’s method took 17 iterations to solve this problem in contrast to the
5 required by Schroder’s method.

When a function f (x) is known to have repeated roots, an alternative to Schroder’s approach is to
apply Newton’s method to the function f (x)/f ′(x) rather than to the function f (x) itself. It can be
easily shown by direct differentiation that if f (x) has a root of any multiplicity then f (x)/f ′(x) will
have the same root but with multiplicity 1. Thus, the algorithm has the iterative form (3.9) but modified
by replacing f (x) with f (x)/f ′(x). The advantage of this approach is that the user does not have to
know the multiplicity of the root which is to be found. The considerable disadvantage is that both the
first- and second-order derivatives must be supplied by the user.

3.9 NUMERICAL PROBLEMS
We now consider the following problems which arise in solving single-variable non-linear equations:

1. Finding good initial approximations.
2. Ill-conditioned functions.
3. Deciding on the most suitable convergence criteria.
4. Discontinuities in the equation to be solved.

These problems are now examined in detail:

1. Finding an initial approximation can be difficult for some non-linear equations and a graph can be a
considerable help in supplying such a value. The advantage of working in a MATLAB environment
is that the script for the graph of the function can easily be generated and input can be taken from it
directly. The function plotapp that is defined here finds an approximation to the root of a function
supplied by the user in the range given by the parameters rangelow and rangeup using a step given
by interval.

function approx = plotapp(func,rangelow,interval,rangeup)
% Plots a function and allows the user to approximate a
% particular root using the cursor.
% Example call: approx = plotapp(func,rangelow,interval,rangeup)
% Plots the user defined function func in the range rangelow to
% rangeup using a step given by interval. Returns approx to root.
approx = [ ];
x = rangelow:interval:rangeup;
plot(x,feval(func,x))
hold on, xlabel(’x’), ylabel(’f(x)’)
title(’ ** Place cursor close to root and click mouse ** ’)
grid on
% Use ginput to get approximation from graph using mouse
approx = ginput(1);
fprintf(’Approximate root is %8.2f\n’,approx(1)), hold off

The script e4s303.m shows how this function may be used with the MATLAB function fzero to
find a root of x − cos(x) = 0.
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% e4s303.m
g = @(x) x-cos(x);
approx = plotapp(g,-2,0.1,2);
% Use this approximation and fzero to find exact root
options = optimset(’TolFun’,0.00005);
root = fzero(g,approx(1),options);
fprintf(’Exact root is %8.5f\n’,root)

Fig. 3.9 gives the graph of x − cos(x) = 0 generated by plotapp and shows the cross-hairs cursor
generated by the ginput function close to the root. The call ginput(1) means only one point is
taken. The cursor can be positioned over the intersection of the curve with the f (x) = 0 line. This
provides a useful initial approximation, the accuracy of which depends on the scale of the graph.
In this example an initial approximation was found to be 0.74 and the more exact value was found
using fzero to be 0.73909.

2. Ill-conditioning in a non-linear equation means that small changes in the coefficients of the equation
lead to unexpectedly large errors in the solutions. An interesting example of a very ill-conditioned
polynomial is Wilkinson’s polynomial. The MATLAB function poly(v) generates the coefficients
of a polynomial, beginning with the coefficient of the highest power, with roots which are equal to
the elements of the vector v. Thus, poly(1:n) generates the coefficients of the polynomial with the
roots 1,2, ..., n which is Wilkinson’s polynomial of degree n − 1.

3. In the design of any numerical algorithm for the solution of non-linear equations the termination
criterion is particularly important. There are two major indicators of convergence: the difference
between successive iterates and the value of the function at the current iterate. Taken separately
these indicators may be misleading. For example, some non-linear functions are such that small
changes in the independent variable value may lead to large changes in the function value. In this
case it may be better to monitor both indicators.

4. The function f (x) = sin(1/x) is particularly difficult to plot, and sin(1/x) = 0 is very difficult to
solve since it has an infinite number of roots, all clustered between 1 and −1. The function has a
discontinuity at x = 0. Fig. 3.10 attempts to illustrate the behavior of this function. In fact, the graph
shown does not truly represent the function and this plotting problem is discussed in more detail in
Chapter 4. Near a discontinuity the function changes rapidly for small changes in the independent
variable and some algorithms may have problems with this.

All the preceding points emphasize that algorithms for solving non-linear equations to be not only
fast and efficient but robust as well. The next algorithm combines these properties and is relatively
undemanding on the user.

3.10 THE MATLAB FUNCTION fzero AND COMPARATIVE STUDIES
Some problems may present particular difficulties for algorithms which in general work well. For
example, algorithms which have fast ultimate convergence may initially diverge. One way to improve
the reliability of an algorithm is to ensure that at each stage the root is confined to a known interval
and the method of bisection, introduced in Section 3.3, may be used to provide an interval in which the
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FIGURE 3.9

The cursor is shown close to the position of the root.

FIGURE 3.10

Plot of graph f (x) = sin(1/x). This plot is spurious in
the range ±0.2.

root lies. Thus, a method which combines bisection with a rapidly convergent procedure may be able
to provide both rapid and reliable convergence.

The method of Brent combines inverse quadratic interpolation with bisection to provide a powerful
method that has been found to be successful on a wide range of difficult problems. The method is
easily implemented and a detailed description of the algorithm may be found in Brent (1971). Similar
algorithms of comparable efficiency have been developed by Dekker (1969).

Experience with Brent’s algorithm has shown it to be both reliable and efficient on a wide range of
problems. A variation of this method is directly available in MATLAB and is called fzero. It may be
used as follows:

x = fzero(’funcname’,x0,options);

where funcname is replaced by the name of any system function such as cos, sin, etc., or the name
of a function predefined by the user. The initial approximation is x0. The accuracy of the solution is
set by options using the optimset. For example, in the script e4s304, optimset sets the accuracy to
0.00005.

Only the first two parameters need be given and so an alternative call of this function is given by

x = fzero(’funcname’,x0);

To plot the function (ex − cos(x))3 and then determine some roots of (ex − cos(x))3 = 0 with
tolerance 0.00005, initial approximations of 1.65 and −3 and no trace of the iterations, we use fzero
in script e4s304.m:

% e4s304.m
f = @(x) (exp(x)-cos(x)).^3;
x = -4:0.02:0.5;
plot(x,f(x)), grid on
xlabel(’x’), ylabel(’f(x)’);
title(’f(x) = (exp(x)-cos(x)).^3’)
options = optimset(’TolFun’,0.00005);
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Table 3.4 Solution of equations (1) through (4) with the same starting
point x = −2 and accuracy = 0.00005

Function 1 2 3 4
fnewton Fail 0.999795831 Fail −1.352673831

fzero −0.318309886 1.000000000 −1.570796327 −1.352678708

root = fzero(f,1.65,options);
fprintf(’A root of this equation is %6.4f\n’,root)
root = fzero(f,-3,0.00005);
fprintf(’A root of this equation is %6.4f\n’,root)

The output and plot generated by this script are not given. However, the script is provided for reader
experimentation.

Before we deal with the problem of finding many roots of a polynomial equation simultaneously, we
present a comparative study of the MATLAB function fzero with the function fnewton. The following
functions are considered:

1. sin(1/x) = 0
2. (x − 1)5 = 0
3. x − tanx = 0
4. cos{(x2 + 5)/(x4 + 1)} = 0

The results of these comparative studies are given in Table 3.4. We see that fnewton is less reliable
than fzero and that fzero produces more accurate answers.

3.11 METHODS FOR FINDING ALL THE ROOTS OF A POLYNOMIAL
The problem of solving polynomial equations is a special one in that these equations contain only com-
binations of integer powers of x and no other functions. Because of their special structure, algorithms
have been developed to find all of the roots of a polynomial equation simultaneously. The function
roots is provided in MATLAB. This function sets up the companion matrix for the polynomial and
determines its eigenvalues, which can be shown to be the roots of the polynomial. For a description of
the companion matrix, see Appendix A.

In the following sections, we describe the methods of Bairstow and Laguerre but do not give a
detailed theoretical justification of them. We provide a MATLAB function for Bairstow’s method.

3.11.1 BAIRSTOW’S METHOD
Consider the polynomial

a0x
n + a1x

n−1 + a2x
n−2 + . . . + an = 0 (3.15)

Since this is a polynomial equation of degree n, it has n roots. A common approach for locating the
roots of a polynomial is to find all its quadratic factors. These will have the form

x2 + ux + v (3.16)
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where u and v are the constants we wish to determine. Once all the quadratic factors are found it is
easy to solve the quadratics to find all the roots of the equation. We now outline the major steps used
in Bairstow’s method for finding these quadratic factors.

If R(x) is the remainder after the division of polynomial (3.15) by the quadratic factor (3.16), then
there will clearly exist constants b0, b1, b2, ... such that the equality (3.17) holds

(x2 + ux + v)(b0x
n−2 + b1x

n−3 + b2x
n−4 + . . . + bn−2) + R(x)

= xn + a1x
n−1 + a2x

n−2 + . . . + an

(3.17)

where a0 is set at 1 and R(x) will have the form rx + s. To ensure that x2 +ux + v is an exact factor of
the polynomial (3.15), the remainder R(x) must be zero. For this to be true both r and s must be zero
and we must adjust u and v until this is true. Thus since both r and s depend on u and v, the problem
reduces to solving the simultaneous equations

r(u, v) = 0

s(u, v) = 0

To solve these equations we use an iterative method which assumes some initial approximations u0
and v0. Then we require improved approximations u1 and v1 where u1 = u0 +�u0 and v1 = v0 +�v0
such that

r(u1, v1) = 0

s(u1, v1) = 0

or r and s are as close to zero as possible.
Now we wish to find the changes �u0 and �v0 which will result in this improvement. Conse-

quently, we must expand the two equations

r(u0 + �u0, v0 + �v0) = 0

s(u0 + �u0, v0 + �v0) = 0

using a Taylor’s series expansion and neglecting higher powers of �u0 and �v0. This leads to two
approximating linear equations for �u0 and �v0:

r(u0, v0) + (∂r/∂u)0�u0 + (∂r/∂v)0�v0 = 0

s(u0, v0) + (∂s/∂u)0�u0 + (∂s/∂v)0�v0 = 0
(3.18)

The subscript 0 denotes that the partial derivatives are calculated at the point u0, v0. Once the correc-
tions are found, the iteration can be repeated until r and s are sufficiently close to zero. The method we
have used here is a two-variable form of Newton’s method which will be described in Section 3.12.

Clearly, this method requires the first-order partial derivatives of r and s with respect to u and v.
The form of these is not obvious; however, they may be determined using recurrence relations derived
from equating coefficients in (3.17) and then differentiating them. The details of this derivation are
not given here but a clear description of the process is given by Froberg (1969). Once the quadratic
factor is found, the same process is applied to the residual polynomial with the coefficients bi to obtain
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the remaining quadratic factors. The details of this derivation are not provided here but a MATLAB

function bairstow follows.

function [rts,it] = bairstow(a,n,tol)
% Bairstow’s method for finding the roots of a polynomial of degree n.
% Example call: [rts,it] = bairstow(a,n,tol)
% a is a row vector of REAL coefficients so that the
% polynomial is x^n+a(1)*x^(n-1)+a(2)*x^(n-2)+...+a(n).
% The accuracy to which the polynomial is satisfied is given by tol.
% The output is produced as an (n x 2) matrix rts.
% Cols 1 & 2 of rts contain the real & imag part of root respectively.
% The number of iterations taken is given by it.
it = 1;
while n>2

%Initialise for this loop
u = 1; v = 1; st = 1;
while st>tol

b(1) = a(1)-u; b(2) = a(2)-b(1)*u-v;
for k = 3:n

b(k) = a(k)-b(k-1)*u-b(k-2)*v;
end
c(1) = b(1)-u; c(2) = b(2)-c(1)*u-v;
for k = 3:n-1

c(k) = b(k)-c(k-1)*u-c(k-2)*v;
end
%calculate change in u and v
c1 = c(n-1); b1 = b(n); cb = c(n-1)*b(n-1);
c2 = c(n-2)*c(n-2); bc = b(n-1)*c(n-2);
if n>3, c1 = c1*c(n-3); b1 = b1*c(n-3); end
dn = c1-c2;
du = (b1-bc)/dn; dv = (cb-c(n-2)*b(n))/dn;
u = u+du; v = v+dv;
st = norm([du dv]); it = it+1;

end
[r1,r2,im1,im2] = solveq(u,v,n,a);
rts(n,1:2) = [r1 im1]; rts(n-1,1:2) = [r2 im2];
n = n-2;
a(1:n) = b(1:n);

end
% Solve last quadratic or linear equation
u = a(1); v = a(2);
[r1,r2,im1,im2] = solveq(u,v,n,a);
rts(n,1:2) = [r1 im1];
if n==2

rts(n-1,1:2) = [r2 im2];
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end
% --------------------------------------------------------
function [r1,r2,im1,im2] = solveq(u,v,n,a);
% Solves x^2 + ux + v = 0 (n ~= 1) or x + a(1) = 0 (n = 1).
% Example call: [r1,r2,im1,im2] = solveq(u,v,n,a)
% r1, r2 are real parts of the roots,
% im1, im2 are the imaginary parts of the roots.
% Called by function bairstow.
if n==1

r1 = -a(1); im1 = 0; r2 = 0; im2 = 0;
else

d = u*u-4*v;
if d<0

d = -d;
im1 = sqrt(d)/2; r1 = -u/2; r2 = r1; im2 = -im1;

elseif d>0
r1 = (-u+sqrt(d))/2; im1 = 0; r2 = (-u-sqrt(d))/2; im2 = 0;

else
r1 = -u/2; im1 = 0; r2 = -u/2; im2 = 0;

end
end

Note that the MATLAB function solveq is nested within the function bairstow. The function is not
stored separately and so it can only be accessed by bairstow. We may now use bairstow to solve the
specific polynomial equation

x5 − 3x4 − 10x3 + 10x2 + 44x + 48 = 0

In this case we take the coefficient vector as c where c = [-3 -10 10 44 48] and if we require accu-
racy of four decimal places we take tol as 0.00005. The script e4s305.m uses bairstow to solve the
given polynomial.

% e4s305.m
c = [-3 -10 10 44 48];
[rts, it] = bairstow(c,5,0.00005);
for i = 1:5

fprintf(’\nroot%3.0f Real part=%7.4f’,i,rts(i,1))
fprintf(’ Imag part=%7.4f’,rts(i,2))

end
fprintf(’\n’)

Note how fprintf is used to provide a clearer output from the matrix rts.

root 1 Real part= 4.0000 Imag part= 0.0000
root 2 Real part=-1.0000 Imag part=-1.0000
root 3 Real part=-1.0000 Imag part= 1.0000
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Table 3.5 Time required to obtain all roots (in seconds)

MATLAB function MATLAB function
Polynomial: roots bairstow

p1 7 33
p2 6 19
p3 6 14
p4 10 103
p5 11 37

root 4 Real part=-2.0000 Imag part= 0.0000
root 5 Real part= 3.0000 Imag part= 0.0000

As we have indicated, MATLAB provides a function roots to determine the roots of a polynomial.
It is interesting to compare this function with Bairstow’s method. Table 3.5 gives the results of this
comparison applied to specific polynomials. The problems p1 through p5 are the polynomials tested:

p1 : x5 − 3x4 − 10x3 + 10x2 + 44x + 48 = 0

p2 : x3 − 3.001x2 + 3.002x − 1.001 = 0

p3 : x4 − 6x3 + 11x2 + 2x − 28 = 0

p4 : x7 + 1 = 0

p5 : x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 = 0

The results for these problems are given in Table 3.5. Both methods determine the correct roots for all
problems, although the function roots is more efficient.

3.11.2 LAGUERRE’S METHOD
Laguerre’s method provides a rapidly convergent procedure for locating the roots of a polynomial. The
algorithm is interesting and for this reason it is described in this section. The method is applied to a
polynomial in the form

p(x) = xn + a1x
n−1 + a2x

n−2 + ... + an

Starting with an initial approximation x1, we apply the iterative formula (3.19) to the polynomial p(x)

xi+1 = xi − np(xi)/[p′(xi) ± √{h(xi)}] for i = 1,2, . . . (3.19)

where

h(xi) = (n − 1)[(n − 1){p′(xi)}2 − np(xi)p
′′(xi)]

and n is the degree of the polynomial. The sign taken in (3.19) is determined so that it is the same as
the sign of p′(xi).

It is important to give some justification for using a formula with such a complex structure. The
reader will notice that if the square root term were not present in (3.19), the iterative form would be
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similar to that of Newton’s method, (3.9), and identical to that of Schroder’s method, (3.14). Thus, we
would have a method with quadratic convergence for the roots of the polynomial. In fact, the more
complex structure of (3.19) provides third-order convergence since the error is proportional to the cube
of the previous error and consequently provides faster convergence than Newton’s method. Thus, given
an initial approximation, the method will converge rapidly to a root of the polynomial which we can
denote by r .

To obtain the other roots of the polynomial we divide the polynomial p(x) by the factor (x − r)

which provides another polynomial of degree n − 1. We can then apply iteration (3.19) to this poly-
nomial and repeat the whole procedure again. This is repeated until all roots are found to the required
accuracy. The process of dividing by (x − r) is known as deflation and can be performed in a simple
and efficient way, described as follows.

Since we have a known factor (x − r), then

a0x
n + a1x

n−1 + a2x
n−2 + . . . + an

= (x − r)(b0x
n−1 + b1x

n−2 + b2x
n−3 + . . . + bn−1)

(3.20)

On equating coefficients of the powers of x on both sides, we have

b0 = a0

bi = ai + rbi−1 for i = 1,2, . . . , n − 1
(3.21)

This process is known as synthetic division. Care must be taken here, particularly if the root is found
to low accuracy, since ill-conditioning can magnify the effect of small errors in the coefficients of the
deflated polynomial.

This completes the description of the method but a few important points should be noted. Assuming
sufficient accuracy can be maintained in calculations, the method of Laguerre will converge for any
value of the initial approximation. Convergence to complex roots and multiple roots can be achieved
but at a slower rate because the convergence rate is linear. In the case of a complex root the value of
the function h(xi) becomes negative and consequently the algorithm must be adjusted to deal with this
situation. A key feature that should be considered is that the derivatives of the polynomial can be found
efficiently by synthetic division.

To summarize the important features of the algorithm:

1. The algorithm is third order, thus providing rapid convergence to individual roots.
2. All roots of the polynomial can be found by using synthetic division.
3. Derivatives can be calculated efficiently using synthetic division.

3.12 SOLVING SYSTEMS OF NON-LINEAR EQUATIONS
The methods considered so far have been concerned with finding one or all the roots of a non-linear
algebraic equation with one independent variable. We now consider methods for solving systems of
non-linear algebraic equations in which each equation is a function of a specified number of variables.



3.12 SOLVING SYSTEMS OF NON-LINEAR EQUATIONS 179

We can write such a system in the form

fi(x1, x2, . . . , xn) = 0 for i = 1,2,3, . . . , n (3.22)

A simple method for solving this system of non-linear equations is based on Newton’s method for
the single equation. To illustrate this procedure we first consider a system of two equations in two
variables:

f1(x1, x2) = 0

f2(x1, x2) = 0
(3.23)

Given initial approximations x0
1 and x0

2 for x1 and x2, we may find new approximations x1
1 and x1

2 as
follows:

x1
1 = x0

1 + �x0
1

x1
2 = x0

2 + �x0
2

(3.24)

These approximations should be such that they drive the values of the functions closer to zero, so that

f1(x
1
1 , x1

2) ≈ 0

f2(x
1
1 , x1

2) ≈ 0

or

f1(x
0
1 + �x0

1 , x0
2 + �x0

2) ≈ 0

f2(x
0
1 + �x0

1 , x0
2 + �x0

2) ≈ 0
(3.25)

Applying a two-dimensional Taylor’s series expansion to (3.25) gives

f1(x
0
1 , x0

2) + {∂f1/∂x1}0�x0
1 + {∂f1/∂x2}0�x0

2 + . . . ≈ 0

f2(x
0
1 , x0

2) + {∂f2/∂x1}0�x0
1 + {∂f2/∂x2}0�x0

2 + . . . ≈ 0
(3.26)

If we neglect terms involving powers of �x0
1 and �x0

2 higher than one, then (3.26) represents a sys-
tem of two linear equations in two unknowns. The zero superscript means that the function is to be
calculated at the initial approximation and �x0

1 and �x0
2 are the unknowns we wish to find. Having

solved (3.26) we can obtain our new improved approximations and then repeat the process until we
have obtained the accuracy we require. A common convergence criterion is to continue iterations until

√
(�xr

1)2 + (�xr
2)2 < ε

where r denotes the iteration number and ε is a small positive quantity preset by the user.
It is a simple step to generalize this procedure for any number of variables and equations. We may

write the general system of equations as

f(x) = 0
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where f denotes the column vector of n components (f1, f2, ..., fn)
T and x is a column vector of n

components (x1, x2, ..., xn)
T. Let xr+1 denote the value of x at the (r + 1)th iteration; then

xr+1 = xr + �xr for r = 0,1,2, . . .

If xr+1 is an improved approximation to x, then

f(xr+1) ≈ 0

or

f(xr + �xr ) ≈ 0 (3.27)

Expanding (3.27) by using an n-dimensional Taylor’s series expansion gives

f(xr + �xr ) = f(xr ) + ∇f(xr )�xr + . . . (3.28)

where ∇ is a vector operator of partial derivatives with respect to each of the n components of x. If we
neglect higher-order terms in (�xr )2, this gives, by virtue of (3.27),

f(xr ) + Jr�xr ≈ 0 (3.29)

where Jr = ∇f(xr ). Jr is called the Jacobian matrix. The subscript r denotes that the matrix is evaluated
at the point xr and it can be written in component form as

Jr = [∂fi(xr )/∂xj ] for i = 1,2, . . . , n and j = 1,2, . . . , n

On solving (3.29) we have the improved approximation

xr+1 = xr − J−1
r f(xr ) for r = 1,2, ...

The matrix Jr may be singular and in this situation the inverse, J−1
r , cannot be calculated.

This is the general form of Newton’s method. However, there are two major disadvantages with this
method:

1. The method may not converge unless the initial approximation is a good one.
2. The method requires the user to provide the derivatives of each function with respect to each

variable. The user must therefore provide n2 derivatives and any computer implementation must
evaluate the n functions and the n2 derivatives at each iteration.

The MATLAB function newtonmv given here implements this method.

function [xv,it] = newtonmv(x,f,jf,n,tol)
% Newton’s method for solving a system of n nonlinear equations
% in n variables.
% Example call: [xv,it] = newtonmv(x,f,jf,n,tol)
% Requires an initial approximation column vector x. tol is
% required accuracy. User must define functions f (system equations)
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% and jf (partial derivatives). xv is the solution vector, the it
% parameter is number of iterations taken.
% WARNING. The method may fail, for example if initial estimates are poor.
it = 0; xv = x;
fr = feval(f,xv);
while norm(fr) > tol

Jr = feval(jf,xv); xv = xv-Jr\fr;
fr = feval(f,xv); it = it+1;

end

Fig. 3.11 illustrates the following system of two equations in two variables:

x2 + y2 = 4
xy = 1

(3.30)

To solve the system (3.30) we define the MATLAB function by f and its Jacobian by Jf and then call
newtonmv using initial approximations for the roots x = 3 and y = −1.5 and a tolerance of 0.00005 as
follows:

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];
>> Jf = @(v) [2*v(1) 2*v(2); v(2) v(1)];
>> [rootvals,iter] = newtonmv([3 -1.5]’,f,Jf,2,0.00005)

This results in the MATLAB output

rootvals =
1.9319
0.5176

iter =
5

The solution is x = 1.9319 and y = 0.5176. Clearly the user must supply a large amount of information
for this function. The next section attempts to deal with this problem.

3.13 BROYDEN’S METHOD FOR SOLVING NON-LINEAR EQUATIONS
The method of Newton described in Section 3.12 does not provide a practical procedure for solving
any but the smallest systems of non-linear equations. As we have seen, the method requires the user
to provide not only the function definitions but also the definitions of the n2 partial derivatives of the
functions. Thus, for a system of 10 equations in 10 unknowns, the user must provide 110 function
definitions!

To deal with this problem a number of techniques have been proposed but the group of methods that
appear most successful is the class known as the quasi-Newton methods. The quasi-Newton methods
avoid the calculation of the partial derivatives by obtaining approximations to them involving only the
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FIGURE 3.11

Plot of system (3.30). Intersections show roots.

function values. The set of derivatives of the functions evaluated at any point xr may be written in the
form of the Jacobian matrix

Jr = [∂fi(xr )/∂xj ] for i = 1,2, . . . , n and j = 1,2, . . . , n (3.31)

The quasi-Newton methods provide an updating formula which gives successive approximations
to the Jacobian for each iteration. Broyden and others have shown that under specified circumstances
these updating formulae provide satisfactory approximations to the inverse Jacobian. The structure of
the algorithm suggested by Broyden is:

1. Input an initial approximation to the solution. Set the counter r to zero.
2. Calculate or assume an initial approximation to the inverse Jacobian Br .
3. Calculate pr = −Br fr where fr = f(xr ).
4. Determine the scalar parameter tr such that ||f(xr + trpr )|| < ||fr || where the symbols || || denote

that the norm of the vector is to be taken.
5. Calculate xr+1 = xr + trpr .
6. Calculate fr+1 = f(xr+1). If ||fr+1|| < ε (where ε is a small preset positive quantity), then exit. If

not continue with step (7).
7. Use the updating formula to obtain the required approximation to the Jacobian

Br+1 = Br − (Bryr − pr )(pr )TBr/{(pr )TBryr} where yr = fr+1 − fr .
8. Set i = i + 1 and return to step (3).

The initial approximation to the inverse Jacobian B is usually taken as a scalar multiple of the unit
matrix. The success of this algorithm depends on the nature of the functions to be solved and on
the closeness of the initial approximation to the solution. In particular, step (4) may present major
problems. It may be very expensive in computer time and to avoid this tr is sometimes set as a constant,
usually one or smaller. This may reduce the stability of the algorithm but speeds it up.

It should be noted that other updating formulae have been suggested and it is fairly easy to replace
the Broyden formula by others in the preceding algorithm. In general, the problem of solving a system
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of non-linear equations is a very difficult one. There is no algorithm that is guaranteed to work for
all systems of equations. For large systems of equations the available algorithms tend to require large
amounts of computer time to obtain accurate solutions.

The MATLAB function broyden implements Broyden’s method. It should be noted that this avoids
the difficulty of implementing step (4) by taking tr = 1.

function [xv,it] = broyden(x,f,n,tol)
% Broyden’s method for solving a system of n nonlinear equations
% in n variables.
% Example call: [xv,it] = broyden(x,f,n,tol)
% Requires an initial approximation column vector x. tol is required
% accuracy. User must define function f.
% xv is the solution vector, parameter it is number of iterations
% taken. WARNING. Method may fail, for example, if initial estimates
% are poor.
fr = zeros(n,1); it = 0; xv = x;
Br = eye(n); %Set initial Br
fr = feval(f, xv);
while norm(fr)>tol

it = it+1; pr = -Br*fr; tau = 1;
xv = xv+tau*pr;
oldfr = fr; fr = feval(f,xv);
% Update approximation to Jacobian using Broyden’s formula
y = fr - oldfr; oldBr = Br;
oyp = oldBr*y-pr; pB = pr’*oldBr;
for i = 1:n

for j = 1:n
M(i,j) = oyp(i)*pB(j);

end
end
Br = oldBr-M./(pr’*oldBr*y);

end

To solve the system (3.30) using Broyden’s method we call broyden as follows:

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];
>> [x, iter] = broyden([3 -1.5]’,f,2,0.00005)

This results in

x =
0.5176
1.9319

iter =
36



184 CHAPTER 3 SOLUTION OF NON-LINEAR EQUATIONS

This is a correct root of system (3.30) but it is not the same root as that found by Newton’s method,
even though the starting values for the iteration are the same.

As a second example we consider the following system of equations which are taken from the
MATLAB User’s Guide (1989):

sinx + y2 + loge z = 7

3x + 2y − z3 = −1

x + y + z = 5

(3.32)

The function g, which implements (3.32), is given here:

>> g = @(p) [sin(p(1))+p(2)^2+log(p(3))-7; 3*p(1)+2^p(2)-p(3)^3+1;
p(1)+p(2)+p(3)-5];

The result of solving (3.32) is given next. The starting values used are x = 0, y = 2, and z = 2.

>> x = broyden([0 2 2]’,g,3,0.00005)

x =
0.5991
2.3959
2.0050

We can now verify this result by substituting this solution in g(p) thus:

>> g(x)’

ans =
1.0e-05 *
-0.2867 -0.5105 0.0068

The residue should, of course, be zero, but here the residue is very small, being of the order of 10−5.
This shows that the method is successful for two problems and does not require the evaluation of the
partial derivatives. The reader may be interested in applying the function newtonmv to this problem.
Nine first-order partial derivatives will be required.

3.14 COMPARING THE NEWTON AND BROYDEN METHODS
We end our discussion of the solution of non-linear systems of equations by comparing the perfor-
mance of the functions broyden and newtonmv, developed in Sections 3.12 and 3.13 when solving the
system (3.30). The following script calls both functions and provides the number of iterations required
for convergence.

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];
>> [x,it] = broyden([3 -1.5]’,f,2,0.00005)
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x =
0.5176
1.9319

it =
36

>> J = @(v) [2*v(1) 2*v(2);v(2) v(1)];
>> [x,it] = newtonmv([3,-1.5]’,f,J,2,0.00005)

x =
1.9319
0.5176

it =
5

Note that although a correct solution is found in each case, it is a different root.
The first-order partial derivatives are required for the Newton method and this requires a consider-

able effort on the part of the user. Solving the problem using Broyden’s method demonstrates that the
relatively simple form of the function broyden is attractive since it relieves the user of this effort.

In Sections 3.12 and 3.13 two relatively simple algorithms were provided for the solution of a very
difficult problem. They cannot always be guaranteed to work and for large problems will converge only
slowly.

3.15 SUMMARY
The user wishing to solve non-linear equations will find that this is an area which can present particular
difficulties. It is always possible to devise or meet problems which particular algorithms either cannot
solve or take a long time to solve. For example, it is just not possible for many algorithms to find the
roots of the apparently trivial problem x20 = 0 very accurately. However, the algorithms described, if
used with care, provide ways of solving a wide range of problems. MATLAB is well suited for this
study because it allows interactive experimentation and graphical insights into the behavior of methods
and functions. The reader is referred to Chapter 10, Section 10.6 for applications of the symbolic
toolbox for solving non-linear equations. The algorithms solve, fnewtsym, newtmvsym are described
and applied in that section.

3.16 PROBLEMS
3.1. Omar Khayyam (who lived in the twelfth century) solved, by geometric means, a cubic equation

with the form

x3 − cx2 + b2x + a3 = 0
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The positive roots of this equation are the x coordinates of points of intersection in the first
quadrant of the circle and parabola given in the following:

x2 + y2 − (c − a3/b2)x + 2by + b2 − ca3/b2 = 0

xy = a3/b

For a = 1, b = 2, and c = 3 use MATLAB to plot these two functions and note the x coordi-
nates of the points of intersection. Using the MATLAB function fzero, solve the cubic equation
and hence verify Omar Khayyam’s method. Hint: You may find it helpful to use the MATLAB

function ginput.
3.2. Use the MATLAB function fnewton to find a root of

x1.4 − √
x + 1/x − 100 = 0

given an initial approximation 50. Use an accuracy of 10−4.
3.3. Find the two real roots of |x3| + x − 6 = 0 using the MATLAB function fnewton. Use initial

approximations −1 and 1 and an accuracy of 10−4. Plot the function using MATLAB to verify
that the equation has only two real roots. Hint: Take care in finding the derivative of the function.

3.4. Explain why it is relatively difficult to find the root of tanx − c = 0 when c is a large. Use the
MATLAB function fnewton, with initial approximations 1.3 and 1.4 and accuracy 10−4, to find
a root of this equation when c = 5 and c = 10. Compare the number of iterations required in
both cases. Hint: A MATLAB plot will be useful.

3.5. Find a root of the polynomial x5 − 5x4 + 10x3 − 10x2 + 5x − 1 = 0 correct to four decimal
places by using the MATLAB function schroder with m = 5 and a starting value x0 = 2. Use
MATLAB function fnewton to solve the same problem. Compare the result and the number of
iterations using both methods. Use an accuracy of 5 × 10−7.

3.6. Use the simple iterative method to solve the equation x10 = ex . Express the equation in the
form x = f (x) in different ways and start the iterations with the initial approximation x = 1.
Compare the efficiency of the formulae you have devised and check your answer(s) using the
MATLAB function fnewton.

3.7. The historic Kepler’s equation has the form E − e sinE = M . Solve this equation for e =
0.96727464, the eccentricity of Halley’s comet, and M = 4.527594 × 10−3. Use the MATLAB

function fnewton, with an accuracy of 0.00005 and a starting value of 1.
3.8. Examine the performance of the function fzero for solving x11 = 0 with an initial value of −1.5

and also 1. Use an accuracy of 1 × 10−5.
3.9. The smallest positive root of the equation

1 − x + x2/(2!)2 − x3/(3!)2 + x4/(4!)2 − . . . = 0

is 1.4458. By considering in turn only the first four, five, and six terms in the series, show that
a root of the truncated series approaches this result. Use the MATLAB function fzero to derive
these results, with an initial value of 1 and an accuracy of 10−4.
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3.10. Reduce the following system of equations to one equation in terms of x and solve the resulting
equation using the MATLAB function fnewton.

ex/10 − y = 0

2 loge y − cosx = 2

Use the MATLAB function newtonmv to solve these equations directly and compare your results.
Use an initial approximation x = 1 for fnewton and approximations x = 1, y = 1 for newtonmv
and accuracy 10−4 in both cases.

3.11. Solve the pair of equations that follow using the MATLAB function broyden, with the starting
point x = 10, y = −10 and accuracy 10−4.

2x = sin{(x + y)/2}
2y = cos{(x − y)/2}

3.12. Solve the two equations that follow using the MATLAB functions newtonmv and broyden with
the starting point x = 1 and y = 2 and accuracy 10−4.

x3 − 3xy2 = 1/2

3x2y − y3 = √
3/2

3.13. The polynomial equation

x4 − (13 + ε)x3 + (57 + 8ε)x2 − (95 + 17ε)x + 50 + 10ε = 0

has roots 1, 2, 5, 5 + ε. Use the functions bairstow and roots to find all the roots of this
polynomial for ε = 0.1,0.01, and 0.001. What happens as ε becomes smaller? Use an accuracy
of 10−5.

3.14. Employ the MATLAB function bairstow to find all the roots of the following polynomial using
an accuracy requirement of 10−4.

x5 − x4 − x3 + x2 − 2x + 2 = 0

3.15. Use the MATLAB function roots to find all the roots of the equation

t3 − 0.5 − √
3/2ı = 0 where ı = √−1

Compare with the exact solution

cos{(π/3 + 2πk)/3} + ı sin{(π/3 + 2πk)/3} for k = 0,1,2.

Use an accuracy of 10−4.
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3.16. An outline algorithm for the Illinois method for finding a root of f (x) = 0 (Dowell and Jarrett,
1971) is as follows:

For k = 0,1,2, . . .

xk+1 = xk − fk/f [xk−1, xk]
if fkfk+1 > 0 set xk = xk−1 and fk = gfk−1

where fk = f (xk), f [xk−1, xk] = (fk − fk−1)/(xk − xk−1)

and g = 0.5.

Write a MATLAB function to implement this method. Note that the regula falsi method is similar
but differs in that g is taken as one.

3.17. The following iterative formulae can be used to solve the equation x2 − a = 0:

xk+1 = (xk+1 + a/xk)/2, k = 0,1,2, . . .

and

xk+1 = (xk+1 + a/xk)/2 − (xk − a/xk)
2/(8xk), k = 0,1,2, . . .

These iterative formulae are second- and third-order methods, respectively, for solving this equa-
tion. Write a MATLAB script to implement them and compare the number of iterations required
to obtain the square root of 100.112 to five decimal places. For the purpose of illustration, use
an initial approximation of 1000.

3.18. Show how MATLAB can be used to study chaotic behavior by considering the iteration

xk+1 = g(xk) for k = 0,1,2, . . .

where

g(x) = cx(1 − x)

for different values of the constant c. This simple iteration arises from an attempt to solve a sim-
ple quadratic equation. However, its behavior is complex and for some values of c is chaotic.
Write a MATLAB script to plot the value of the iterates against the iterate number for this func-
tion and study the behavior of the iterations for c = 2.8, 3.25, 3.5, and 3.8. Use an initial value
of x0 = 0.7.

3.19. For the functions solved in Problems 3.2, 3.3 and 3.7, use the MATLAB function plotapp, given
in Section 3.9, to find approximate solutions for these functions.

3.20. It can be shown that the cubic polynomial equation

x3 − px − q = 0

will have real roots if the inequality p3/q2 > 27/4 is satisfied. Select five pairs of values for p

and q for which this inequality is satisfied and hence, using the MATLAB function roots, verify
in each case that the roots of the equation are real.



3.16 PROBLEMS 189

3.21. In the 16th century the mathematician Ioannes Colla suggested the following problem: Divide
10 into three parts such that they shall be in continued proportion to each other and the product
of the first two shall be 6. Taking x, y, and z as three parts, this problem can be stated as:

x + y + z = 10, x/y = y/z, xy = 6

Now by simple manipulation these equations can be expressed in terms of the specific variable
y as:

y4 + 6y2 − 60y + 36 = 0

Clearly if we can solve this equation for y then we can easily find the other variables x and z

from the original equations. Use the MATLAB function roots to find values for y and hence
solve Colla’s problem.

3.22. The natural frequencies of a simply supported beam are given by the roots of the equation

c2
1 − x4c2

3 = 0

where

c1 = (sinh(x) + sin(x))/(2x)

and

c3 = (sinh(x) − sin(x))/(2x3)

Substituting for c1 and c3 gives

((sinh(x) + sin(x))/(2x))2 − x4((sinh(x) − sin(x))/(2x3))2 = 0

When searching for the roots of this equation no difficulty is found in determining a root for trial
values of x, providing x is small (say x < 10). For values of x > 25 the process becomes erratic.
The roots of this equation are actually x = kπ where k is a positive integer. Use the MATLAB

function fzero with initial approximations x = 5 and x = 30 to obtain a solution close to these
initial approximations for this equation. For the purpose of this exercise, do not simplify this
equation.
Why are the results so poor? If you simplify the preceding equation, which equation do you
obtain and what is its solution?

3.23. Use the MATLAB function roots to solve the cubic equation:

x3 + 3px − 2q = 0

with p = 3 and q = 4. One exact solution of this equation is give by Cardano’s formula:

x = 3

√
q + 2

√
q2 + p3 + 3

√
q − 2

√
q2 + p3 = r1 + r2

The complex roots are obtained using w1r1 +w2r2 and w2r1 +w1r2 where w1 = (−1+j
√

3)/2
and w2 = (−1 − j

√
3)/2.
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Check your result using the MATLAB function roots. Hint. To find the real root using the
formula you should use the MATLAB function nthroot.

3.24. If a, b, and c are real, and a < b < c then the equation:

1 + ax

x − a
+ 1 + bx

x − b
+ 1 + cx

x − c
+ d = 0

has three real roots. Taking a = 1, b = 2, c = 3 and rearranging this equation as a cubic. If
you have access to the Symbolic Toolbox you may wish to check your cubic equation using the
symbolic function collect. Then solve this equation using the MATLAB function roots and
verify the statement regarding the roots of this equation.

3.25. Determine the roots of the equation

A sin(3θ) + B cos2(θ) + C sin(θ) + 1 = 0

where A = 0.157, B = −0.940, and C = −0.900. Hint: Expand sin(3θ) and cos2(θ) in terms
of powers of sin(θ) and solve the resultant polynomial using the MATLAB function roots to
obtain values for sin(θ), and hence θ .



4
CHAPTER

DIFFERENTIATION AND
INTEGRATION

Abstract

Differentiation and integration are the fundamental operations of differential calculus and occur in al-
most every field of mathematics, science, and engineering. Determining the derivative of a function
analytically may be tedious but is relatively straightforward. The inverse of this process, that of ana-
lytically determining the integral of a function, can often be difficult or impossible. These difficulties
have encouraged the development of many numerical procedures for determining approximately the
value of definite integrals. In this chapter we introduce a wide range of algorithm for both numerical
differentiation and integration.

4.1 INTRODUCTION
In the next section of this chapter, we show how the derivative of a function may be estimated for a
particular value of the independent variable. The numerical approximations for derivatives require only
function values. These approximations can be used to great advantage when derivatives are required in a
program. Their application saves the program user the task of determining the analytical expressions for
these derivatives. In Section 4.3 and beyond, we introduce the reader to a range of numerical integration
methods, including methods suitable for infinite ranges of integration. Generally, numerical integration
works well, but there are pathological integrals that will defeat the best numerical algorithms.

4.2 NUMERICAL DIFFERENTIATION
In this section, we present a range of approximations for first- and higher-order derivatives. Before we
derive these approximations in detail, we give a simple example which illustrates the dangers of the
careless or naive use of such derivative approximations. The simplest approximation for the first-order
derivative of a given function f (x) may be developed from the formal definition of the derivative:

df

dx
= lim

h→0

(
f (x + h) − f (x)

h

)
(4.1)

One interpretation of (4.1) is that the derivative of a function f (x) is the slope of the tangent to the
function at the point x. For small h we obtain the approximation to the derivative:

df

dx
≈

(
f (x + h) − f (x)

h

)
(4.2)
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FIGURE 4.1

A log–log plot showing the error in a simple derivative approximation.

The error is of O(h) and would appear to imply that the smaller the value of h, the better the value of
our approximation given by (4.2). The following MATLAB script plots Fig. 4.1 which shows the error
for various values of h.

% e4s401.m

g = @(x) x.^9;

x = 1; h(1) = 0.5;

hvals = [ ]; dfbydx = [ ];

for i = 1:17

h = h/10;

b = g(x); a = g(x+h);

hvals = [hvals h];

dfbydx(i) = (a-b)/h;

end;

exact = 9;

axes(’position’,[0.30 0.30 0.50 0.50])

loglog(hvals,abs(dfbydx-exact),’*’)

axis([1e-18 1 1e-8 1e4])

xlabel(’h value’), ylabel(’Error in approximation’)

Fig. 4.1 shows that for large values of h the error is large but falls rapidly as h is decreased. However,
when h becomes less than about 10−9, rounding errors dominate and the approximation becomes much
worse. Clearly care must be taken in the choice of h. With this warning in mind we develop methods
of differing accuracies for any order derivative.

We have seen how a simple approximate formula for the first derivative can be easily obtained from
the formal definition of the derivative. However, it is difficult to approximate higher derivatives and
deduce more accurate formulae in this way; instead we will use the Taylor series expansion of the
function y = f (x). To determine a more refined approximation for the derivative of this function at xi
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we expand f (xi + h) thus:

f (xi + h) = f (xi) + hf ′(xi) + (h2/2!)f ′′(xi)

+(h3/3!)f ′′′(xi) + (h4/4!)f (iv)(xi) + . . . (4.3)

We evaluate f (x) at points a distance h apart and write xi + h as xi+1, etc. We will also write f (xi) as
fi and f (xi+1) as fi+1. Thus,

fi+1 = fi + hf ′(xi) + (h2/2!)f ′′(xi) + (h3/3!)f ′′′(xi)

+(h4/4!)f (iv)(xi) + . . . (4.4)

Similarly

f (xi − h) = fi−1 = fi − hf ′(xi) + (h2/2!)f ′′(xi) − (h3/3!)f ′′′(xi)

+(h4/4!)f (iv)(xi) − . . . (4.5)

We can find an approximation to the first derivative as follows. Subtracting (4.5) from (4.4) gives

fi+1 − fi−1 = 2hf ′ (xi) + 2
(
h3/3!

)
f ′′′ (xi) + . . .

Thus, neglecting terms in h3 and higher, since we may assume h is small, we have

f ′ (xi) = (fi+1 − fi−1) /2h with errors of O
(
h2

)
(4.6)

This is referred to as the central difference approximation and differs from (4.2) which is a forward
difference approximation. Eq. (4.6) is more accurate than (4.2) but in the limit as h approaches zero,
the two are identical.

To determine an approximation for the second derivative we add (4.4) and (4.5) to obtain

fi+1 + fi−1 = 2fi + 2
(
h2/2!

)
f ′′ (xi) + 2

(
h4/4!

)
f (iv) (xi) + . . .

Thus, neglecting terms in h4 and higher, we have

f ′′ (xi) = (fi+1 − 2fi + fi−1) /h2 with errors of O
(
h2

)
(4.7)

By taking more terms in the Taylor series, together with the Taylor series for f (x + 2h) and
f (x − 2h), etc., and performing similar manipulations, we can obtain higher derivatives and more
accurate approximations if required. Table 4.1 gives examples of these formulae.

The following MATLAB function diffgen computes the first, second, third, and fourth derivative
of a given function with errors of O(h4) for a specified value of x using data from the table.

function q = diffgen(func,n,x,h)
% Numerical differentiation.
% Example call: q = diffgen(func,n,x,h)
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Table 4.1 Derivative approximations

Multipliers for fi−3...fi+3
fi−3 fi−2 fi−1 fi fi+1 fi+2 fi+3 order of error

2hf ′(xi) 0 0 −1 0 1 0 0 h2

h2f ′′(xi) 0 0 1 −2 1 0 0 h2

2h3f ′′′(xi) 0 −1 2 0 −2 1 0 h2

h4f (iv)(xi ) 0 1 −4 6 −4 1 0 h2

12hf ′(xi) 0 1 −8 0 8 −1 0 h4

12h2f ′′(xi) 0 −1 16 −30 16 −1 0 h4

8h3f ′′′(xi) 1 −8 13 0 −13 8 −1 h4

6h4f (iv)(xi ) −1 12 −39 56 −39 12 −1 h4

% Provides nth order derivatives, where n = 1 or 2 or 3 or 4
% of the user defined function func at the value x, using a step h.
if (n==1)|(n==2)|(n==3)|(n==4)

c = zeros(4,7);
c(1,:) = [ 0 1 -8 0 8 -1 0];
c(2,:) = [ 0 -1 16 -30 16 -1 0];
c(3,:) = [1.5 -12 19.5 0 -19.5 12 -1.5];
c(4,:) = [ -2 24 -78 112 -78 24 -2];
y = feval(func,x+[-3:3]*h);
q = c(n,:)*y.’; q = q/(12*h^n);

else
disp(’n must be 1, 2, 3 or 4’), return

end

For example,

result = diffgen(’cos’,2,1.2,0.01)

determines the second derivative of cos(x) for x = 1.2 with h = 0.01 and gives -0.3624 for the result.
The following script calls the function diffgen four times to determine the first four derivatives of
y = x7 when x = 1:

% e4s402.m
g = @(x) x.^7;
h = 0.5;
disp(’ h 1st deriv 2nd deriv 3rd deriv 4th deriv’);
while h>=1e-5

t1 = h;
t2 = diffgen(g, 1, 1, h);
t3 = diffgen(g, 2, 1, h);
t4 = diffgen(g, 3, 1, h);
t5 = diffgen(g, 4, 1, h);
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fprintf(’%10.5f %10.5f %10.5f %11.5f %12.5f\n’,t1,t2,t3,t4,t5);
h = h/10;

end

The output from the script e4s402 is

h 1st deriv 2nd deriv 3rd deriv 4th deriv
0.50000 1.43750 38.50000 191.62500 840.00000
0.05000 6.99947 41.99965 209.99816 840.00000
0.00500 7.00000 42.00000 210.00000 840.00001
0.00050 7.00000 42.00000 210.00000 839.95625
0.00005 7.00000 42.00000 209.98669 -189.47806

Note that as h is decreased the estimates for the first and second derivatives steadily improve, but
when h = 5 × 10−4 the estimate for the fourth derivative begins to deteriorate. When h = 5 × 10−5 the
estimate for the third derivative also begins to deteriorate and the fourth derivative is very inaccurate. In
general we cannot predict when this deterioration will begin. It should be noted that different computer
platforms may give different results for this value.

The function diffgen numerically differentiates the mathematical function provided. This func-
tion is then sampled. The method diffgen could be configured to take a vector of data instead of a
mathamatical function. Thus diffgen could be modified as follows:

function q = diffgend(x,n,k,h)

where x is a vector of equispaced data of increment h, n is the order of the required derivative and
k is the index of x, so that the derivatives are determined for the point x(k).

4.3 NUMERICAL INTEGRATION
We begin by examining the definite integral

I =
∫ b

a

f (x) dx (4.8)

The evaluation of such integrals is often called quadrature and we will develop methods for both finite
and infinite values of a and b.

The definite integral (4.8) is a summation process but it may also be interpreted as the area under
the curve y = f (x) from a to b. Any areas above the x-axis are counted positive; any areas below the
x-axis are counted as negative. Integration is a smoothing process and errors in the approximation tend
to cancel each other. Many numerical methods for integration are based on using this interpretation to
derive approximations to the integral. Typically the interval [a, b] is divided into a number of smaller
subintervals, and by making simple approximations to the curve y = f (x) in the subinterval, the area
of the subinterval may be obtained. The areas of all the subintervals are then summed to give an
approximation to the integral in the interval [a, b]. Variations of this technique are developed by taking
groups of subintervals and fitting different degree polynomials to approximate y = f (x) in each of
these groups. The simplest of these methods is the trapezoidal rule.
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The trapezoidal rule is based on the idea of approximating the function y = f (x) in each subinterval
by a straight line so that the shape of the area in the subinterval is trapezoidal. Clearly, as the number
of subintervals used increases, the straight lines will approximate the function more closely. Dividing
the interval from a to b into n subintervals of width h (where h = (b − a)/n) we can calculate the area
of each subinterval since the area of a trapezium is its base times the mean of its heights. These heights
are fi and fi+1 where fi = f (xi). Thus, the area of the trapezium is

h(fi + fi+1) /2 for i = 0,1,2, ..., n − 1

Summing all the areas of the trapezia gives the composite trapezoidal rule for approximating (4.8) thus:

I ≈ h {(f0 + fn) /2 + f1 + f2 + ... + fn−1} (4.9)

The truncation error, En, which is the error due to the implicit approximation in the trapezoidal rule, is

En ≤ (b − a)h2M/12 (4.10)

where M is the upper bound for |f ′′(t)| and t must be in the range a to b. The MATLAB function trapz
implements this procedure and we use it in Section 4.4 to compare the performance of the trapezoidal
rule with the more accurate Simpson’s rule.

The level of accuracy obtained from a numerical integration procedure is dependent on three fac-
tors. The first two are the nature of the approximating function and the number of intervals used. These
are controlled by the user and give rise to the truncation error, that is, the error inherent in the ap-
proximation. The third factor influencing accuracy is the rounding error, the error caused by the fact
that practical computation has limited precision. For a particular approximating function the truncation
error will decrease as the number of subintervals increases. Integration is a smoothing process and
rounding errors do not present a major problem. However, when many intervals are used the time to
solve the problem becomes more significant because of the increased amount of computation. This
problem may be reduced by writing the script efficiently.

4.4 SIMPSON’S RULE
Simpson’s rule is based on using a quadratic polynomial approximation to the function f (x) over a pair
of subintervals; it is illustrated in Fig. 4.2. If we integrate the quadratic polynomial passing through the
points (x0, f0); (x1, f1); (x2, f2), where f1 = f (x1), etc., the following formula is obtained:∫ x2

x0

f (x) dx = h

3
(f0 + 4f1 + f2) (4.11)

This is Simpson’s rule for one pair of intervals. Applying the rule to all pairs of intervals in the range a

to b and adding the results produces the following expression, known as the composite Simpson’s rule:
∫ b

a

f (x) dx = h

3
{f0 + 4 (f1 + f3 + f5 + . . . + f2n−1)

+ 2 (f2 + f4 + . . . + f2n−2) + f2n} (4.12)
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FIGURE 4.2

Simpson’s rule, using a quadratic approximation over two intervals.

Here n indicates the number of pairs of intervals and h = (b − a)/(2n). The composite rule may be
also be written as a vector product thus:

∫ b

a

f (x) dx = h

3

(
cTf

)
(4.13)

where c = [1 4 2 4 2 ... 2 4 1]T and f = [f1 f2 f3 ... f2n]T.
The error arising from the approximation, called the truncation error, is approximated by

En = (b − a)h4f (iv)(t)/180

where t lies between a and b. An upper bound for the error is given by

En ≤ (b − a)h4M/180 (4.14)

where M is an upper bound for |f (iv)(t)|. The upper bound for the error in the simpler trapezoidal rule,
(4.10), is proportional to h2 rather than h4. This makes Simpson’s rule superior to the trapezoidal rule
in terms of accuracy at the expense of more function evaluations.

To illustrate different ways of implementing Simpson’s rule we provide two alternatives, simp1
and simp2. The function simp1 creates a vector of coefficients v and a vector of function values y
and multiplies the two vectors together. Function simp2 provides a more conventional implementation
of Simpson’s rule. In each case the user must provide the definition of the function to be integrated,
the lower and upper limits of integration and the number of subintervals to be used. The number of
subintervals must be an even number since the rule fits a function to a pair of subintervals.

function q = simp1(func,a,b,m)
% Implements Simpson’s rule using vectors.
% Example call: q = simp1(func,a,b,m)
% Integrates user defined function func from a to b, using m divisions
if (m/2)~=floor(m/2)
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disp(’m must be even’); return

end

h = (b-a)/m; x = a:h:b;

y = feval(func,x);

v = 2*ones(m+1,1); v2 = 2*ones(m/2,1);

v(2:2:m) = v(2:2:m)+v2;

v(1) = 1; v(m+1) = 1;

q = (h/3)*y*v;

The second non-vectorized form of this function is

function q = simp2(func,a,b,m)

% Implements Simpson’s rule using for loop.

% Example call: q = simp2(func,a,b,m)

% Integrates user defined function

% func from a to b, using m divisions

if (m/2) ~= floor(m/2)

disp(’m must be even’); return

end

h = (b-a)/m;

s = 0; yl = feval(func,a);

for j = 2:2:m

x = a+(j-1)*h; ym = feval(func,x);

x = a+j*h; yh = feval(func,x);

s = s+yl+4*ym+yh; yl = yh;

end

q = s*h/3;

The script e4s403 calls either simp1 or simp2. These functions can be used to demonstrate the effect
on accuracy of the number of pairs of intervals used. The script e4s403 evaluates the integral of x7 in
the range 0 to 1.

% e4s403.m

n = 4; i = 1;

disp(’ n integral value’)

while n < 1025

simpval = simp1(@(x) x.^7,0,1,n); % or simpval = simp2(etc.);

fprintf(’%5.0f %15.12f\n’,n,simpval)

n = 2*n; i = i+1;

end

The output from script e4s403 using simp1 is shown thus:
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n integral value
4 0.129150390625
8 0.125278472900

16 0.125017702579
32 0.125001111068
64 0.125000069514
128 0.125000004346
256 0.125000000272
512 0.125000000017

1024 0.125000000001

On running this script, but using simp2, we obtain the same values for the integral. However, we would
expect that the vectorized version, simp1, would be faster than simp2.

Eq. (4.14) shows that the truncation error will decrease rapidly for values of h smaller than 1. The
preceding results illustrate this. The rounding error in Simpson’s rule is due to evaluating the function
f (x) and the subsequent multiplications and additions.

We now evaluate the same integral using the MATLAB function trapz. To call this function the
user must provide a vector of function values f. The function trapz(f) estimates the integral of the
function assuming unit spacing between the data points. Thus, to determine the integral we multiply
trapz(f) by the increment h.

% e4s404.m
n = 4; i = 1; f = @(x) x.^7;
disp(’ n integral value’)
while n<1025

h = 1/n; x = 0:h:1;
trapval = h*trapz(f(x));
fprintf(’%5.0f %15.12f\n’,n,trapval)
n = 2*n; i = i+1;

end

Running script e4s404 gives

n integral value
4 0.160339355469
8 0.134043693542

16 0.127274200320
32 0.125569383381
64 0.125142397981
128 0.125035602755
256 0.125008900892
512 0.125002225236

1024 0.125000556310

These results illustrate the fact that the trapezoidal rule is less accurate than the Simpson rule.
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As with numerical differentiation, we have chosen to design the MATLAB functions simp1 and
simp2 to integrate a mathematical function. Sometimes, instead of a function, we have a set data rep-
resenting the function and simp1 could be modified to accept equispaced data rather than a function as
follows:

function q = simpd(y,x0,xm)

where y is a vector of an even number of equispaced data, x0 and xm are the values of x corresponding
to y(1) and y(m).

4.5 NEWTON–COTES FORMULAE
Simpson’s rule is an example of a Newton–Cotes formula for integration. Other examples of these
formulae can be obtained by fitting higher-degree polynomials through the appropriate number of
points. In general we fit a polynomial of degree n through n + 1 points. The resulting polynomial
can then be integrated to provide an integration formula. Here are some examples of Newton–Cotes
formulae together with estimates of their truncation errors. It is important for the reader to note that in
this section the truncation error approximations provided are for the range of integration of the specific
rule only. This is in contrast to the truncation error given for Simpson’s rule which is for the composite
rule applied to the whole integral range.

For n = 3 we have

∫ x3

x0

f (x)dx = 3h

8
(f0 + 3f1 + 3f2 + f3)

+ truncation error
3h5

80
f iv(t) (4.15)

where t lies in the interval x0 to x3.
For n = 4 we have

∫ x4

x0

f (x)dx = 2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4)

+ truncation error
8h7

945
f (vi)(t) (4.16)

where t lies in the interval x0 to x4. Composite rules for a specific number of intervals can be generated
using either (4.15) or (4.16).

The truncation errors indicate that some improvement in accuracy may be obtained by using these
rules rather than Simpson’s rule. However, the rules are more complex; consequently, greater compu-
tational effort is involved and rounding errors may become a more significant problem.



4.6 ROMBERG INTEGRATION 201

4.6 ROMBERG INTEGRATION
A major problem that arises with the Simpson’s or Newton–Cotes rules is that the number of intervals
required to provide the required accuracy is initially unknown. Clearly one approach to this problem
is to double successively the number of intervals used and compare the results of applying a particular
rule, as illustrated by the examples in Section 4.4. Romberg’s method provides an organized approach
to this problem and utilizes the results obtained by applying Simpson’s rule with different interval sizes
to reduce the truncation error.

Romberg integration may be formulated as follows. Let I be the exact value of the integral and Ti

the approximate value of the integral obtained using Simpson’s rule with i intervals. Consequently, we
may write an approximation for the integral I which includes contributions from the truncation error
as follows (note that the error terms are expressed in powers of h4):

I = Ti + c1h
4 + c2h

8 + c3h
12 + ... (4.17)

If we double the number of intervals, h is halved, giving

I = T2i + c1 (h/2)4 + c2 (h/2)8 + c3 (h/2)12 + . . . (4.18)

We can eliminate the terms in h4 by subtracting (4.17) from 16 times (4.18), giving

I = (16T2i − Ti) /15 + k2h
8 + k3h

12 + . . . (4.19)

Notice that the dominant or most significant term in the truncation error is now of order h8. In general
this will provide a significantly improved approximation to I . For the remainder of this discussion
it is advantageous to use a double subscript notation. If we generate an initial set of approximations
by successively halving the interval we may represent them by T0,k where k = 0,1,2,3,4, .... These
results may be combined in a similar manner to that described in (4.19) by using the general formula

Tr,k = (
16rTr−1,k+1 − Tr−1,k

)
/
(
16r − 1

)
for k = 0, 1, 2, 3 . . . and r = 1, 2, 3, . . . (4.20)

Here r represents the current set of approximations we are generating. The calculations may be tabu-
lated as follows:

T0,0 T0,1 T0,2 T0,3 T0,4

T1,0 T1,1 T1,2 T1,3

T2,0 T2,1 T2,2

T3,0 T3,1

T4,0

In this case, the interval has been halved four times to generate the first five values in the table de-
noted by T0,k . The formula (4.20) for Tr,k is used to calculate the remaining values in the table and at
each stage the order of the truncation error is increased by four. A common alternative is to write the
preceding table with the rows and columns interchanged.
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At each stage the interval size is given by

(b − a) /2k for k = 0, 1, 2, . . . (4.21)

Romberg integration is implemented in the following MATLAB function, romb:

function [W T] = romb(func,a,b,d)
% Implements Romberg integration.
% Example call: W = romb(func,a,b,d)
% Integrates user defined function func from a to b, using d stages.
T = zeros(d+1,d+1);
for k = 1:d+1

n = 2^k; T(1,k) = simp1(func,a,b,n);
end
for p = 1:d

q = 16^p;
for k = 0:d-p

T(p+1,k+1) = (q*T(p,k+2)-T(p,k+1))/(q-1);
end

end
W = T(d+1,1);

We now apply function romb to the evaluation of x0.1 in the range 0 to 1. The call of the function romb
with five stages is

>> [integral table] = romb(@(x) x.^0.1,0,1,5)

Calling this function gives the following output. Note that the best estimate is the non-zero value in
the last row of the table.

integral =
0.9066

table =
0.7887 0.8529 0.8829 0.8969 0.9034 0.9064
0.8572 0.8849 0.8978 0.9038 0.9066 0
0.8850 0.8978 0.9038 0.9066 0 0
0.8978 0.9038 0.9066 0 0 0
0.9038 0.9066 0 0 0 0
0.9066 0 0 0 0 0

This integral is a surprisingly difficult one and obtaining an accurate result presents a significant
problem. The exact solution to four decimal places is 0.9090 so the application of the Romberg method
gives only two places of accuracy. However, taking d = 10 does give the answer correct to four places
thus:
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>> integral = romb(@(x) x.^0.1,0,1,10)

integral =
0.9090

Generally the Romberg method is very efficient and accurate.
An interesting exercise for the reader is to convert function romb to work with the MATLAB function

trapz instead of simp1.

4.7 GAUSSIAN INTEGRATION
The common feature of the methods considered so far is that the integrand is evaluated at equal intervals
within the range of integration. In contrast, Gaussian integration requires the evaluation of the integrand
at specified, but unequal, intervals. For this reason Gaussian integration cannot be applied to data values
that are sampled at equal intervals of the independent variable. The general form of the rule is

∫ 1

−1
f (x)dx =

n∑
i=1

Aif (xi) (4.22)

The parameters Ai and xi are chosen so that, for a given n, the rule is exact for polynomials up to and
including degree 2n − 1. It should be noticed that the range of integration is required to be from −1
to 1. This does not restrict the integrals to which Gaussian integration can be applied since if f (x) is
to be integrated in the range a to b, then it can be replaced by the function g(t) integrated from −1 to 1
where

t = (2x − a − b) / (b − a)

Note that in the preceding formula, when x = a, t = −1 and when x = b, t = 1.
We now determine the four parameters Ai and xi for n = 2 in (4.22). Thus (4.22) now becomes

∫ 1

−1
f (x) dx = A1f (x1) + A2f (x2) (4.23)

This integration rule will be exact for polynomials up to and including degree 3 by ensuring that the
rule is exact for the polynomials 1, x, x2, and x3 in turn. Thus four equations are obtained, as follows:

f (x) = 1 gives
∫ 1
−1 1dx = 2 = A1 + A2,

f (x) = x gives
∫ 1
−1 x dx = 0 = A1x1 + A2x2,

f (x) = x2 gives
∫ 1
−1 x2 dx = 2/3 = A1x

2
1 + A2x

2
2 ,

f (x) = x3 gives
∫ 1
−1 x3 dx = 0 = A1x

3
1 + A2x

3
2

(4.24)

Solving these equations gives

x1 = −1/
√

3, x2 = 1/
√

3, A1 = 1, A2 = 1.
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Thus, ∫ 1

−1
f (x) dx = f

(
− 1√

3

)
+ f

(
1√
3

)
(4.25)

Notice that this rule, like Simpson’s rule, is exact for cubic equations but requires fewer function
evaluations.

A general procedure for obtaining the values of Ai and xi is based on the fact that in the range of
integration it can be shown that x1, x2, ..., xn are the roots of the Legendre polynomial of degree n. The
values of Ai can then be obtained from an expression involving the Legendre polynomial of degree n,
evaluated at xi . Tables have been produced for the values of xi and Ai for various values of n; see
Abramowitz and Stegun (1965) and Olver et al. (2010). Abramowitz and Stegun provide an excellent
reference not only for these functions but for a very extensive range of mathematical functions. How-
ever, this classic work is now becoming outdated and a newer handbook of mathematical functions
for the twenty-first century by Olver et al. has been published with many improvements, for example,
clearer, colored graphics. However, this new text contains far fewer tables of functions, since most can
now be rapidly computed on a personal computer.

Function fgauss performs Gaussian integration. It includes a substitution so that integration in the
range a to b is converted to an integration in the range −1 to 1.

function q = fgauss(func,a,b,n)
% Implements Gaussian integration.
% Example call: q = fgauss(func,a,b,n)
% Integrates user defined function func from a to b, using n divisions
% n must be 2 or 4 or 8 or 16.
if (n==2)|(n==4)|(n==8)|(n==16)

c = zeros(8,4); t = zeros(8,4);
c(1,1) = 1;
c(1:2,2) = [.6521451548; .3478548451];
c(1:4,3) = [.3626837833; .3137066458; .2223810344; .1012285362];
c(:,4 )= [.1894506104; .1826034150; .1691565193; .1495959888; ...

.1246289712; .0951585116; .0622535239; .0271524594];
t(1,1) = .5773502691;
t(1:2,2) = [.3399810435; .8611363115];
t(1:4,3) = [.1834346424; .5255324099; .7966664774; .9602898564];
t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444; ...

.7554044084; .8656312023; .9445750230; .9894009350];
j = 1;
while j<=4

if 2^j==n; break;
else

j = j+1;
end

end
s = 0;
for k = 1:n/2
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x1 = (t(k,j)*(b-a)+a+b)/2;

x2 = (-t(k,j)*(b-a)+a+b)/2;

y = feval(func,x1)+feval(func,x2);

s = s+c(k,j)*y;

end

q = (b-a)*s/2;

else

disp(’n must be equal to 2, 4, 8 or 16’); return

end

The script e4s405 calls the function fgauss to integrate x0.1 from 0 to 1.

% e4s405.m

disp(’ n integral value’);

for j = 1:4

n = 2^j;

int = fgauss(@(x) x.^0.1,0,1,n);

fprintf(’%3.0f %14.9f\n’,n,int)

end

The output from script e4s405.m is

n integral value

2 0.916290737

4 0.911012914

8 0.909561226

16 0.909199952

Gaussian integration with n = 16 gives a better result than that obtained by Romberg’s method with
five divisions of the interval.

4.8 INFINITE RANGES OF INTEGRATION
Other formulae of the Gauss type are available to allow us to deal with integrals having a special form
and infinite ranges of integration. These are the Gauss–Laguerre and Gauss–Hermite formula and take
the following form.

4.8.1 GAUSS–LAGUERRE FORMULA
This method is developed from (4.26) as follows:

∫ ∞

0
e−xg(x) dx =

n∑
i=1

Aig(xi) (4.26)
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The parameters Ai and xi are chosen so that, for a given n, the rule is exact for polynomials up to and
including degree 2n − 1. Considering the case when n = 2, we have

g(x) = 1 gives
∫ ∞

0 e−x dx = 1 = A1 + A2

g(x) = x gives
∫ ∞

0 xe−x dx = 1 = A1x1 + A2x2

g(x) = x2 gives
∫ ∞

0 x2e−x dx = 2 = A1x
2
1 + A2x

2
2

g(x) = x3 gives
∫ ∞

0 x3e−x dx = 6 = A1x
3
1 + A2x

3
2

(4.27)

Having evaluated the integrals on the left-hand side of Eqs. (4.27) we may solve for the four unknowns
x1, x2, A1, and A2 so that (4.26) becomes

∫ ∞

0
e−xg(x) dx = 2 + √

2

4
g(2 − √

2) + 2 − √
2

4
g(2 + √

2)

It can be shown that the xi are the roots of the nth-order Laguerre polynomial and the coefficients
Ai can be calculated from an expression involving the derivative of an nth-order Laguerre polynomial
evaluated at xi .

In general, we wish to evaluate integrals of the form
∫ ∞

0
f (x)dx

We may write this integral as ∫ ∞

0
e−x{exf (x)}dx

Thus, using (4.26), we have ∫ ∞

0
f (x)dx =

n∑
i=1

Ai exp(xi)f (xi) (4.28)

Eq. (4.28) allows integrals to be evaluated over an infinite range, assuming that the value of the integral
is finite.

The Gauss–Laguerre method is implemented by the MATLAB function galag thus:

function s = galag(func,n)
% Implements Gauss-Laguerre integration.
% Example call: s = galag(func,n)
% Integrates user defined function func from 0 to inf
% using n divisions. n must be 2 or 4 or 8.
if (n==2)|(n==4)|(n==8)

c = zeros(8,3); t = zeros(8,3);
c(1:2,1) = [1.533326033; 4.450957335];
c(1:4,2) = [.8327391238; 2.048102438; 3.631146305; 6.487145084];
c(:,3) = [.4377234105; 1.033869347; 1.669709765; 2.376924702;...

3.208540913; 4.268575510; 5.818083368; 8.906226215];
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t(1:2,1) = [.5857864376; 3.414213562];

t(1:4,2) = [.3225476896; 1.745761101; 4.536620297; 9.395070912];

t(:,3) = [.1702796323; .9037017768; 2.251086630; 4.266700170;...

7.045905402; 10.75851601; 15.74067864; 22.86313174];

j = 1;

while j<=3

if 2^j==n; break

else

j = j+1;

end

end

s = 0;

for k = 1:n

x = t(k,j); y = feval(func,x);

s = s+c(k,j)*y;

end

else

disp(’n must be 2, 4 or 8’); return

end

Sample values xi and the product Ai exp(xi) are given by c and t respectively in the MATLAB

function. A more complete list of coefficients may be found in Abramowitz and Stegun (1965) and
Olver et al. (2010).

We now evaluate the integral loge(1 + e−x) from zero to infinity. The script e4s406.m evaluates the
integral using the function galag.

% e4s406.m

disp(’ n integral value’);

for j = 1:3

n = 2^j;

int = galag(@(x) log(1+exp(-x)),n);

fprintf(’%3.0f%14.9f\n’,n,int)

end

The output is as follows:

n integral value

2 0.822658694

4 0.822358093

8 0.822467051

Note that the exact result is π2/12 = 0.82246703342411. The eight-point integration formula is accu-
rate to six decimal places!
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4.8.2 GAUSS–HERMITE FORMULA
This method is developed from (4.29) as follows:

∫ ∞

−∞
exp(−x2)g(x) dx =

n∑
i=1

Aig(xi) (4.29)

Again the parameters Ai and xi are chosen so that, for a given n, the rule is exact for polynomials up
to and including degree 2n − 1. For the case n = 2 we have

g(x) = 1 gives
∫ ∞
−∞ exp(−x2) dx = √

π = A1 + A2

g(x) = x gives
∫ ∞
−∞ x exp(−x2) dx = 0 = A1x1 + A2x2

g(x) = x2 gives
∫ ∞
−∞ x2 exp(−x2) dx =

√
π

2 = A1x
2
1 + A2x

2
2

g(x) = x3 gives
∫ ∞
−∞ x3 exp(−x2) dx = 0 = A1x

3
1 + A2x

3
2

(4.30)

We have evaluated the integrals on the left-hand side of Eqs. (4.30) and may now solve for the four
unknowns x1, x2, A1, and A2 so that (4.29) becomes

∫ ∞

−∞
exp(−x2)g(x) dx =

√
π

2
g

(
− 1√

2

)
+

√
π

2
g

(
1√
2

)

An alternative approach is to note that xi are the roots of the nth-order Hermite polynomial Hn(x). The
coefficients Ai can then be determined from an expression involving the derivative of the nth-order
Hermite polynomial evaluated at xi .

In general, we wish to evaluate integrals of the form

∫ ∞

−∞
f (x)dx

We may write this integral as ∫ ∞

−∞
exp(−x2){exp(x2)f (x)}dx

and using (4.29) we have
∫ ∞

−∞
f (x)dx =

n∑
i=1

Ai exp(x2
i )f (xi) (4.31)

Again, care must be taken to apply (4.31) only to functions that have a finite integral in the range −∞
to ∞. Extensive tables of xi and Ai are given in Abramowitz and Stegun (1965) and Olver et al. (2010).
The MATLAB function gaherm implements Gauss–Hermite integration thus:

function s = gaherm(func,n)
% Implements Gauss-Hermite integration. Chkd 13/01/11
% Example call: s = gaherm(func,n)



4.8 INFINITE RANGES OF INTEGRATION 209

% Integrates user defined function func from -inf to +inf,
% using n divisions. n must be 2 or 4 or 8 or 16
if (n==2)|(n==4)|(n==8)|(n==16)

c = zeros(8,4); t = zeros(8,4);
c(1,1) = 1.461141183;
c(1:2,2) = [1.059964483; 1.240225818];
c(1:4,3) = [.7645441286; .7928900483; .8667526065; 1.071930144];
c(:,4) = [.5473752050; .5524419573; .5632178291; .5812472754; ...

.6097369583; .6557556729; .7382456223; .9368744929];
t(1,1) = .7071067811;
t(1:2,2) = [.5246476233; 1.650680124];
t(1:4,3) = [.3811869902; 1.157193712; 1.981656757; 2.930637420];
t(:,4) = [.2734810461; .8229514491; 1.380258539; 1.951787991; ...

2.546202158; 3.176999162; 3.869447905; 4.688738939];
j = 1;
while j<=4

if 2^j==n; break;
else

j = j+1;
end

end
s=0;
for k = 1:n/2

x1 = t(k,j); x2 = -x1;
y = feval(func,x1)+feval(func,x2);
s = s+c(k,j)*y;

end
else

disp(’n must be equal to 2, 4, 8 or 16’); return
end

We now evaluate the integral ∫ ∞

−∞
dx

(1 + x2)2

by the Gauss–Hermite method. The script e4s407 uses gaherm to evaluate this integral.

% e4s407.m
disp(’ n integral value’);
for j = 1:4

n = 2^j;
int = gaherm(@(x) 1./(1+x.^2).^2,n);
fprintf(’%3.0f%14.9f\n’,n,int)

end

The results from running script e4s407 are
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n integral value

2 1.298792163

4 1.482336098

8 1.550273058

16 1.565939612

The exact value of this integral is π/2 = 1.570796...

4.9 GAUSS–CHEBYSHEV FORMULA
We now consider two interesting cases where the sample points xi and weights wi are known in a
closed or analytical form. The two integrals together with their closed forms are

∫ 1

−1

f (x)√
1 − x2

dx = π

n

n∑
k=1

f (xk) where xk = cos

(
(2k − 1)π

2n

)
(4.32)

∫ 1

−1

√
1 − x2f (x)dx = π

n + 1

n∑
k=1

sin2
(

kπ

n + 1

)
f (xk) (4.33)

where xk = cos

(
kπ

n + 1

)

These expressions are members of the Gauss family, in this case Gauss–Chebyshev formula. Clearly it
is extremely easy to use these formulae for integrands of the required form which have a specified f (x).
It is simply a matter of evaluating the function at the specified points, multiplying by the appropriate
factor and summing these products. A MATLAB script or function can easily be developed and is left
as an exercise for the reader. (See Problem 4.11.)

4.10 GAUSS–LOBATTO INTEGRATION
Lobatto integration or quadrature (Abramowitz and Stegun, 1965), is named after Dutch mathemati-
cian Rehuel Lobatto. It is similar to Gaussian quadrature, which we discussed in Section 4.7, but the
integration points include the end points of the integration interval. This has an advantage when the pro-
cedure is used in a subinterval because data can be shared between consecutive subintervals. However,
Lobatto quadrature is less accurate than the Gaussian formula.

Lobatto quadrature of function f (x) on interval [−1 1] is given by the formula

∫ 1

−1
f (x)dx = 2

n(n − 1)

[
f (1) + f (−1)

] +
n−1∑
i=2

wif (xi) + Rn
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Here the points xi are the roots of the Legendre polynomial Pn−1(x) = 0. The weights for f (1) and
f (−1) are both equal 2/(n(n − 1)). The remaining weights, wi , are calculated from the formula:

wi = 2

n(n − 1)[Pn−1(xi)]2
(xi �= ±1)

Clearly from this description it is an easy matter to calculate the weights required if the roots of the
derivative of the Legendre polynomial are found.

The coefficients of any order Legendre polynomial can be found using Bonnet’s recursion formula
thus

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)

where P0(x) = 1, P1(x) = x, and Pn(x) is the nth Legendre polynomial. Alternatively a recurrence
relation for the polynomials can be found using the differential equation definition of the Legendre
function.

The following MATLAB function is based on generating the polynomial coefficients using a re-
currence formula and then finding the roots of the derivative of this polynomial using the MATLAB

function roots. The range has been converted to any range a to b.

function Iv = lobattof(func,a,b,n)
% Implementation of Lobattos method
% func is the function to be integrated from the a to b
% using n points.
% Generate Legendre polynomials based on recurrence relation
% derived from the differetial equation which the legendre polynomial
% satisfies.
% Obtain derivitive of that polynomial
% The roots of this polynomial give the Lobatto nodes
% From the nodes calculate the weights using standard algorithm
lc = [ ];
for k = 0:n-1

if n>=2*k
fnk = factorial(2*n-2*k);
fnp = 2^n*factorial(k)*factorial(n-k)*factorial(n-2*k);
lc(n-2*k+1) = (-1)^k*fnk/fnp;

end
end
% Find coefficients of derivitive of the polynomial
lcd = [ ];
for k = 0:n-1

if n>=2*k
lcd(n-2*k+1) = (n-2*k)*lc(n-2*k+1);

end
end
lcd(n) = 0;
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% Obtain Lobatto points
x = roots(fliplr(lcd(2:n+1)));
x1 = sort(x,’descend’);
pv = zeros(size(x));
% Calculate Lobatto weights
for k = 1:n+1

pv = pv+lc(k)*x.^(k-1);
end
n = n+1;
w = 2./(n*(n-1)*pv.^2);
w = [2/(n*(n-1)); w; 2/(n*(n-1))];
% Transform to range a to b
x1 = (x*(b-a)+(a+b))/2;
pts = [a; x1; b];
% Implement rule for integration
Iv = (b-a)*w’*feval(func,pts)/2;

To test the function the MATLAB script e4s408.m is used

% e4s408.m
g = @(x) exp(5*x).*cos(2*x); a = 0; b = pi/2;
for n = [2 4 8 16 32 64]

Iv = lobattof(g,a,b,n);
fprintf(’%3.0f%19.9f\n’,n,real(Iv))

end
exact = -5*(exp(2.5*pi)+1)/29;
fprintf(’\n Exact %15.9f\n’,exact)

The script e4s408.m gives the following results:

2 -674.125699610
4 -443.869707406
8 -444.305258004
16 -444.305258038
32 -444.305439477
64 -15.828963820

Exact -444.305258034

Note that as the number of points used is increased up to 16, the integration becomes more accurate.
However, above this value the accuracy decreases. This is because the function lobattof determines
the abscissae weights by finding the roots of a polynomial. This becomes less accurate as n increases.

An alternative approach to determine the value of an integral is to subdivide the range of integration
into a specific number of subintervals, m and then apply a Lobatto rule with a small number of points to
each subinterval. The following function allows the user to choose the number of points in the Lobatto
integration and the number of subintervals in which the integration is applied.
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function s = lobattomp(func,a,b,n,m)
% n is the number of points in the Labatto quadrature
% m is the number of subintervals of the range of the integration.
h = (b-a)/m; s = 0;
for panel = 0:m-1

a0 =a+panel*h; b0 = a+(panel+1)*h;
s = s+lobattof(func,a0,b0,n);

end

The following script evaluates the error in the integration of e5x cos(2x) over the range 0 to π/2.
The script considers a 4, 5, ..., 8 point Lobatto integration rule applied to subintervals, the number of
subintervals ranging from 2, 4, 8 to 256.

% e4s409.m
g = @(x) exp(5*x).*cos(2*x); a = 0; b = pi/2;
format short e
m = 2; k = 0;
while m<512

% m is number of panels, k is the index
k = k+1;
p = 0;
for n = 4:8

% n number of Labotto points, p is index
p = p+1;
Integral_err(k,p) = real(lobattomp(g,a,b,n,m))+5*(exp(2.5*pi)+1)/29;

end
m = 2*m;

end
Integral_err

Running script e4s409 gives the following output. Each row gives the value of the error for the specified
number of panels, beginning at the first row with m = 2, and doubling each time until m = 256. Each
column, from left to right, gives the value of the error for the specified number of points in the Lobatto
integration, for n = 4 in steps of one to n = 8.

Integral_err =
1.5122e-02 2.6320e-04 1.6910e-06 1.8365e-09 -3.5470e-11
1.0050e-04 3.5484e-07 4.4213e-10 -3.9790e-13 -9.0949e-13
4.4719e-07 3.7176e-10 2.8422e-13 -2.2737e-13 -7.3896e-13
1.8038e-09 1.1369e-13 1.1369e-13 -6.2528e-13 -9.6634e-13
7.0486e-12 -1.7053e-13 2.2737e-13 -6.8212e-13 -8.5265e-13

0 -2.2737e-13 2.8422e-13 -6.2528e-13 -9.0949e-13
0 -2.2737e-13 2.8422e-13 -6.2528e-13 -9.0949e-13

-5.6843e-14 -2.8422e-13 2.8422e-13 -5.6843e-13 -8.5265e-13
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It is evident that increasing the number of subintervals (m) and increasing the number of points in the
Lobatto integration (n) reduces the error in the integration. However, when the number of points in the
Lobatto integration and the number of subintervals increase beyond a certain values the accuracy of
the integration begins to decrease. The values of m and n at which this happens is problem dependent.

A further disadvantage of the Gauss formula is that the location and weight of the abscissae change
as their number increases. For example, suppose we have evaluated an integral using an n point Gauss
quadrature rule. To increase the accuracy we could now increase the number of points and use the
Gauss rule again, but all the points would be at a new location. An alternative strategy is to keep the
existing n points and add to them n+ 1 points located at the best positions. This is the Kronrod method
(Kronrod, 1965). Thus, a three point Gauss method can be extended by keeping the three points and
adding four more to give a seven point rule. The MATLAB function quadgk implements adaptive
Gauss–Kronrod quadrature.

A discussion of the family of Gaussian quadrature methods is given by Thompson (2010).

4.11 FILON’S SINE AND COSINE FORMULAE
These formulae can be applied to integrals of the form

∫ b

a

f (x) cos kx dx and
∫ b

a

f (x) sin kx dx (4.34)

The formulae are generally more efficient than standard methods for this form of integral. To derive
the Filon formulae we first consider an integral of the form

∫ 2π

0
f (x) coskx dx

By the method of undetermined coefficients we can obtain an approximation to this integrand as fol-
lows. Let ∫ 2π

0
f (x) cosx dx = A1f (0) + A2f (π) + A3f (2π) (4.35)

Requiring that this should be exact for f (x) = 1, x, and x2, we have

0 = A1 + A2 + A3

0 = A2π + A32π

4π = A2π
2 + A34π2

Thus A1 = 2/π , A2 = −4/π , and A3 = 2/π . Hence,

∫ 2π

0
f (x) cosx dx = 1

π
[2f (0) − 4f (π) + 2f (2π)] (4.36)
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More general results can be developed as follows:

∫ 2π

0 f (x) coskx dx = h[A{f (xn) sin kxn − f (x0) sin kx0} + BCe + DCo]
∫ 2π

0 f (x) sin kx dx = h[A{f (x0) cos kx0 − f (xn) coskxn} + BSe + DSo]
where h = (b − a)/n, q = kh, and

A =
(
q2 + q sin 2q/2 − 2 sin2 q

)
/q3 (4.37)

B = 2
{
q

(
1 + cos2 q

)
− sin 2q

}
/q3 (4.38)

D = 4 (sinq − q cosq) /q3 (4.39)

Co =
n−1∑

i=1, 3, 5...

f (xi) coskxi

Ce = 1

2
{f (x0) coskx0 + f (xn) coskxn} +

n−2∑
i=2,4,6...

f (xi) coskxi

It can be seen that Co and Ce are odd and even sums of cosine terms. So and Se are similarly defined
with respect to sine terms.

It is important to note that Filon’s method, when applied to functions of the form given in (4.34),
usually gives better results than Simpson’s method for the same number of intervals.

Approximations may be used for the expressions for A, B, and D given in (4.37), (4.38), and (4.39)
by expanding them in series of ascending powers of q. This leads to the following results:

A = 2q2
(
q/45 − q3/315 + q5/4725 − ...

)
B = 2

(
1/3 + q2/15 − 2q4/105 + q6/567 − ...

)
D = 4/3 − 2q2/15 + q4/210 − q6/11340 + ...

When the number of intervals becomes very large, h and hence q become small. As q tends to zero,
A tends to zero, B tends to 2/3 and D tends to 4/3. Substituting these values into the formula for Filon’s
method, it can be shown that it becomes equivalent to Simpson’s rule. However, in these circumstances
the accuracy of Filon’s rule may be worse than Simpson’s rule owing to the additional complexity of
the calculations.

The MATLAB function filon implements Filon’s method for the evaluation of appropriate integrals.
In the parameter list, function func defines f (x) of (4.34) and this is multiplied by cos kx when cas = 1
or sin kx when cas ~= 1. The parameters l and u specify the lower and upper limit of the integral and
n specifies the number of divisions required. The script incorporates a modification to the standard
Filon method such that the series approximation is used if q is less than 0.1 rather than (4.37) to (4.39).
The justification for this is that as q becomes small, the accuracy of series approximation is sufficient
and easier to compute.
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function int = filon(func,cas,k,l,u,n)
% Implements filon’s integration.
% Example call: int = filon(func,cas,k,l,u,n)
% If cas = 1, integrates cos(kx)*f(x) from l to u using n divisions.
% If cas ~= 1, integrates sin(kx)*f(x) from l to u using n divisions.
% User defined function func defines f(x).
if (n/2)~=floor(n/2)

disp(’n must be even’); return
else

h = (u-l)/n; q = k*h;
q2 = q*q; q3 = q*q2;
if q<0.1

a = 2*q2*(q/45-q3/315+q2*q3/4725);
b = 2*(1/3+q2/15+2*q2*q2/105+q3*q3/567);
d = 4/3-2*q2/15+q2*q2/210-q3*q3/11340;

else
a = (q2+q*sin(2*q)/2-2*(sin(q))^2)/q3;
b = 2*(q*(1+(cos(q))^2)-sin(2*q))/q3;
d = 4*(sin(q)-q*cos(q))/q3;

end
x = l:h:u;
y = feval(func,x);
yodd = y(2:2:n); yeven = y(3:2:n-1);
if cas == 1

c = cos(k*x);
codd = c(2:2:n); co = codd*yodd’;
ceven = c(3:2:n-1);
ce = (y(1)*c(1)+y(n+1)*c(n+1))/2;
ce = ce+ceven*yeven’;
int = h*(a*(y(n+1)*sin(k*u)-y(1)*sin(k*l))+b*ce+d*co);

else
s = sin(k*x);
sodd = s(2:2:n); so = sodd*yodd’;
seven = s(3:2:n-1);
se = (y(1)*s(1)+y(n+1)*s(n+1))/2;
se = se+seven*yeven’;
int = h*(-a*(y(n+1)*cos(k*u)-y(1)*cos(k*l))+b*se+d*so);

end
end

We now test the function filon by integrating sinx/x in the range 1 × 10−10 to 1. The lower limit
is set at 1 × 10−10 to avoid the singularity at zero.

The script e4s410 uses filon and filonmod to evaluate the integral. The function filonmod removes
the ability to switch to the series formula in filon. Note that from (4.34) we use the function f (x) =
1/x for this particular problem.
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% e4s410.m
n = 4;
g = @(x) 1./x;
disp(’ n Filon no switch Filon with switch’);
while n<=4096

int1 = filonmod(g,2,1,1e-10,1,n);
int2 = filon(g,2,1,1e-10,1,n);
fprintf(’%4.0f %17.8e %17.8e\n’,n,int1,int2)
n = 2*n;

end

Running this script gives

n Filon no switch Filon with switch
4 1.72067549e+006 1.72067549e+006
8 1.08265940e+005 1.08265940e+005
16 6.77884667e+003 6.77884667e+003
32 4.24742208e+002 4.24742207e+002
64 2.74361110e+001 2.74361124e+001

128 2.60175423e+000 2.60175321e+000
256 1.04956252e+000 1.04956313e+000
512 9.52549009e-001 9.52550585e-001

1024 9.46489412e-001 9.46487290e-001
2048 9.46109716e-001 9.46108334e-001
4096 9.46085291e-001 9.46084649e-001

The exact value of the integral is 0.9460831.
In this particular problem, the switch occurs when n = 16. The output from script e4s410 shows

that the values of the integral obtained with the switch are marginally more accurate. However, it should
be noted that experiments carried out by us have shown that for a lower accuracy of computation than
that supplied in the MATLAB environment, the accuracy of Filon’s method, including the switch, is
significantly better. The reader may find it interesting to experiment with the value of q at which the
switch occurs. This is currently set at 0.1.

Finally we choose a function which is appropriate for Filon’s method and compare the results with
Simpson’s rule. The function is exp(−x/2) cos(100x) integrated between 0 and 2π .

The MATLAB script e4s411 that implements this comparison is

% e4s411.m
n = 4;
disp(’ n Simpsons value Filons value’);
g1 = @(x) exp(-x/2);
g2 = @(x) exp(-x/2).*cos(100*x);
while n<=2048

int1 = filon(g1,1,100,0,2*pi,n);
int2 = simp1(g2,0,2*pi,n);
fprintf(’%4.0f %17.8e %17.8e\n’,n,int2,int1)
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n = 2*n;
end

The results of this comparison are

n Simpsons value Filons value
4 1.91733833e+000 4.55229440e-005
8 -5.73192992e-001 4.72338540e-005

16 2.42801799e-002 4.72338540e-005
32 2.92263624e-002 4.76641931e-005
64 -8.74419731e-003 4.77734109e-005
128 5.55127202e-004 4.78308678e-005
256 -1.30263888e-004 4.78404787e-005
512 4.53408415e-005 4.78381786e-005

1024 4.77161559e-005 4.78381120e-005
2048 4.78309107e-005 4.78381084e-005

The exact value of the integral to 10 significant digits is 4.783810813×10−5. In this particular problem
the switch to the series approximations does not take place because of the high value of the coefficient k.
The output shows that using 2048 intervals, Filon’s method is accurate to eight significant digits. In
contrast, Simpson’s rule is accurate to only five significant digits and its behavior is highly erratic.
However, timing the evaluation of this integral shows that Simpson’s method is about 25% faster than
Filon’s method.

4.12 ADAPTIVE INTEGRATION
Some functions represent significant difficulties for integration because of their rapid change over a
narrow range of their independent variable or variables. In some cases the magnitude of these changes
may be such that the integrand approaches a discontinuity. To deal with this type of change the interval
of integration may be changed adaptively according to some measure of the behavior of the function in
the specific region. The basic approach to this is to divide the integral into two parts, with equal ranges
by setting ∫ b

a

f (x) dx =
∫ p

a

f (x) dx +
∫ b

p

f (x) dx (4.40)

where p = (b − a)/2. These two integrals are evaluated separately and then the interval is subdivided
and evaluated recursively, repeating the subdivision as long as there are significant differences between
the values of successive integrals. Usually the interval is halved at each stage. Although this is the basic
method much depends on the integration rule used for the individual integral evaluation; for example
the Simpson’s rule or the Lobatto rule.

There are two problems here; deciding the measure of the rate of change of the function and in-
troducing the extra computation required efficiently. These are important decisions since the extra
computation may slow down the computation process significantly. Adaptive integration using recur-
sion is a true, tried and tested method and has been implemented in MATLAB, for example, in the
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implementation of the function quad which is based on an adaptive Simpson’s rule and lately the quadl
and integral functions which are based on the more accurate Lobatto and Kronrod rules.

When using an adaptive integration routine, the user may well meet with the warning “recursion
level reached”, this was particularly true for the earlier implementation of adaptive integration such as
MATLAB quad. This message is useful in that it gives a clear warning of the nature of the problem. The
recursion level, that was preset in MATLAB, was not adequate for some problems, since it could not
reach the level of accuracy required by the user.

In an outstanding paper by Gander and Gautschi (2000) they considered this problem and examined
in detail how it could be resolved. They provided an algorithm which dealt with the problems effec-
tively. This algorithm is an adaptive Lobatto algorithm and the coefficients supplied by this method
give a high level of accuracy for each recursion. Here we give a description of the key concepts which
are used in its derivation.

Gander and Gautschi began the development of their algorithm with a discussion of the stopping
criteria which should be used for adaptive integration. They pointed out that the stopping criteria used
at that time in the MATLAB function quad failed for some problems. The algorithm compared succes-
sive estimates of the integral and terminated if the difference of these estimates were less than a set
tolerance, these estimates being obtained by halving the interval used. MATLAB also included a check
on the recursion level and terminated with a warning when this had been reached. In an example which
Gander and Gautschi cite the integration of

√
x for x in the range 0 to 1 using MATLAB at that time.

They found that the evaluation only provide 6 of the 12 digits required. The software also output a
recursion level failure warning.

Consequently they introduced an additional requirement for the stopping criteria which is that the
difference between the current approximations to the integral is negligible compared to the current best
value of the integral. This presents problems since it requires a good estimate of the integral. Thus
an estimate of the integral, say Ie, must be determined. Gander and Gautschi initial used a Monte
Carlo estimate for the integral. Letting the two current estimates of the integral obtained by halving
the interval be I1 and I2, Gander and Gautschi propose the stopping criteria should be formulated
as: stop when Ie + (I1 − I2) is equal to Ie, to the required, or machine accuracy. They indicate that
this guarantees the termination of the algorithm. This allows the integral to be computed to machine
accuracy. If a calculation to a tolerance tol is required they use Ie × tol/eps rather than Ie. A final
amendment to the criteria is added which ensures that the values may include the end points. Gander
and Gautschi illustrate these points by providing a recursive MATLAB program using the standard
Simpson’s rule.

However, the main element of their paper is to refine the method for the individual recursions of
the integral evaluations and perform this using the Lobatto method and the Kronrod extension. We do
not describe the Lobatto method here since this is described in Section 4.10. Essentially all of these
techniques supply constant coefficients for the basic integration process which is used in the recursive
programs, different sets of coefficients providing different levels of accuracy. For example the method
used for the implementation of the adaptive Simpson’s method is the basic Simpson’s rule. They intro-
duce the Lobatto Quadrature method and generate a particular set of coefficients for this program.

Gander and Gautschi noted that to test the accuracy of their adaptive Lobatto quadrature method
another accurate method is required. They introduce the Kronrod extension. This provides another set
of coefficients which are an alternative and more accurate quadrature rule. To obtain an estimate of
the improved accuracy of the Kronrod rule a further development of the Kronrod process is used. This
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Table 4.2 Evaluation of test integrals using different algorithms

function quadl adaptsim integral
Integral (4.41) 9.99000999 × 10−1 9.99000999 × 10−1 9.99000999 × 10−1

Integral (4.42) 1.34924856 × 10−2 1.34924856 × 10−2 1.34924856 × 10−2

Integral (4.43) 1.47763348 × 10 0 1.47763348 × 10

extension provides a more accurate method and a different set of coefficients. The MATLAB script they
developed on these principles uses the Simpson’s and Kronrod rules to provide the values of I1 and I2
and the more accurate Kronrod extension to an overall estimate of the integral. These rules are then
applied recursively to provide the quadrature program.

Currently, the MATLAB user is advised to employ the adaptive integration function integral which
is based on the work of Gander and Gautschi. This function is called in a way similar to that of the
quad and quadl as follows:

integral(fun,xmin,xmax)

where fun, xmin, xmax are the function to be integrated and the limits of integration respectively. Other
parameters may be included in this list if further options are required in the process of integration.

To illustrate this discussion of these integration functions, we compare the performance of the
MATLAB functions quadl, integral and the function of Gander and Gautschi, given in their 2000
paper, which they name adaptsim for a set of test problems, as follows

∫ 1

0
x0.001 dx = 1000/1001 = 0.999000999 . . . (4.41)

∫ 1

0

dx

1 + (230x − 30)2
= (tan−1 200 + tan−1 30)/230 = 0.0134924856495 (4.42)

∫ 4

0
x2(x − 1)2(x − 2)2(x − 3)2(x − 4)2 dx = 10240/693 = 14.776334776 (4.43)

Fig. 4.3 shows plots of the integrands in the range of integration. It can be seen that each function, at
some point, changes rapidly with small changes of the independent variable, making such functions
extremely difficult to integrate numerically if a high degree of accuracy is required.

The results of Table 4.2 show that the integrals of the functions given by (4.41) and (4.42) are
accurate to the number of decimal places given for each method. Only in the case of the function given
by (4.43) do we see that the result is poor for the adaptsim program but good for both functions quadl
and integral. In fairness the adaptsim routine uses only Simpson’s rule adaptively, whereas the other
two methods use the highly accurate Lobatto rule as described in Gander and Gautschi (2000). The
results for the MATLAB function quadl and its replacement the MATLAB function integral are the
same as we would expect. The MATLAB function integral uses adaptive Lobatto quadrature.

As a further example of the use of integral the script e4s412 evaluates the integral ex from 0 to n

where n = 2.5 : 2.5 : 25 and outputs the errors. We have chosen to compare integral with the basic
Simpson rule simp1 (called with both 1024 and 4096 panels). The results show the superiority of the
MATLAB function integral.
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FIGURE 4.3

Plots of functions defined by (4.41), (4.42), and (4.43).

% e4s412.m

err = zeros(10,3);

for n = 1:10; n1 = 2.5*n;

ext = exp(n1)-1;

err(n,1) = simp1(’exp’,0,n1,1024)-ext;

err(n,2) = simp1(’exp’,0,n1,4096)-ext;

err(n,3) = integral(@(x) exp(x),0,n1)-ext;

end

err

Running script e4s412.m gives the following:

err =

2.2080e-12 8.8818e-15 0

4.6555e-10 1.8190e-12 0

2.8889e-08 1.1300e-10 -2.2737e-13

1.1129e-06 4.3474e-09 0

3.3101e-05 1.2928e-07 -5.8208e-11

8.3618e-04 3.2666e-06 -4.6566e-10

1.8872e-02 7.3716e-05 0

3.9221e-01 1.5322e-03 -1.1921e-07

7.6535e+00 2.9898e-02 -3.8147e-06

1.4211e+02 5.5515e-01 -4.5776e-05
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These results show the advantage of using adaptive subinterval sizes. The Simpson rule (columns 1
and 2) has a fixed interval size. For the smaller ranges of integration it performs very well but as the
range of integration increases, accuracy decreases. Generally the function integral (column 3), which
is adaptive, maintains a much higher level of accuracy.

Another MATLAB function that is adaptive is called quadgk It uses an adaptive Gauss–Kronrod
rule which is particularly efficient for smooth and oscillatory integrals. The limits of integration may
be infinite.

The MATLAB function integral now includes options for defining waypoints and vector functions
which we now illustrate.

As an example of integrating a vector of functions we define a vector of functions which are: cos(x),
cos(x2), cos(x3), cos(x4)

>> fvector = @(x) cos(x.^[1 2 3 4])

fvector =

function_handle with value:

@(x)cos(x.^[1,2,3,4])

>> integral(fvector,0,1,’arrayvalued’, true)

ans =

0.8415 0.9045 0.9317 0.9468

Notice the use of the array valued parameter in the function set at true. A single function may be
evaluated in the usual way by replacing the vector by a scalar in the function definition.

Using the parameter waypoints ensures that specified waypoints are used in the integration process.
For example if we have an integral in the overall range 0 to 4, the pair: ’waypoints’, [1, 3] ensures
integration between 0 and 1 and then from 1 to 3 and then 3 to 4. Thus:

>> integral(@(x) cos(x),0,4, ’waypoints’, [1 3])

ans =

-0.7568

>> integral(@(x) cos(x),0,4)

ans =

-0.7568

Waypoints are sometimes helpful in dealing singularities.



4.13 PROBLEMS IN THE EVALUATION OF INTEGRALS 223

4.13 PROBLEMS IN THE EVALUATION OF INTEGRALS
The methods outlined in the previous sections are based on the assumption that the function to be
integrated is well behaved. If this is not so, then the numerical methods may give poor, or totally
useless, results. Problems may occur if:

1. The function is continuous in the range of integration but its derivatives are discontinuous or sin-
gular.

2. The function is discontinuous in the range of integration.
3. The function has singularities in the range of integration.
4. The range of integration is infinite.

It is vital that these conditions are identified because in most cases these problems cannot be dealt with
directly by numerical techniques. Consequently, some preparation of the integrand is required before
the integral can be evaluated by the appropriate numerical method. Case 1 is the least serious condition
but since the derivatives of polynomials are continuous, polynomials cannot accurately represent func-
tions with discontinuous derivatives. Ideally, the discontinuity or singularity in the derivative should be
located and the integral split into a sum of two or more integrals. The procedure is the same in Case 2;
the position of the discontinuities must be found and the integral split into a sum of two or more inte-
grals, the ranges of which avoid the discontinuities. The MATLAB integral option waypoints can be
used for multiple discontinuities. Case 3 can be dealt with in various ways: using a change of variable,
integration by parts and splitting the integral. In Case 4 we must use a method suitable for an infinite
range of integration (see Section 4.8) or make a substitution.

The following integral, taken from Fox and Mayers (1968), is an example of Case 4:

I =
∫ ∞

1

dx

x2 + cos(x−1)
(4.44)

This integral can be estimated either by using function galag (using the substitution y = x − 1 to give
a lower limit of zero) or by substituting z = 1/x. Thus, dz = −dx/x2 and (4.44) may be transformed
as follows:

I = −
∫ 0

1

dz

1 + z2 cos(z)
or I =

∫ 1

0

dz

1 + z2 cos(z)
(4.45)

The integral (4.45) can easily be evaluated by any standard method.
We have discussed a number of techniques for numerical integration. It must be said that even the

best methods have difficulty with functions which change very rapidly for small changes in the inde-
pendent variable. An example of this type of function is sin(1/x). A MATLAB plot of this function is
shown in Section 3.8. However, this plot does not give a true representation of the function in the range
−0.1 to 0.1 because in this range the function is changing very rapidly and the number of plotting
points and the screen resolution are inadequate. Indeed, as x tends to zero the frequency of the oscilla-
tions of the function tends to infinity. A further difficulty is that the function has a singularity at x = 0.
If we decrease the range of x, then a small section of the function can be plotted and displayed. For
example, in the range x = 2 × 10−4 to 2.05 × 10−4 there are approximately 19 cycles of the function
sin(1/x), as shown in Fig. 4.4, and in this limited range the function can be effectively sampled and
plotted. Summarizing, the value of this function can change from an extreme positive to an extreme
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FIGURE 4.4

Function sin(1/x) in the range x = 2 × 10−4 to 2.05 × 10−4. Nineteen cycles of the function are displayed.

negative value for a relatively small change in x. The consequence of this is that when estimating the
integral of the function, a great number of divisions of the range of integration are needed to provide
the required level of accuracy, particularly for smaller values of x.

4.14 TEST INTEGRALS
We now compare the Gauss and Simpson methods of integration with the MATLAB function integral
using the difficult integrals given in (4.41), (4.42), and (4.43) and repeated here for convenience.

∫ 1

0
x0.001 dx = 1000/1001 = 0.999000999 . . .

∫ 1

0

dx

1 + (230x − 30)2
= (tan−1 200 + tan−1 30)/230 = 0.0134924856495

∫ 4

0
x2(x − 1)2(x − 2)2(x − 3)2(x − 4)2 dx = 10240/693 = 14.776334776

The integrals (4.41), (4.42), and (4.43) are difficult to evaluate, see Fig. 4.3.
To generate the comparative results we define function ftable thus:

function y = ftable(fname,lowerb,upperb)
% Generates table of results.
intg = fgauss(fname,lowerb,upperb,16);
ints = simp1(fname,lowerb,upperb,2048);
intq = integral(fname,lowerb,upperb,’AbsTol’,1e-6);
fprintf(’%19.8e %18.8e %18.8e \n’,intg,ints,intq)

The script e4s413 applies this function to the three test integrals:
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% e4s413.m
clear
disp(’function Gauss Simpson integral’)
fprintf(’Func 1’), ftable(@(x) x.^0.001,0,1)
fprintf(’Func 2’), ftable(@(x) 1./(1+(230*x-30).^2),0,1)
g = @(x) (x.^2).*((1-x).^2).*((2-x).^2).*((3-x).^2).*((4-x).^2);
fprintf(’Func 3’), ftable(g,0,4)

The output from script e4s413 is

function Gauss Simpson integral
Func 1 9.99003302e-01 9.98839883e-01 9.99000999e-01
Func 2 1.46785776e-02 1.34924856e-02 1.34924856e-02
Func 3 1.47763348e+01 1.47763348e+01 1.47763348e+01

4.15 REPEATED INTEGRALS
In this section, we confine ourselves to a discussion of repeated integrals using two variables. It is
important to note that there is a significant difference between double integrals and repeated integrals.
However, it can be shown that if the integrand satisfies certain requirements then double integrals and
repeated integrals are equal in value. A detailed discussion of this result is given in Jeffrey (1979).

We have considered in this chapter various techniques for evaluating single integrals. The extension
of these methods to repeated integrals can present considerable scripting difficulties. Furthermore, the
number of computations required for the accurate evaluation of a repeated integral can be enormous.
While many algorithms for the evaluation of single integrals can be extended to repeated integrals, here
only extensions to the Simpson and Gauss methods with two variables are presented. These have been
chosen as the best compromise between programming simplicity and efficiency.

An example of a repeated integral is

∫ b1

a1

dx

∫ b2

a2

f (x, y) dy (4.46)

In this notation the function is integrated with respect to x from a1 to b1 and with respect to y from a2
to b2. Here the limits of integration are constant but in some applications they may be variables.

4.15.1 SIMPSON’S RULE FOR REPEATED INTEGRALS
We now apply Simpson’s rule to the repeated integral (4.46) by applying it first in the y direction and
then in the x direction. Consider three equispaced values of y which are y0, y1, and y2. On applying
Simpson’s rule, (4.11), to integration with respect to y in (4.46) we have

∫ x2

x0

dx

∫ y2

y0

f (x, y) dy ≈
∫ x2

x0

k{f (x, y0) + 4f (x, y1) + f (x, y2)}dx (4.47)

where k = y2 − yl = y1 − y0.
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Consider now three equispaced values of x: x0, x1, and x2. Applying Simpson’s rule again to inte-
gration with respect to x, from (4.47) we have

I ≈ hk
[
f0,0 + f0,2 + f2,0 + f2,2 + 4

{
f0,1 + f1,0 + f1,2 + f2,1

} + 16f1,1
]
/9 (4.48)

where h = x2 − x1 = x1 − x0 and, for example, f1,2 = f (x1, y2).
This is Simpson’s rule in two variables. By applying this rule to each group of nine points on

the surface f (x, y) and summing, the composite Simpson’s rule is obtained. The MATLAB function
simp2v evaluates repeated integrals in two variables by making direct use of the composite rule.

function q = simp2v(func,a,b,c,d,n)
% Implements 2 variable Simpson integration.
% Example call: q = simp2v(func,a,b,c,d,n)
% Integrates user defined 2 variable function func.
% Range for first variable is a to b, and second variable, c to d
% using n divisions of each variable.
if (n/2)~=floor(n/2)

disp(’n must be even’); return
else

hx = (b-a)/n; x = a:hx:b; nx = length(x);
hy = (d-c)/n; y = c:hy:d; ny = length(y);
[xx,yy] = meshgrid(x,y);
z = feval(func,xx,yy);
v = 2*ones(n+1,1); v2 = 2*ones(n/2,1);
v(2:2:n) = v(2:2:n)+v2;
v(1) = 1; v(n+1) = 1;
S = v*v’; T = z.*S;
q = sum(sum(T))*hx*hy/9;

end

We now apply the function simp2v to evaluate the integral Gauss–Lobatto Integration

∫ 10

0
dx

∫ 10

0
y2 sinx dy

The graph of the function y2 sinx is given in Fig. 4.5. The script e4s414 integrates this function.

% e4s414.m
z = @(x,y) y.^2.*sin(x);
disp(’ n integral value’);
n = 4; j = 1;
while n<=256

int = simp2v(z,0,10,0,10,n);
fprintf(’%4.0f %17.8e\n’,n,int)
n = 2*n; j = j+1;

end
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FIGURE 4.5

Graph of z = y2 sinx.

Running script e4s414 gives the following results:

n integral value
4 1.02333856e+003
8 6.23187046e+002
16 6.13568708e+002
32 6.13056704e+002
64 6.13025879e+002

128 6.13023970e+002
256 6.13023851e+002

The value of this integral exact to four decimal places is 613.0238 and the number of floating-point
operations tends to 7n2. It can be proved, – see Salvadori and Baron (1961) – that when Simpson’s rule
is adapted to evaluate repeated integrals, the error is still of order h4 and thus it is possible to use an
extrapolation scheme similar to the Romberg method of Section 4.6.

4.15.2 GAUSSIAN INTEGRATION FOR REPEATED INTEGRALS
The Gaussian method can be developed to evaluate repeated integrals with constant limits of integra-
tion. In Section 4.7 it was shown that for single integrals the integrand must be evaluated at specified
points. Thus, if

I =
∫ 1

−1
dx

∫ 1

−1
f (x, y) dy

then

I ≈
n∑

i=1

m∑
j=1

AiAjf (xi, yj )

The rules for calculating xi , yj , and Ai are given in Section 4.7. The MATLAB function gauss2v
evaluates integrals using this technique. Because the values of x and y are chosen on the assumption
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that the integration takes place in the range −1 to 1, the function gauss2v includes the necessary
manipulations to adjust it so as to accommodate an arbitrary range of integration.

function q = gauss2v(func,a,b,c,d,n)

% Implements 2 variable Gaussian integration.

% Example call: q = gauss2v(func,a,b,c,d,n)

% Integrates user defined 2 variable function func.

% Range for first variable is a to b, and second variable, c to d

% using n divisions of each variable.

% n must be 2 or 4 or 8 or 16.

if (n==2)|(n==4)|(n==8)|(n==16)

co = zeros(8,4); t = zeros(8,4);

co(1,1) = 1;

co(1:2,2) = [.6521451548; .3478548451];

co(1:4,3) = [.3626837833; .3137066458; .2223810344; .1012285362];

co(:,4) = [.1894506104; .1826034150; .1691565193; .1495959888; ...

.1246289712;.0951585116; .0622535239; .0271524594];

t(1,1) = .5773502691;

t(1:2,2) = [.3399810435; .8611363115];

t(1:4,3) = [.1834346424; .5255324099; .7966664774; .9602898564];

t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444; ...

.7554044084; .8656312023; .9445750230; .9894009350];

j = 1;

while j<=4

if 2^j==n; break;

else

j = j+1;

end

end

s = 0;

for k = 1:n/2

x1 = (t(k,j)*(b-a)+a+b)/2; x2 = (-t(k,j)*(b-a)+a+b)/2;

for p = 1:n/2

y1 = (t(p,j)*(d-c)+d+c)/2; y2 = (-t(p,j)*(d-c)+d+c)/2;

z = feval(func,x1,y1)+feval(func,x1,y2)+feval(func,x2,y1);

z = z+feval(func,x2,y2);

s = s+co(k,j)*co(p,j)*z;

end

end

q = (b-a)*(d-c)*s/4;

else

disp(’n must be equal to 2, 4, 8 or 16’), return

end
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We now consider the problem of evaluating the following integral:

∫ x4

x2
dy

∫ 2

1
x2y dx (4.49)

Integrals of this form cannot be estimated directly by the MATLAB functions gauss2v or simp2v be-
cause neither of these functions was developed to work with variable limits of integration. However,
a transformation may be carried out in order to make the limits of integration constant. Let

y = (x4 − x2)z + x2 (4.50)

Thus, when z = 1, y = x4 and when z = 0, y = x2 as required. Differentiating (4.50), we have

dy = (x4 − x2)dz

Substituting for y and dy in (4.49), we have

∫ 1

0
dz

∫ 2

1
x2

{
(x4 − x2)z + x2

}
(x4 − x2) dx (4.51)

This integral is now in a form that can be integrated using both gauss2v and simp2v. However, we
must define a MATLAB function thus:

w = @(x,z) x.^2.*((x.^4-x.^2).*z+x.^2).*(x.^4-x.^2);

This function is used with the functions simp2v and gauss2v in the script e4s415.

% e4s415.m
disp(’ n Simpson value Gauss value’)
w = @(x,z) x.^2.*((x.^4-x.^2).*z+x.^2).*(x.^4-x.^2);
n = 2; j = 1;
while n<=16

in1 = simp2v(w,1,2,0,1,n);
in2 = gauss2v(w,1,2,0,1,n);
fprintf(’%4.0f%17.8e%17.8e\n’,n,in1,in2)
n = 2*n; j = j+1;

end

Running script e4s415 gives

n Simpson value Gauss value
2 9.54248047e+001 7.65255915e+001
4 8.48837042e+001 8.39728717e+001
8 8.40342951e+001 8.39740259e+001
16 8.39778477e+001 8.39740259e+001

The exact integral is equal to 83.97402597 (= 6466/77). This output shows that in general Gaussian
integration is superior to Simpson’s rule.
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4.16 MATLAB FUNCTIONS FOR DOUBLE AND TRIPLE INTEGRATION
Recent versions of MATLAB now provide the functions integral2 and integral3 for repeated inte-
gration. In this section, we consider these functions and their parameters and provide examples of their
use.

For double integration which is repeated integration over two dimensions, the integral2 function
may be used and has the general form:

IV2 = integral2(fname,xl,xu,yl,yu,acc)

where fname is the name of the two-variable function being integrated, which must be defined by the
user; xl and xu the lower and upper limits of the x range of integration; and similarly yl and yu the
lower and upper limits for the y range of integration. The value acc provides the required accuracy of
the integration and is optional.

The use of integral2 is illustrated by evaluating the integral:

I =
∫ 1

0
dx

∫ 1

0

1

1 − xy
dy

We may solve this using the MATLAB function integral2. It is required that the user predefine the
function to be integrated; to do this we use an anonymous function placed directly in the function
parameter list. Using integral2 we have

>> I = integral2(@(x,y) 1./(1-x.*y),0,1-1e-6,0,1-1e-6)

I =
1.6449

If we try to integrate this function numerically over the exact range x = 0 to 1 and y = 0 to 1 then
MATLAB gives warnings because of the singularity when x = y = 1 but gives the same result.

For triple integration which is repeated integration over three dimensions the integral3 function
may be used and has the general form:

IV3 = integral3(fname,xl,xu,yl,yu,zl,zu,acc)

where fname is the name of the three variable function being integrated, xl and xu are the lower and
upper limits of the x range of integration. Similarly yl, yu and zl, zu are the limits for the y and z

range of integration.
The use of integral3 is illustrated by the following example.

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
64xy(1 − x)2z dz

>> I3 = integral3(@(x,y,z) 64*x.*y.*(1-x).^2.*z,0,1,0,1,0,1)

I3 =
1.3333
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MATLAB provides the function quad2d which allows the user to integrate a function of two vari-
ables (say x and y) like the function integral2 but additionally allows the limits in y to be functions
of x.

Consider the integral (4.49) repeated here

∫ 2

1
dx

∫ x4

x2
x2y dy

Using quad2d we have

>> IV = quad2d(@(x,y) x.^2.*y,1,2, @(x) x.^2,@(x) x.^4)

IV =

83.9740

In this example, the anonymous function @(x,y) x.^2.*y is the function to be integrated, 1 and 2
are the lower and upper limits of integration in the x variable, and @(x) x.^2 and @(x) x.^4 are
anonymous functions defining lower and upper limits in the y range of integration.

4.17 SUMMARY
In this chapter, we have described simple methods for obtaining the approximate derivatives of various
orders for specified functions at given values of the independent variable. The results indicate that these
methods, although easy to program, are very sensitive to small changes in key parameters and should
be used with considerable care. In addition, we have given a range of methods for integration. For
integration, error generation is not such an unpredictable problem but we must be careful to choose the
most efficient method for the integral we wish to evaluate. We have also described adaptive integration.

The reader is referred to Sections 10.8, 10.9, and 10.10 for the application of the Symbolic Toolbox
to integration and differentiation problems.

4.18 PROBLEMS
4.1. Use the function diffgen to find the first and second derivatives of the function x2 cosx at x = 1

using h = 0.1 and h = 0.01.
4.2. Evaluate the first derivative of cosx6 for x = 1,2, and 3 using the function diffgen and taking

h = 0.001.
4.3. Write a MATLAB function to differentiate a given function using formulae (4.6) and (4.7). Use

it to solve Problems 4.1 and 4.2.
4.4. Find the gradient of y = cosx6 at x = 3.1,3.01,3.001, and 3 using the function diffgen with

h = 0.001. Compare your results with the exact result.
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4.5. The approximations for partial derivatives may be defined as

∂f/∂x ≈ {f (x + h,y) − f (x − h,y)}/ (2h)

∂f/∂y ≈ {f (x, y + h) − f (x, y − h)}/ (2h)

Write a function to evaluate these derivatives. The function call should have the form

[pdx,pdy] = pdiff(’func’,x,y,h)

Determine the partial derivatives of exp(x2 + y3) at x = 2, y = 1 using this function with h =
0.005.

4.6. In a letter sent to Hardy, the Indian mathematician Ramanujan proposed that the number of num-
bers between a and b which are either squares or sums of two squares is given approximately
by the integral

0.764
∫ b

a

dx√
loge x

Test this proposition for the following pairs of values of a and b: (1,10), (1,17), and (1,30).
You should use the MATLAB function fgauss with 16 points to evaluate the integrals required.

4.7. Verify the equality

∫ ∞

0

dx

(1 + x2)(1 + r2x2)(1 + r4x2)
= π(r2 + r + 1)

2(r2 + 1)(r + 1)2

for the values of r = 0,1,2. This result was proposed by Ramanujan. You should use the
MATLAB function galag for your investigations, using eight points.

4.8. Raabe established the result that
∫ a+1

a

loge�(x) dx = a loge a − a + loge

√
2π

Verify this result for a = 1 and a = 2. Use the MATLAB function simp1 with 32 divisions to
evaluate the integrals required and the MATLAB function gamma to set up the integrand.

4.9. Use the MATLAB function fgauss with 16 points to evaluate the integral

∫ 1

0

loge x dx

1 + x2

Explain why the function fgauss is appropriate for this problem but simp1 is not.
4.10. Use the MATLAB function fgauss with 16 points to evaluate the integral

∫ 1

0

tan−1 x

x
dx

Note: Integration by parts shows the integrals in Problems 4.9 and 4.10 to be the same value
except for a sign.
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4.11. Write a MATLAB function to implement the formulae (4.32) and (4.33) given in Section 4.9 and
use your function to evaluate the following integrals using 10 points for the formula. Compare
your results with the Gauss 16-point rule.

(a)

∫ 1

−1

ex

√
1 − x2

dx, (b)

∫ 1

−1
ex

√
1 − x2 dx

4.12. Use the MATLAB function simp1 to evaluate the Fresnel integrals

C(1) =
∫ 1

0
cos

(
πt2

2

)
dt and S(1) =

∫ 1

0
sin

(
πt2

2

)
dt

Use 32 intervals. The exact values, to seven decimal places, are C(1) = 0.7798934 and S(1) =
0.4382591.

4.13. Use the MATLAB function filon, with 64 intervals, to evaluate the integral
∫ π

0
sinx coskx dx

for k = 0, 4, and 100. Compare your results with the exact answer, 2/(1 − k2) if k is even and
0 if k is odd.

4.14. Solve Problem 4.13 for k = 100 using Simpson’s rule with 1024 divisions and Romberg’s meth-
ods with 9 divisions.

4.15. Evaluate the following integral using the eight point Gauss–Laguerre method:

∫ ∞

0

e−xdx

x + 100

Compare your answer with the exact solution 9.9019419 × 10−3 (103/10,402).
4.16. Evaluate the integral ∫ ∞

0

e−2x − e−x

x
dx

using 8-point Gauss–Laguerre integration. Compare your result with the exact answer which is
− loge 2 = −0.6931.

4.17. Evaluate the following integral using the 16-point Gauss–Hermite method.
∫ ∞

−∞
exp(−x2) cosx dx

Compare your answer with the exact solution
√

π exp(−1/4).
4.18. Evaluate the following integrals, using Simpson’s rule for repeated integrals, MATLAB function

simp2v, using 64 divisions in each direction.

(a)

∫ 1

−1
dy

∫ π

−π

x4y4dx, (b)

∫ 1

−1
dy

∫ π

−π

x10y10dx
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4.19. Evaluate the following integrals, using simp2v, with 64 divisions in each direction.

(a)

∫ 3

0
dx

∫ √
x/3

1
exp(y3) dy, (b)

∫ 2

0
dx

∫ 2−x

0
(1 + x + y)−3dy

4.20. Evaluate part (b) in Problems 4.18 and 4.19 using Gaussian integration, MATLAB function
gauss2v. Note: To use this function the range of integration must be constant.

4.21. The definition of the sine integral Si(z) is

Si(z) =
∫ z

0

sin t

t
dt

Evaluate this integral using the 16-point Gauss method for z = 0.5,1, and 2. Why does the
Gaussian method work and yet the Simpson and Romberg methods fail?

4.22. Evaluate the following double integral using Gaussian integration for two variables.

∫ 1

0
dy

∫ 1

0

1

1 − xy
dx

Compare your result with the exact answer, π2/6 = 1.6449.
4.23. The probability, P , that a certain type of gas turbine engine will fail within a period of time of

T hours is given by the equation:

P(x < T ) =
∫ T

0

aba

(x + b)a+1
dx

where a = 3.5 and b = 8200.
By evaluating this integral for values of T = 500 : 100 : 2000, draw a graph of P against T in
this range. What proportion of the number of gas turbines of this type fail within 1600 hours.
For more information on the probability of failure, see Percy (2011).

4.24. Consider the following integral:

∫ 1

0

xp − xq

loge(x)
xrdx = loge

(
p + r + 1

q + r + 1

)

Use the MATLAB function integral to verify this result for p = 3, q = 4, r = 2.
4.25. Consider the three integrals:

A = −
∫ 1

0

loge x dx

1 + x2
, B =

∫ 1

0

tan−1 x

x
dx, C =

∫ ∞

0

xe−x

1 + e−2x
dx

Use the MATLAB function integral to evaluate the two integrals A and B and hence verify that
they are equal.
Use 8-point Gauss–Laguerre integration to verify that the integral C is also equal to A and B.
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4.26. Use 16-point Gauss–Hermite integration to verify that the integral I , where

I =
∫ ∞

−∞
sinx

1 + x2
dx

and show that its value is approximately equal to zero.
4.27. Use 16-point Gauss–Hermite integration to evaluate the following integral I

I =
∫ ∞

−∞
cosx

1 + x2
dx

Check your answer by comparing with the exact answer, π/e.
4.28. Use 8-point Gauss–Laguerre integration to find the value of the following integral:

I =
∫ ∞

0

xα−1

1 + xβ
dx

for values of (α, β) = (2,3) and (3,4). You can verify your answers using the exact value of
the integral which is π/(β sin(απ/β)).

4.29. An interesting relationship between the Riemann zeta function, ζ , and the integral

S3 = −
∫ ∞

0
loge(x)3e−x dx

is given by:

S3 = γ 3 + 1

2
γπ2 + 2ζ(3)

where γ = 0.57722.
Use the MATLAB function quadgk to evaluate the integral and show that it is a good estimate
of S3.

4.30. A value for the total resistance of a certain network of unit resistors has been shown to be given
by R(m,n), where:

R(m,n) = 1

π2

∫ π

0
dx

∫ π

0

1 − cosmx cosny

2 − cosx − cosy
dy

Evaluate this integral for R(50,100) using the MATLAB functions integral2 and simp2v. Use a
lower limit close to zero, say 0.0001. If a lower limit equal to zero is used, then the denominator
of the integrand will be zero. For large values of m and n an approximation for this integral is
given by

R(m,n) = 1

π

(
γ + 3

2
loge 2 + 1

2
loge(m

2 + n2)

)

where γ is Euler’s constant and can be obtained from the MATLAB expression -psi(1). The
function psi(x) is called the digamma function. Use this to check your result.
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4.31. A value for the total resistance of a cubic network of unit resistors has been shown to be given
by R(s,m,n) where:

R(s,m,n) = 1

π3

∫ π

0
dx

∫ π

0
dy

∫ π

0

1 − cos sx cosmy cosnz

3 − cosx − cosy − cos z
dz

Evaluate this integral using the MATLAB function for integral3 using the values s = 2, m = 1,
n = 3. The lower limit should be set at a small non-zero value, say 0.0001.

4.32. In calculations of certain moments of inertia the following two equations must be satisfied by
choosing appropriate values for the constants c and γ .

∫ √
c−γ

0

1√
p2 − 1

dy = 1,

∫ √
c−γ

0

p√
p2 − 1

dy = π

2

where p = (y2 + γ )/c. It can be shown that the values c = −1.035 and γ = −2.290 satisfy
these equations. Verify using the MATLAB function integral that these values do satisfy these
equations. See Taylor (2018).

4.33. The following integral provides the mean distance (M) between two planets, assuming their
orbits are circular with radius a and b:

M = 1

2π

∫ 2π

0

√
a2 + b2 − 2ab cos θ dθ

Using this formula calculate M for the orbits of Venus and Mars where a = 0.723AU and
b = 1.524AU approximately. An Astronomical Unit (AU) is defined as the mean distance from
the Earth to the Sun.

4.34. The velocity of a body falling vertically under gravity, but subject to resistance is given by the
differential equation:

mv
dv

dx
= mg − mk(x)v2

where the resistance to travel is given by the equation

k(x) = exp(−β + αx)

and x is the downward distance from the starting point. Note when x = 0 then

k(θ) = exp(−β)

It can be shown that the solution to this equation is given by

v2 = 2g

α exp(2k(x)/α)
(Ei(2k(x)/α) − Ei(2k(0)/α))

Write a MATLAB script to calculate values showing how v, the velocity, varies with the alti-
tude x and use these results to draw a graph of velocity against distance fallen, given initially
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x = 0.287986, α = 1.556362×10−4, and β = 11.2988350. Perform your calculations using the
MATLAB function expint. Increment x by 0.2 and perform 25 steps.
The function Ei(x) is defined by:

Ei(x) =
∫ x

−∞
exp(t)

t
dt

Note that this function is available in MATLAB by the name expint where

Ei(x) = real(−expint(-x)), for real x > 0.

For an interesting description of this problem see Mahoney (2014).
4.35. Evaluate the integral ∫ π/2

0
exp(− sin(2x)) cos(x) dx

using Filon’s method for cosine function. Use sufficient divisions to obtain an accuracy of 6
decimal places. Note that this integral is equal to the sum to infinity of the series given in
Problem 1.39.

4.36. The following functions are the first 4 Legendre polynomials
P0 = 1; P1 = x; P2 = (3x2 − 1)/2; P3 = (5x3 − 3x)/2. Use Gaussian integration to evaluate
the integral

Im,n =
∫ 1

−1
Pm(x)Pn(x) dx

for m = 0 to 3 and for n = 0 to 3. What can you deduce about the properties of the first 4
Legendre polynomials.



5
CHAPTER

SOLUTION OF DIFFERENTIAL
EQUATIONS

Abstract

Many practical problems involve the study of how rates of change in two or more variables are in-
terrelated. Often the independent variable is time. These problems give rise naturally to differential
equations which enable us to understand how the real-world works and how it changes dynamically. In
this chapter, we describe a range of widely used algorithms to solve differential equations.

5.1 INTRODUCTION
To illustrate how a differential equation can model a physical situation we will examine a relatively
simple problem. Consider the way a hot object cools, – for example, a saucepan of milk, the water in
a bath or molten iron. Each of these will cool in a different way dependent on the environment but
we shall abstract only the most important features that are easy to model. To model this process by a
simple differential equation we use Newton’s law of cooling which states that the rate at which these
objects lose heat as time passes is dependent on the difference between the current temperature of the
object and the temperature of its surroundings. This leads to the differential equation

dy/dt = K(y − s) (5.1)

where y is the current temperature at time t , s is the temperature of the surroundings, and K is a
negative constant for the cooling process. In addition we require the initial temperature, y0, to be
specified at time t = 0 when the observations begin. This fully specifies our model of the cooling
process. We only need values for y0, K , and s to begin our study. This type of first-order differential
equation is called an initial value problem because we have an initial value given for the dependent
variable y at time t = 0.

The solution of (5.1) is easily obtained analytically and will be a function of t and the constants
of the problem. However, there are many differential equations which have no analytic solution or
the analytic solution does not provide an explicit relation between y and t . In this situation we use
numerical methods to solve the differential equation. This means that we approximate the continuous
solution with an approximate discrete solution giving the values of y at specified time steps between
the initial value of time and some final time value. Thus we compute values of y, which we denote
by yi , for values of t denoted by ti where ti = t0 + ih for i = 0,1, ..., n. Fig. 5.1 illustrates the exact
solution and an approximate solution of (5.1) where K = −0.1, s = 10, and y0 = 100. This figure is
generated using the standard MATLAB function for solving differential equations, ode23, from time 0
to 60 and plotting the values of y using the symbol “+”. The values of the exact solution are plotted on
the same graph using the symbol “o”.

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00014-2
Copyright © 2019 Elsevier Inc. All rights reserved.
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FIGURE 5.1

Exact o and approximate + solution for dy/dt = −0.1(y − 10).

To use ode23 to solve (5.1) we begin by writing a function yprime which defines the right-hand
side of (5.1). Then ode23 is called in the following script and requires the initial and final values of t , 0,
and 60 which must be placed in a row vector; a starting value for y of 100; and a low relative tolerance
of 0.5. This tolerance is set using the odeset function which allows tolerances and other parameters to
be set as required.

% e4s501.m

yprime = @(t,y) -0.1*(y-10); %RH of diff equn.

options = odeset(’RelTol’,0.5);

[t y] = ode23(yprime,[0 60],100,options);

plot(t,y,’+’)

xlabel(’Time’), ylabel(’y value’),

hold on

plot(t,90*exp(-0.1.*t)+10,’o’), % Exact solution.

hold off

This type of step by step solution is based on computing the current yi value from a single or combi-
nation of functions of previous y values. If the value of y is calculated from a combination of more
than one previous value, it is called a multi-step method. If only one previous value is used it is called
a single-step method. We shall now describe a simple single-step method known as Euler’s method.

5.2 EULER’S METHOD
The dependent variable y and the independent variable t , which we used in the preceding section, can
be replaced by any variable names. For example, many textbooks use y as the dependent variable and
x as the independent variable. However, for some consistency with MATLAB notation we generally use
y to represent the dependent variable and t to represent the independent variable. Clearly initial value
problems are not restricted to the time domain although, in most practical situations, they are.



5.2 EULER’S METHOD 241

FIGURE 5.2

Geometric interpretation of Euler’s method.

Consider the differential equation

dy/dt = y (5.2)

One of the simplest approaches for obtaining the numerical solution of a differential equation is the
method of Euler. This employs Taylor’s series but uses only the first two terms of the expansion.
Consider the following form of Taylor’s series in which the third term is called the remainder term and
represents the contribution of all the terms not included in the series.

y(t0 + h) = y(t0) + y′(t0)h + y′′(θ)h2/2 (5.3)

where θ lies in the interval (t0, t1). For small values of h we may neglect the terms in h2, and setting
t1 = t0 + h in (5.3) leads to the formula

y1 = y0 + hy′
0

where the prime denotes differentiation with respect to t and y′
i = y′(ti). In general,

yn+1 = yn + hy′
n for n = 0, 1, 2, . . .

By virtue of (5.2) this may be written

yn+1 = yn + hf (tn, yn) for n = 0, 1, 2, . . . (5.4)

This is known as Euler’s method and it is illustrated geometrically in Fig. 5.2. This is an example of the
use of a single function value to determine the next step. From (5.3) we can see that the local truncation
error, i.e., the error for individual steps is of order h2.

The method is simple to script and is implemented in the MATLAB function feuler as follows.

function [tvals, yvals] = feuler(f,tspan, startval,step)
% Euler’s method for solving
% first order differential equation dy/dt = f(t,y).
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FIGURE 5.3

Points from the Euler solution of dy/dt = y − 20 given that y = 100 when t = 0. Approximate solutions for
h = 0.2, 0.4, and 0.6 are plotted using o, +, and ∗ respectively. The exact solution is given by the solid line.

% Example call: [tvals, yvals]=feuler(f,tspan,startval,step)
% Initial and final value of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) must be defined by the user.
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1);
yvals = startval; tvals = tspan(1);
for i = 2:steps

y1 = y+step*feval(f,t,y); t1 = t+step;
%collect values together for output
tvals = [tvals, t1]; yvals = [yvals, y1];
t = t1; y = y1;

end

Applying this function to the differential equation (5.1) with K = 1, s = 20, and an initial value of
y = 100, gives Fig. 5.3, which illustrates how the approximate solution varies for different values of h.
The exact value computed from the analytical solution is given for comparison purposes by the solid
line. Clearly, in view of the very large errors shown in Fig. 5.3, the Euler method, although simple,
requires a very small step h to provide reasonable levels of accuracy. If the differential equation must
be solved for a wide range of values of t , the method becomes very expensive in terms of computer time
because of the very large number of small steps required to span the interval of interest. In addition,
the errors made at each step may accumulate in an unpredictable way. This is a crucial issue, and we
discuss this in the next section.

5.3 THE PROBLEM OF STABILITY
To ensure that errors do not accumulate we require that the method for solving the differential equation
be stable. We have seen that the error at each step in Euler’s method is of order h2. This error is known
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as the local truncation error since it tells only how accurate the individual step is, not what the error
is for a sequence of steps. The error for a sequence of steps is difficult to find since the error from
one step affects the accuracy of the next in a way that is often complex. This leads us to the issue of
absolute and relative stability. We now discuss these concepts and examine their effects in relation to a
simple equation and explain how the results for this equation may be extended to differential equations
in general.

Consider the differential equation

dy/dt = Ky (5.5)

Since f (t, y) = Ky, Euler’s method will have the form

yn+1 = yn + hKyn (5.6)

Thus, using this recursion repeatedly and assuming that there are no errors in the computation from
stage to stage we obtain

yn+1 = (1 + hK)n+1y0 (5.7)

For small enough h, it is easily shown that this value will approach the exact value eKt .
To obtain some understanding of how errors propagate when using Euler’s method, let us assume

that y0 is perturbed. This perturbed value of y0 may be denoted by ya
0 where ya

0 = (y0 − e0) and e0 is
the error. Thus (5.7) becomes, on using this approximate value instead of y0,

ya
n+1 = (1 + hK)n+1ya

0 = (1 + hK)n+1(y0 − e0) = yn+1 − (1 + hK)n+1e0

Consequently, the initial error will be magnified if |1 + hK| ≥ 1. After many steps this initial error will
grow and may dominate the solution. This is the characteristic of instability and in these circumstances
Euler’s method is said to be unstable. If, however, |1 + hK| < 1, then the error dies away and the
method is said to be absolutely stable. Rewriting this inequality leads to the condition for absolute
stability:

−2 < hK < 0 (5.8)

This condition may be too demanding and we may be content if the error does not increase as a
proportion of the y values. This is called relative stability. Notice that Euler’s method is not absolutely
stable for any positive value of K .

The condition for absolute stability can be generalized to an ordinary differential equation of the
form of (5.2). It can be shown that the condition becomes

−2 < h∂f/∂y < 0 (5.9)

This inequality implies that, since h > 0, ∂f/∂y must be negative for absolute stability. Fig. 5.4 and
Fig. 5.5 give a comparison of the absolute and relative error for h = 0.1, for the differential equation
dy/dt = y where y = 1 when t = 0. Fig. 5.4 shows that the error is increasing rapidly and the errors
are large for even relatively small step sizes. Fig. 5.5 shows that the error is becoming an increasing
proportion of the solution values. Thus the relative error is increasing linearly and so the method is
neither relatively stable nor absolutely stable for this problem.
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FIGURE 5.4

Absolute errors in the solution of dy/dt = y where
y = 1 when t = 0, using Euler’s method with h = 0.1.

FIGURE 5.5

Relative errors in the solution of dy/dt = y where
y = 1 when t = 0, using Euler’s method with h = 0.1.

We have seen that Euler’s method may be unstable for some values of h. For example, if K = −100,
then Euler’s method is only absolutely stable for 0 < h < 0.02. Clearly, if we are required to solve the
differential equation between 0 and 10, we would require 500 steps. We now consider an improvement
to this method called the trapezoidal method which has improved stability features although it is similar
in principle to Euler’s method.

5.4 THE TRAPEZOIDAL METHOD
The trapezoidal method has the form

yn+1 = yn + h{f (tn, yn) + f (tn+1, yn+1)}/2 for n = 0,1,2, ... (5.10)

Applying the error analysis of Section 5.3 to this problem gives us, from (5.5), that

yn+1 = yn + h(Kyn + Kyn+1)/2 for n = 0,1,2, ... (5.11)

Thus expressing yn+1 in terms of yn gives

yn+1 = (1 + hK/2)/(1 − hK/2)yn for n = 0,1,2, ... (5.12)

Using this result recursively for n = 0,1,2, ... leads to the result

yn+1 = {(1 + hK/2)/(1 − hK/2)}n+1y0 (5.13)

Now, as in Section 5.3, we can obtain some understanding of how error propagates by assuming that
y0 is perturbed by the error e0 so that it is replaced by ya

0 = (y0 − e0). Hence using the same procedure
(5.13) becomes

yn+1 = {(1 + hK/2)/(1 − hK/2)}n+1(y0 − e0)
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This leads directly to the result

ya
n=1 = yn+1 − {(1 + hK/2)/(1 − hK/2)}n+1e0

Thus, we conclude from this that the influence of the error term which involves e0 will die away if its
multiplier is less than unity in magnitude, i.e.,

|(1 + hK/2)/(1 − hK/2)| < 1

If K is negative, then for all h the method is absolutely stable. For positive K it is not absolutely stable
for any h.

This completes the error analysis of this method. However, we note that the method requires a value
for yn+1 before we can start. An estimate for this value can be obtained by using Euler’s method, that
is

yn+1 = yn + hf (tn, yn) for n = 0,1,2, ...

This value can now be used in the right-hand side of (5.10) as an estimate for yn+1. This combined
method is often known as the Euler–trapezoidal method. The method can be written formally as:

1. Start with n set at zero where n indicates the number of steps taken.
2. Calculate y

(1)
n+1 = yn + hf (tn, yn).

3. Calculate f (tn+1, y
(1)
n+1) where tn+1 = tn + h.

4. For k = 1, 2, ... calculate

y
(k+1)
n+1 = yn + h{f (tn, yn) + f (tn+1, y

(k)
n+1)}/2 (5.14)

At step 4, when the difference between successive values of yn+1 is sufficiently small, increment n

by 1 and repeat steps 2, 3, and 4. This method is implemented in MATLAB function eulertp thus:

function [tvals, yvals] = eulertp(f,tspan,startval,step)
% Euler trapezoidal method for solving
% first order differential equation dy/dt = f(t,y).
% Example call: [tvals, yvals] = eulertp(f,tspan,startval,step)
% Initial and final value of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) must be defined by the user.
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1);
yvals = startval; tvals = tspan(1);
for i = 2:steps

y1 = y+step*feval(f,t,y);
t1 = t+step;
loopcount = 0; diff = 1;
while abs(diff)>0.05

loopcount = loopcount+1;
y2 = y+step*(feval(f,t,y)+feval(f,t1,y1))/2;
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FIGURE 5.6

Solution of dy/dt = y using Euler (∗) and trapezoidal method, o. Step h = 0.1 and y0 = 1 at t = 0.

diff = y1-y2; y1 = y2;
end
%collect values together for output
tvals = [tvals, t1]; yvals = [yvals, y1];
t = t1; y = y1;

end

We use eulertp to study the performance of this method compared with Euler’s method for solving
dy/dt = y. The results are given in Fig. 5.6 which shows graphs of the absolute errors of the two meth-
ods. The difference is clear but although the Euler–trapezoidal method gives much greater accuracy for
this problem, in other cases the difference may be less marked. In addition, the Euler–trapezoidal
method takes longer.

An important feature of this method is the number of iterations that are required to obtain conver-
gence in step 4. If this is high, the method is likely to be inefficient. However, for the example we just
solved, a maximum of two iterations at step 4 was required. This algorithm may be modified to use
only one iteration at step 4 in (5.14). This is called Heun’s method.

Finally, we examine theoretically how the error in Heun’s method compares with Euler’s method.
By considering the Taylor series expansion of yn+1 we can obtain the order of the error in terms of the
step size h thus:

yn+1 = yn + hy′
n + h2y′′

n/2! + h3y′
n(θ)/3! (5.15)

where θ lies in the interval (tn, tn+1). It can be shown that y′′
n may be approximated by

y′′
n = (y′

n+1 − y′
n)/h + O(h) (5.16)

Substituting this expression for y′′
n in (5.15) gives

yn+1 = yn + hy′
n + h(y′

n+1 − y′
n)/2! + O(h3)

= yn + h(y′
n+1 + y′

n)/2! + O(h3)
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This shows that the local truncation error is of order h3 so there is a significant improvement in accuracy
over the basic Euler method which has a truncation error of order h2.

We now describe a range of methods which will be considered under the collective title of Runge–
Kutta methods.

5.5 RUNGE–KUTTA METHODS
The Runge–Kutta methods comprise a large family of methods having a common structure. Heun’s
method, described by (5.14) but with only one iteration of the corrector, can be recast in the form of a
simple Runge–Kutta method. We set

k1 = hf (tn, yn) and k2 = hf (tn+1, yn+1)

since

yn+1 = yn + hf (tn, yn)

We have

k2 = hf (tn+1, yn + hf (tn, yn))

Hence from (5.10) we have Heun’s method in the form: for n = 0, 1, 2, ...

k1 = hf (tn, yn)

k2 = hf (tn+1, yn + k1)

and

yn+1 = yn + (k1 + k2) /2

This is a simple form of a Runge–Kutta method.
The most commonly used Runge–Kutta method is the classical one; it has the form for each step

n = 0,1,2, ...

k1 = hf (tn, yn)

k2 = hf (tn + h/2, yn + k1/2)

k3 = hf (tn + h/2, yn + k2/2)

k4 = hf (tn + h,yn + k3)

(5.17)

and

yn+1 = yn + (k1 + 2k2 + 2k3 + k4) /6
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It has a global error of order h4. The next Runge–Kutta method we consider is a variation on the
formula (5.17). It is due to Gill (1951) and takes the form for each step n = 0,1,2, ...

k1 = hf (tn, yn)

k2 = hf (tn + h/2, yn + k1/2)

k3 = hf (tn + h/2, yn + (
√

2 − 1)k1/2 + (2 − √
2
)
k2/2)

k4 = hf (tn + h,yn − √
2k2/2 + (1 + √

2/2)k3)

(5.18)

and

yn+1 = yn + {k1 + (2 − √
2)k2 + (2 + √

2)k3 + k4
}
/6

Again this method is fourth-order and has a local truncation error of order h5 and a global error of
order h4.

A number of other forms of the Runge–Kutta method have been derived which have particularly
advantageous properties. The equations for these methods will not be given but their important features
are as follows:

1. Merson–Runge–Kutta method (Merson, 1957). This method has an error term of order h5 and in
addition allows an estimate of the local truncation error to be obtained at each step in terms of
known values.

2. The Ralston–Runge–Kutta method (Ralston, 1962). We have some degree of freedom in assigning
the coefficients for a particular Runge–Kutta method. In this formula the values of the coefficients
are chosen so as to minimize the truncation error.

3. The Butcher–Runge–Kutta method (Butcher, 1964). This method provides higher accuracy at each
step, the error being of order h6.

Runge–Kutta methods have the general form for each step n = 0,1,2, ...

k1 = hf (tn, yn)

ki = hf (tn + hdi, yn +
i−1∑
j=1

cij kj ), i = 2,3, ..., p
(5.19)

yn+1 = yn +
p∑

j=1

bj kj (5.20)

The order of this general method is p.
The derivation of the various Runge–Kutta methods is based on the expansion of both sides of (5.20)

as a Taylor’s series and equating coefficients. This is a relatively straightforward idea but involves
lengthy algebraic manipulation.

We now discuss the stability of the Runge–Kutta methods. Since the instability which may arise
in the Runge–Kutta methods can usually be reduced by a step size reduction, it is known as partial
instability. To avoid repeated reduction of the value of h and re-running the method, an estimate of
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the value of h which will provide stability for the fourth-order Runge–Kutta methods is given by the
inequality

−2.78 < h∂f/∂y < 0

In practice ∂f/∂y may be approximated using the difference of successive values of f and y.
Finally, it is interesting to see how we can provide an elegant MATLAB function for the general

Runge–Kutta method given by (5.20) and (5.19). We define two vectors d and b, where d contains the
coefficients di in (5.19) and b contains the coefficients bj in (5.20), and a matrix c which contains the
coefficients cij in (5.19). If the computed values of the kj are assigned to a vector k, then the MATLAB

statements that generate the values of the function and the new value of y are relatively simple; they
will have the form

k(1) = step*feval(f,t,y);
for i = 2:p

k(i)=step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)’);
end
y1 = y+b*k’;

This is of course repeated for each step. A MATLAB function, rkgen, based on this is given below.
Since c and d are easily changed in the script, any form of Runge–Kutta method can be implemented
using this function and it is useful for experimenting with different techniques.

function[tvals,yvals] = rkgen(f,tspan,startval,step,method)
% Runge Kutta methods for solving
% first order differential equation dy/dt = f(t,y).
% Example call:[tvals,yvals]=rkgen(f,tspan,startval,step,method)
% The initial and final values of t are given by tspan = [start finish].
% Initial y is given by startval and step size is given by step.
% The function f(t,y) must be defined by the user.
% The parameter method (1, 2 or 3) selects
% Classical, Butcher or Merson RK respectively.
b = [ ]; c = [ ]; d = [ ];
switch method

case 1
order = 4;
b = [ 1/6 1/3 1/3 1/6]; d = [0 .5 .5 1];
c=[0 0 0 0;0.5 0 0 0;0 .5 0 0;0 0 1 0];
disp(’Classical method selected’)

case 2
order = 6;
b = [0.07777777778 0 0.355555556 0.13333333 ...

0.355555556 0.0777777778];
d = [0 .25 .25 .5 .75 1];
c(1:4,:) = [0 0 0 0 0 0;0.25 0 0 0 0 0;0.125 0.125 0 0 0 0; ...

0 -0.5 1 0 0 0];
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c(5,:) = [.1875 0 0 0.5625 0 0];
c(6,:) = [-.4285714 0.2857143 1.714286 -1.714286 1.1428571 0];
disp(’Butcher method selected’)

case 3
order = 5;
b = [1/6 0 0 2/3 1/6];
d = [0 1/3 1/3 1/2 1];
c = [0 0 0 0 0;1/3 0 0 0 0;1/6 1/6 0 0 0;1/8 0 3/8 0 0; ...

1/2 0 -3/2 2 0];
disp(’Merson method selected’)

otherwise
disp(’Invalid selection’)

end
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1);
yvals = startval; tvals = tspan(1);
for j = 2:steps

k(1) = step*feval(f,t,y);
for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)’);
end
y1 = y+b*k’; t1 = t+step;
%collect values together for output
tvals = [tvals, t1]; yvals = [yvals, y1];
t = t1; y = y1;

end

A further issue that needs to be considered is that of the adaptive step size adjustment. Where a
function is relatively smooth in the area of interest, a large step may be used throughout the region.
If the region is such that rapid changes in y occur for small changes in t , then a small step size is
required. However, for functions where both these regions exist, then rather than use a small step in the
whole region, adaptive step size adjustment would be more efficient. The details of producing this step
adjustment are not provided here; however, for an elegant discussion see Press et al. (1990). This type of
procedure is implemented for Runge–Kutta methods in the MATLAB functions ode23 and ode45. The
basic algorithm for these functions is the Runge–Kutta–Fehlberg algorithm with adaptive step size.
However the difference between the two functions is that ode23 uses second and third order formulae
while ode45 uses fourth and fifth order formulae.

Fig. 5.7 plots the relative errors in the solution of the specific differential equation dy/dt = −y by
the classical, Merson and Butcher–Runge–Kutta methods using the MATLAB script: e4s502.m:

% e4s502.m
yprime = @(t,y) -y;
char = ’o*+’;
for meth = 1:3

[t, y] = rkgen(yprime,[0 3],1,0.25,meth);



5.6 PREDICTOR–CORRECTOR METHODS 251

FIGURE 5.7

Solution of dy/dt = −y. The ∗ represents Butcher’s method, + Merson’s method, and o the classical method.

re = (y-exp(-t))./exp(-t);
plot(t,re,char(meth))
hold on

end
hold off, axis([0 3 0 1.5e-4])
xlabel(’Time’), ylabel(’Relative error’)

It is clear from the graphs that Butcher’s method is the best and both Butcher’s and Merson’s
methods are significantly more accurate than the classical method.

5.6 PREDICTOR–CORRECTOR METHODS
The trapezoidal method, which has already been described, is a simple example of both a Runge–Kutta
method and a predictor–corrector method with a truncation error of order h3. The predictor–corrector
methods we consider now have much smaller truncation errors. As an initial example we consider the
Adams–Bashforth–Moulton method. This method is based on the following equations:

yn+1 = yn + h(55y′
n − 59y′

n−1 + 37y′
n−2 − 9y′

n−3)/24 (P )

y′
n+1 = f (tn+1, yn+1) (E)

(5.21)

and

yn+1 = yn + h
(
9y′

n+1 + 19y′
n − 5y′

n−1 + y′
n−2

)
/24 (C)

y′
n+1 = f (tn+1, yn+1) (E)

(5.22)

where tn+1 = tn+h. In (5.21) we use the predictor equation (P ), followed by a function evaluation (E).
Then in (5.22) we use the corrector equation (C), followed by a function evaluation (E). The truncation
error for both the predictor and corrector is O(h5). The first equation in the system (5.21) requires a
number of initial values to be known before y can be calculated.



252 CHAPTER 5 SOLUTION OF DIFFERENTIAL EQUATIONS

After each application of (5.21) and (5.22), i.e., a complete PECE step, the independent variable tn
is incremented by h, n is incremented by one and the process repeated until the differential equation
has been solved in the range of interest. The method is started with n = 3 and consequently the values
of y3, y2, y1, and y0 must be known before the method can be applied. For this reason, it is called
a multi-point method. In practice y3, y2, y1, and y0 must be obtained using a self-starting procedure
such as one of the Runge–Kutta methods described in Section 5.5. The self-starting procedure chosen
should have the same order truncation error as the predictor–corrector method.

The Adams–Bashforth–Moulton method is often used since its stability is relatively good. Its range
of absolute stability in PECE mode is

−1.25 < h∂f/∂y < 0

Apart from the need for initial starting values, the Adams–Bashforth–Moulton method in the PECE
mode requires less computation at each step than the fourth-order Runge–Kutta method. For a true
comparison of these methods, however, it is necessary to consider how they behave over a range of
problems since applying any method to some differential equations results, at each step, in a growth of
error that ultimately swamps the calculation since the step is outside the range of absolute stability.

The Adams–Bashforth–Moulton method is implemented by the function abm. It should be noted
that errors arise from the choice of starting procedure, in this case the classical Runge–Kutta method.
It is, however, easy to amend this function to include the option of entering highly accurate initial
values.

function [tvals, yvals] = abm(f,tspan,startval,step)
% Adams Bashforth Moulton method for solving
% first order differential equation dy/dt = f(t,y).
% Example call: [tvals, yvals]=abm(f,tspan,startval,step)
% The initial and final values of t are given by tspan = [start finish].
% Initial y is given by startval and step size is given by step.
% The function f(t,y) must be defined by the user.
% 3 steps of Runge-Kutta are required so that ABM method can start.
% Set up matrices for Runge-Kutta methods
b = [ ]; c = [ ]; d = [ ]; order = 4;
b = [1/6 1/3 1/3 1/6]; d = [0 .5 .5 1];
c = [0 0 0 0;0.5 0 0 0;0 .5 0 0;0 0 1 0];
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1); fval(1) = feval(f,t,y);
ys(1) = startval; yvals = startval; tvals = tspan(1);
for j = 2:4

k(1) = step*feval(f,t,y);
for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)’);
end
y1 = y+b*k’; ys(j) = y1; t1 = t+step;
fval(j) = feval(f,t1,y1);
%collect values together for output
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FIGURE 5.8

Absolute error in solution of dy/dt = −2y using the Adams–Bashforth–Moulton method. The solid line plots
the errors with a step size of 0.5. The dot-dashed line plots the errors with step size 0.7.

tvals = [tvals,t1]; yvals = [yvals,y1];
t = t1; y = y1;

end
%ABM now applied
for i = 5:steps

y1 = ys(4)+step*(55*fval(4)-59*fval(3)+37*fval(2)-9*fval(1))/24;
t1 = t+step; fval(5) = feval(f,t1,y1);
yc = ys(4)+step*(9*fval(5)+19*fval(4)-5*fval(3)+fval(2))/24;
fval(5) = feval(f,t1,yc);
fval(1:4) = fval(2:5);
ys(4) = yc;
tvals = [tvals,t1]; yvals = [yvals,yc];
t = t1; y = y1;

end

Fig. 5.8 illustrates the behavior of the Adams–Bashforth–Moulton method when applied to the specific
problem dy/dt = −2y where y = 1 when t = 0, using a step size equal to 0.5 and 0.7 in the interval 0
to 10. It is interesting to note that for this problem, since ∂f/∂y = −2, the range of steps for absolute
stability is 0 ≤ h ≤ 0.625. For h = 0.5, a value inside the range of absolute stability, the plot shows that
the absolute error does die away. However, for h = 0.7, a value outside the range of absolute stability,
the plot shows that the absolute error increases.

5.7 HAMMING’S METHOD AND THE USE OF ERROR ESTIMATES
The method of Hamming (1959) is based on the following pair of predictor–corrector equations:

yn+1 = yn−3 + 4h
(
2y′

n − y′
n−1 + 2y′

n−2

)
/3 (P )

y′
n+1 = f (tn+1, yn+1) (E)

(5.23)
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yn+1 = {9yn − yn−2 + 3h
(
y′
n+1 + 2y′

n − y′
n−1

)}
/8 (C)

y′
n+1 = f (tn+1, yn+1) (E)

where tn+1 = tn + h.
The first equation (P ) is used as the predictor and the third as the corrector (C). To obtain a further

improvement in accuracy at each step in the predictor and corrector we modify these equations using
expressions for the local truncation errors. Approximations for these local truncation errors can be
obtained using the predicted and corrected values of the current approximation to y. This leads to the
equations

yn+1 = yn−3 + 4h
(
y′
n − y′

n−1 + 2y′
n−2

)
/3 (P ) (5.24)

(yM)n+1 = yn+1 − 112(YP − YC)/121 (5.25)

In this equation YP and YC represent the predicted and corrected value of y at the nth step.

y∗
n+1 =

{
9yn − yn−2 + 3h((yM)′n+1 + 2y′

n − y′
n−1)

}
/8 (C) (5.26)

In this equation (yM)′n+1 is the value of y′
n+1 calculated using the modified value of yn+1 which is

(yM)n+1.

yn+1 = y∗
n+1 + 9(yn+1 − y∗

n+1) (5.27)

Eq. (5.24) is the predictor and (5.25) modifies the predicted value by using an estimate of the trun-
cation error. Eq. (5.26) is the corrector which is modified by (5.27) using an estimate of the truncation
error. The equations in this form are each used only once before n is incremented and the steps repeated
again. This method is implemented as MATLAB function fhamming thus:

function [tvals, yvals] = fhamming(f,tspan,startval,step)
% Hamming’s method for solving
% first order differential equation dy/dt = f(t,y).
% Example call: [tvals, yvals]=fhamming(f,tspan,startval,step)
% The initial and final values of t are given by tspan = [start finish].
% Initial y is given by startval and step size is given by step.
% The function f(t,y) must be defined by the user.
% 3 steps of Runge-Kutta are required so that hamming can start.
% Set up matrices for Runge-Kutta methods
b = [ ]; c = [ ]; d = [ ]; order = 4;
b = [1/6 1/3 1/3 1/6]; d = [0 0.5 0.5 1];
c = [0 0 0 0;0.5 0 0 0;0 0.5 0 0;0 0 1 0];
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1);
fval(1) = feval(f,t,y);
ys(1) = startval;
yvals = startval; tvals = tspan(1);
for j = 2:4
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FIGURE 5.9

Relative error in the solution of dy/dt = y where y = 1 when t = 0, using Hamming’s method with a step size
of 0.5.

k(1) = step*feval(f,t,y);

for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)’);

end

y1 = y+b*k’; ys(j) = y1; t1 = t+step; fval(j) = feval(f,t1,y1);

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1]; t = t1; y = y1;

end

%Hamming now applied

for i = 5:steps

y1 = ys(1)+4*step*(2*fval(4)-fval(3)+2*fval(2))/3;

t1 = t+step; y1m = y1;

if i>5, y1m = y1+112*(c-p)/121; end

fval(5) = feval(f,t1,y1m);

yc = (9*ys(4)-ys(2)+3*step*(2*fval(4)+fval(5)-fval(3)))/8;

ycm = yc+9*(y1-yc)/121;

p = y1; c = yc;

fval(5) = feval(f,t1,ycm); fval(2:4) = fval(3:5);

ys(1:3) = ys(2:4); ys(4) = ycm;

tvals = [tvals, t1]; yvals = [yvals, ycm];

t = t1;

end

The choice of h must be made carefully so that the error does not increase without bound. Fig. 5.9
shows Hamming’s method used to solve the equation dy/dt = y. This is the problem used in Sec-
tion 5.6.
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5.8 ERROR PROPAGATION IN DIFFERENTIAL EQUATIONS
In the preceding sections, we described various techniques for solving differential equations and the
order, or a specific expression, for the truncation error at each step was given. As we discussed in
Section 5.3 for the Euler and trapezoidal methods, it is important to examine not only the magnitude
of the error at each step but also how that error accumulates as the number of steps taken increases.

For the predictor–corrector method described before, it can be shown that the predictor–corrector
formulae introduce additional spurious solutions. As the iterative process proceeds, for some problems
the effect of these spurious solutions may be to overwhelm the true solution. In these circumstances
the method is said to be unstable. Clearly, we seek stable methods where the error does not develop in
an unpredictable and unbounded way.

It is important to examine each numerical method to see if it is stable. In addition, if it is not stable
for all differential equations we should provide tests to determine when it can be used with confidence.
The theoretical study of stability for differential equations is a major undertaking and it is not intended
to include a detailed analysis here. In Section 5.9 we summarize the stability characteristics of specific
methods and compare the performance of the major methods considered on a number of example
differential equations.

5.9 THE STABILITY OF PARTICULAR NUMERICAL METHODS
A good discussion of the stability of many of the numerical methods for solving first-order differential
equations is given by Ralston and Rabinowitz (1978) and Lambert (1973). Some of the more significant
features, assuming all variables are real, are as follows:

1. Euler and trapezoidal methods. For a detailed discussion see Sections 5.3 and 5.4.
2. Runge–Kutta methods: Runge–Kutta methods do not introduce spurious solutions but instability

may arise for some values of h. This may be removed by reducing h to a sufficiently small value.
We have already described how the Runge–Kutta methods are less efficient than the predictor–
corrector methods because of the greater number of function evaluations that may be required at
each step. If h is reduced too far, the number of function evaluations required may make the method
uneconomic. The restriction on the size of the interval required to maintain stability may be esti-
mated from the inequality M < h∂f/∂y < 0 where M is dependent on the particular Runge–Kutta
method being used and may be estimated. Clearly this emphasizes the need for careful step size
adjustment during the solution process. This is efficiently implemented in the functions ode23 and
ode45 so that this question does not present a problem when applying these MATLAB functions.

3. Adams–Bashforth–Moulton method: In PECE mode the range of absolute stability is given by
−1.25 < h∂f/∂y < 0, implying that ∂f/∂y must be negative for absolute stability.

4. Hamming’s method: In PECE mode the range of absolute stability is given by −0.5 < h∂f/∂y < 0,
again implying that ∂f/∂y must be negative for absolute stability.

Notice that the formulae given for estimating the step size can be difficult to use if f is a general
function of y and t . However, in some cases the derivative of f is easily calculated, for example, when
f = Cy where C is a constant.
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We now give some results of applying the methods discussed in previous sections to solve more
general problems. The script e4s503.m solves the three examples that follow by setting example equal
to 1, 2, or 3 in the first line of the script.

% e4s503.m
example = 1;
switch example

case 1
yprime = @(t,y) 2*t*y;
sol = @(t) 2*exp(t^2);
disp(’Solution of dy/dt = 2yt’)
t0 = 0; y0 = 2;

case 2
yprime = @(t,y) (cos(t)-2*y*t)/(1+t^2);
sol = @(t) sin(t)/(1+t^2);
disp(’Solution of (1+t^2)dy/dt = cos(t)-2yt’)
t0 = 0; y0 = 0;

case 3
yprime = @(t,y) 3*y/t;
disp(’Solution of dy/dt = 3y/t’)
sol = @(t) t^3;
t0 = 1; y0 = 1;

end
tf = 2; tinc = 0.25; steps = floor((tf-t0)/tinc+1);
[t,x1] = abm(yprime,[t0 tf],y0,tinc);
[t,x2] = fhamming(yprime,[t0 tf],y0,tinc);
[t,x3] = rkgen(yprime,[t0 tf],y0,tinc,1);
disp(’t abm Hamming Classical Exact’)
for i = 1:steps

fprintf(’%4.2f%12.7f%12.7f’,t(i),x1(i),x2(i))
fprintf(’%12.7f%12.7f\n’,x3(i),sol(t(i)))

end

Example 5.1. Solve

dy/dt = 2yt where y = 2 when t = 0.

Exact solution: y = 2 exp(t2). Running the script e4s503 with example = 1 produces the following
output:

Solution of dy/dt = 2yt
t abm Hamming Classical Exact
0.00 2.0000000 2.0000000 2.0000000 2.0000000
0.25 2.1289876 2.1289876 2.1289876 2.1289889
0.50 2.5680329 2.5680329 2.5680329 2.5680508
0.75 3.5099767 3.5099767 3.5099767 3.5101093
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1.00 5.4340314 5.4294215 5.4357436 5.4365637
1.25 9.5206761 9.5152921 9.5369365 9.5414664
1.50 18.8575896 18.8690552 18.9519740 18.9754717
1.75 42.1631012 42.2832017 42.6424234 42.7618855
2.00 106.2068597 106.9045567 108.5814979 109.1963001

Example 5.2. Solve

(1 + t2)dy/dt + 2ty = cos t where y = 0 when t = 0

Exact solution: y = (sin t)/(1 + t2). Running script e4s503 with example = 2 produces the following
output:

Solution of (1+t^2)dy/dt = cos(t)-2yt
t abm Hamming Classical Exact
0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.25 0.2328491 0.2328491 0.2328491 0.2328508
0.50 0.3835216 0.3835216 0.3835216 0.3835404
0.75 0.4362151 0.4362151 0.4362151 0.4362488
1.00 0.4181300 0.4196303 0.4206992 0.4207355
1.25 0.3671577 0.3705252 0.3703035 0.3703355
1.50 0.3044513 0.3078591 0.3068955 0.3069215
1.75 0.2404465 0.2432427 0.2421911 0.2422119
2.00 0.1805739 0.1827267 0.1818429 0.1818595

Example 5.3. Solve

dy/dt = 3y/t where y = 1 when t = 1

Exact solution: y = t3. Running script e4s503 with example = 3 produces the following output:

Solution of dy/dt = 3y/t
t abm Hamming Classical Exact
1.00 1.0000000 1.0000000 1.0000000 1.0000000
1.25 1.9518519 1.9518519 1.9518519 1.9531250
1.50 3.3719182 3.3719182 3.3719182 3.3750000
1.75 5.3538346 5.3538346 5.3538346 5.3593750
2.00 7.9916917 7.9919728 7.9912355 8.0000000

Examples 5.2 and 5.3 appear to show that there is little difference between the three methods con-
sidered and they are all fairly successful for the step size h = 0.25 in this range. Example 5.1 is a
relatively difficult problem in which the classical Runge–Kutta method performs well.

For a further comparison, we now use the MATLAB function ode113. This employs a predictor–
corrector method based on the PECE approach described in Section 5.6 for the Adams–Bashforth–
Moulton method. However the method implemented in the ode113 is of variable order. The standard
call of the function takes the form

[t,y] = ode113(f,tspan,y0,options);
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where f is the name of the function providing the right-hand sides of the system of differential equa-
tions; tspan is the range of solution for the differential equation, given as a vector [to tfinal]; y0 is
the vector of initial values for the differential equation at time t = 0; options is an optional parameter
providing additional settings for the differential equation such as accuracy. To illustrate the use of this
function we consider the example

dy/dt = 2yt with initial condition y = 2 when t = 0

The call to solve this differential equation is

>> options = odeset(’RelTol’, 1e-5,’AbsTol’,1e-6);

>> [t,yy] = ode113(@(t,x) 2*t*x,[0,2],[2],options); y = yy’, time = t’

The result of executing these statements is

y =

Columns 1 through 7

2.0000 2.0000 2.0000 2.0002 2.0006 2.0026 2.0103

Columns 8 through 14

2.0232 2.0414 2.0650 2.0943 2.1707 2.2731 2.4048

Columns 15 through 21

2.5703 2.7755 3.0279 3.3373 3.7161 4.1805 4.7513

Columns 22 through 28

5.4557 6.3290 7.4177 8.7831 10.5069 15.5048 22.7912

Columns 29 through 32

34.6321 54.3997 88.3328 109.1944

time =

Columns 1 through 7

0 0.0022 0.0045 0.0089 0.0179 0.0358 0.0716

Columns 8 through 14

0.1073 0.1431 0.1789 0.2147 0.2862 0.3578 0.4293

Columns 15 through 21

0.5009 0.5724 0.6440 0.7155 0.7871 0.8587 0.9302

Columns 22 through 28

1.0018 1.0733 1.1449 1.2164 1.2880 1.4311 1.5599

Columns 29 through 32

1.6887 1.8175 1.9463 2.0000

Although a direct comparison between each step is not possible, because ode113 uses a variable
step size, we can compare the result for t = 2 with the results given for Example 5.1 above. This shows
that the final y value given by ode113 is better than those given by the other methods.
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5.10 SYSTEMS OF SIMULTANEOUS DIFFERENTIAL EQUATIONS
The numerical techniques we have described for solving a single first-order differential equation can
be applied, after simple modification, to solve systems of first-order differential equations. Systems of
differential equations arise naturally from mathematical models of the physical world. In this section
we consider systems of differential equations. The first is the Zeeman model and the second is the
predator–prey problem.

5.10.1 ZEEMAN MODEL
Zeeman introduced a simplified model of the heart and incorporates ideas from catastrophe theory. The
model is described briefly here but more detail is given in the excellent text of Beltrami (1987). The
resulting system of differential equations will be solved using the MATLAB function ode23 and the
graphical facilities of MATLAB will help to clarify the interpretation of the results.

The starting point for this model of the heart is Van der Pol’s equation which may be written in the
form

dx/dt = u − μ(x3/3 − x)

du/dt = −x

This is a system of two simultaneous equations. The choice of this differential equation reflects our
wish to imitate the beat of the heart. The fluctuation in the length of the heart fiber, as the heart
contracts and dilates subject to an electrical stimulus, thus pumping blood through the system, may
be represented by this pair of differential equations. The fluctuation has certain subtleties which our
model should allow for. Starting from the relaxed state, the contraction begins with the application of
the stimulus slowly at first and then becomes faster, so giving a sufficient final impetus to the blood.
When the stimulus is removed, the heart dilates slowly at first and then more rapidly until the relaxed
state is again reached and the cycle can begin again.

To follow this behavior, the Van der Pol equation requires some modification so that the x variable
represents the length of heart fiber and the u variable can be replaced by one which represents the stim-
ulus applied to the heart. This is achieved by making the substitution s = −u/μ, where s represents the
stimulus and μ is a constant. Since ds/dt is equal to (−du/dt)/μ, it follows that du/dt = −μds/dt .
Hence we obtain

dx/dt = μ(−s − x3/3 + x)

ds/dt = x/μ

If these simultaneous differential equations are solved for s and x for a range of time values, we find
that s and x oscillate in a manner representing the fluctuations in the heart fiber length and stimulus.
However, Zeeman proposed the introduction into this model of a tension factor p, where p > 0, in an
attempt to account for the effects of increased blood pressure in terms of increased tension on the heart
fiber. The model he suggested has the form

dx/dt = μ(−s − x3/3 + px)

du/dt = x/μ
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FIGURE 5.10

Solution of Zeeman’s model with p = 1 and accuracy
0.005. The solid line represents s and the dashed line
represents x.

FIGURE 5.11

Solution of Zeeman’s model with p = 20 and accuracy
0.005. The solid line represents s and the dashed line
represents x.

Although the motivation for such a modification is plausible, the effects of these changes are by no
means obvious.

This problem provides an interesting opportunity to apply MATLAB to simulate the heart beat in an
experimental environment that allows us to monitor its changes under the effects of differing tension
values. The following script solves the differential equations and draws various graphs.

% e4s504.m Solving Zeeman’s Catastrophe model of the heart
clear all
p = input(’enter tension value ’);
simtime = input(’enter runtime ’);
acc = input(’enter accuracy value ’);
xprime = @(t,x) [0.5*(-x(2)-x(1)^3/3+p*x(1)); 2*x(1)];
options = odeset(’RelTol’,acc);
initx = [0 -1]’;
[t x] = ode23(xprime,[0 simtime],initx,options);
% Plot results against time
plot(t,x(:,1),’--’,t,x(:,2),’-’)
xlabel(’Time’), ylabel(’x and s’)

In the preceding function definition, μ = 0.5. Fig. 5.10 shows graphs of the fiber length x and the
stimulus s against time for a relatively small tension factor set at 1. The graphs show that a steady
periodic oscillation of fiber length for this tension value is achieved for small stimulus values. However,
Fig. 5.11 plots x and s against time with the tension set at 20. This shows that the behavior of the
oscillation is clearly more labored and that much larger values of stimulus are required to produce the
fluctuations in fiber length for the much higher tension value. Thus, the graphs show the deterioration
in the beat with increasing tension. The results parallel the expected physical effects and also give some
degree of experimental support to the validity of this simple model.

A further interesting study can be made. The interrelation of the three parameters x, s, and p can
be represented by a three-dimensional surface called the cusp catastrophe surface. This surface can be
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FIGURE 5.12

Sections of the cusp catastrophe curve in Zeeman’s model for p = 0 : 10 : 40.

shown to have the form

−s − x3/3 + px = 0

See Beltrami (1987) for a more detailed explanation. Fig. 5.12 shows a series of sections of the cusp
catastrophe curve for p = 0 : 10 : 40. The curve has a pleat which becomes increasingly pronounced
in the direction of increasing p. High tension or high p value consequently corresponds to movement
on the sharply pleated part of this surface and consequently provides smaller changes in the heart fiber
length relative to the stimulus.

5.10.2 THE PREDATOR–PREY PROBLEM
A system of differential equations which models the interaction of competing or predator–prey popu-
lations is based on the Volterra equations and may be written in the form

dP/dt = K1P − CPQ

dQ/dt = −K2Q + DPQ
(5.28)

together with the initial conditions

Q = Q0 and P = P0 at time t = 0

The variables P and Q give the size of the prey and predator populations, respectively, at time t . These
two populations interact and compete. K1, K2, C, and D are positive constants. K1 relates to the rate
of growth of the prey population P , and K2 relates to the rate of decay of the predator population Q.
It seems reasonable to assume that the number of encounters of predator and prey is proportional
to P multiplied by Q and that a proportion C of these encounters will be fatal to members of the
prey population. Thus the term CPQ gives a measure of the decrease in the prey population and the
unrestricted growth in this population, which could occur assuming ample food, must be modified by
the subtraction of this term. Similarly the decrease in the population of the predator must be modified
by the addition of the term DPQ since the predator population gains food from its encounters with its
prey and therefore more of the predators survive.
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FIGURE 5.13

Variation in the population of lynxes (dashed line) and hares (solid line) against time, beginning with 5000
hares and 100 lynxes. Accuracy 0.005.

The solution of the differential equation depends on the specific values of the constants and will
often result in nature in a stable cyclic variation of the populations. This is because as the predators
continue to eat the prey, the prey population will fall and become insufficient to support the predator
population which itself then falls. However, as the predator population falls, more of the prey survive
and consequently the prey population will then increase. This in turn leads to an increase in the predator
population since it has more food and the cycle begins again. This cycle maintains the predator and prey
populations between certain upper and lower limits. The Volterra differential equations can be solved
directly but this solution does not provide a simple relation between the size of the predator and prey
populations; therefore, numerical methods of solution should be applied. An interesting description of
this problem is given by Simmons (1972).

We now use MATLAB to study the behavior of a system of equations of the form (5.28) applied to
the interaction of the lynx and its prey, the hare. The choice of the constants K1, K2, C, and D is not
a simple matter if we wish to obtain a stable situation where the populations of the predator and prey
never die out completely but oscillate between upper and lower limits. The MATLAB script below uses
K1 = 2, K2 = 10, C = 0.001, and D = 0.002, and considers the interaction of a population of lynxes
and hares where it is assumed that this interaction is the crucial feature in determining the size of the
two populations. With an initial population of 5000 hares and 100 lynxes, the script e4s505.m uses
these values to produce the graph in Fig. 5.13.

% e4s505.m
% x(1) and x(2) are hare and lynx populations.
simtime = input(’enter runtime ’);
acc = input(’enter accuracy value ’);
fv = @(t,x) [2*x(1)-0.001*x(1)*x(2); -10*x(2)+0.002*x(1)*x(2)];
initx = [5000 100]’;
options = odeset(’RelTol’,acc);
[t x] = ode23(fv,[0 simtime],initx,options);
plot(t,x(:,1),’k’,t,x(:,2),’k--’)
xlabel(’Time’), ylabel(’Population of hares and lynxes’)
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For these parameters, there is a remarkably wide variation in the populations of hares and lynxes. The
lynx population, although periodically small, still recovers following a recovery of the hare population.

5.11 HIGHER-ORDER DIFFERENTIAL EQUATIONS
Higher-order differential equations contain differential terms of second order or above, for example, the
third-order differential term d3y/dx3. Higher-order differential equations can be solved by converting
them to a system of first-order differential equations, or in some case, solved by direct methods. In
the following subsections, we describe the process of transforming from a higher-order equation to
set of first-order differential equations, and also describe one direct method for solving second-order
differential equations.

5.11.1 CONVERSION TO A SET OF SIMULTANEOUS FIRST-ORDER DIFFERENTIAL
EQUATIONS

The process of converting a higher-order differential equation to a set of first-order simultaneous equa-
tions is best described by an example. To illustrate this, consider the third-order differential equation

d3u/dx3 − cd2u/dx2 + (df/du)(du/dx) − (b/c)u = 0 (5.29)

where f = u(1 − u)(u − a), 0 < a < 1, and b > 0.
This equation describes a simplified model of the behavior of pulses in a squid axon (Iqbal, 1999).
We require the derivative of f . Thus

df/du = (1 − u)(u − a) + u(−1)(u − 1) + u(1 − u) = −3u2 + 2(a + 1)u − a

If we substitute v = du/dx, w = dv/dx = d2u/dx2 then (5.29) becomes

du/dx = v

dv/dx = w

dw/dx = cw + 3u2 − 2(a + 1) + av + (b/c)u

(5.30)

Thus, the third-order differential equation has been replaced by a system of three first-order differ-
ential equations.

If we have an nth-order differential equation of the form

and
ny/dtn + an−1d

n−1y/dtn−1 + . . . + a0y = f (t, y) (5.31)

by making the substitutions

P0 = y and dPi−1/dt = Pi for i = 1, 2, . . . , n − 1 (5.32)

(5.31) becomes

andPn−1/dt = f (t, y) − an−1Pn−1 − an−2Pn−2 − . . . − a0P0 (5.33)
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Now (5.32) and (5.33) together constitute a system of n first-order differential equations. Initial values
will be given for (5.31) in terms of the various order derivatives Pi for i = 1,2, ..., n − 1 at some
initial value t0 and these can easily be translated into initial conditions for the system of Eqs. (5.32)
and (5.33). In general, the solutions of the original nth order differential equation and the system of
first-order differential equations, (5.32) and (5.33), are the same. In particular, the numerical solution
will provide the values of y for a specified range of t . An excellent discussion of the equivalence of
the solutions of the two problems is given in Simmons (1972). We can see from this description that
any order differential equation of the form (5.31) with given initial values can be reduced to solving
a system of first-order differential equations. This argument is easily extended to the more general
nth-order differential equation by making exactly the same substitutions as above in

dny/dtn = f (t, y, y′, . . . y(n−1))

where y(n−1) denotes the (n − 1)th-order derivative of y.

5.11.2 NEWMARK’S METHOD
Newmark’s method, (Newmark, 1959), allows the direct solution of a second-order differential equa-
tion or a system of second-order differential equations without the need for the transformation to a
pair of simultaneous first-order differential equations. The method may be applied in various fields of
engineering, in particular to dynamic response systems. We begin the derivation of Newmark’s method
by considering a system of p second-order differential equations:

M
d2u
dt2

+ C
du
dt

+ Ku = f(t)

or using dashed notation:

Mu′′ + Cu′ + Ku = f(t) (5.34)

together with the initial conditions that u = u(0) and u′ = u′(0) at time t = 0. Here, if M, C, and K
are arrays of constant coefficients and the function f(t) is a function of time only, then the equations
are linear differential equations, otherwise they are non-linear differential equations. We will deal with
linear differential equations case only. The initial development of Newmark’s method uses the mean
value theorem for u, one element of u, and which may be stated as follows. There exists a scalar value
β such that:

u(t + �t) − u(t) = u′(t + β�t)�t

where the dash denotes the derivative of u and �t is the time increment.
Newmark used the standard Taylor’s series expansion of the functions u(t + �t) and u′(t + �t) as

far as the third-order derivative of u. Denoting u(t + �t) by un+1 and u(t) by un, these are given by:

un+1 = un + u′
n�t + u′′

n

(�t)2

2! + u′′′
n

(�t)3

3! + ... (5.35)

u′
n+1 = u′

n + u′′
n�t + u′′′

n

(�t)2

2! ... (5.36)
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Applying the generalized mean value theorem we may write these equations as:

un+1 = un + u′
n�t + u′′

n

(�t)2

2! + βu′′′
n (�t)3 + ... (5.37)

u′
n+1 = u′

n + u′′
n�t + γ u′′′

n (�t)2 + ... (5.38)

where there exit 0 ≤ γ ≤ 1 and 0 ≤ β ≤ 1 such that these equations are true.
The third derivative u′′′, if linear, may be written:

u′′′
n+1 = (u′′

n+1 − u′′
n)/�t

So far we have considered the third derivative of a single variables u. However, if we are considering
a system of p differential equations, then u must be generalized to a column vector of p variable, u.
Thus the previous equation becomes

u′′′
n+1 = (u′′

n+1 − u′′
n)/�t

Substituting for each element of u′′′ in (5.38) in turn, and collecting the values of u′
n+1 into a column

vector, gives:

u′
n+1 = u′

n + �t(1 − γ )u′′
n + �tγ u′′

n+1 (5.39)

and 0 ≤ γ ≤ 1.
Now, substituting for each element of u′′′

n+1 in (5.37) and collecting the values of un+1 into a column
vector gives

un+1 = un + �tu′
n + (1 − 2β)

(�t)2

2
u′′

n + β(�t)2u′′
n+1 (5.40)

As above, we place a constraint on the values of β, 0 ≤ 2β ≤ 1 and so 0 ≤ β ≤ 1/2
We now have formulae for velocities, (5.39) and displacements (5.40). We can obtain a formula for

accelerations from the original differential equation, (5.34), thus:

u′′
n+1 = M−1(f(tn+1) − Cu′

n+1 − Kun+1) (5.41)

Thus the equations give formulae for displacement, velocity and acceleration. However since these
are implicit they must be reformulated so that we obtain expressions for the updated values in terms of
the previously known values at step n. This can be achieved by algebraic manipulation. Rearranging
Eq. (5.40) to provide an expression for u′′

n+1 gives:

β(�t)2u′′
n+1 = un+1 − un − �tu′

n − (1 − 2β)((�t)2/2)u′′
n

Now dividing this equation by β(�t)2 gives:

u′′
n+1 = (un+1 − un)/(β(�t)2) − u′

n/(β�t) − (1/(2β) − 1)u′′
n (5.42)

Inserting the expression for u′′
n+1 from (5.42) into (5.39) gives:

u′
n+1 = γ (un+1 − un)/(β�t) + u′

n(1 − γ /β) + �tu′′
n(1 − γ /(2β)) (5.43)
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We can now insert the explicit expressions for u′′
n+1 and u′

n+1 from (5.42) and (5.43) into the
original second-order differential equation (5.34) to obtain:

M
[
(un+1 − un)/(β(�t)2) − u′

n/(β�t) − (1/(2β) − 1)u′′
n

]
...

+ C
[
(un+1 − un)γ /(β�t) + u′

n(1 − γ /β) + �tu′′
n(1 − γ /(2β))

]
...

+ Kun+1 = f(tn+1) (5.44)

Now rearranging (5.44) as an equation for un+1 we obtain the equation:

Aun+1 = Bn (5.45)

and thus un+1 = A−1Bn.
This is an explicit expression for un+1 in terms of values at an earlier cycle. Where A and Bn are

defined as follows:

A = M
β(�t)2

+ γ C
β�t

+ K (5.46)

Bn = f(tn+1) + M
[

un

β(�t)2
+ u′

n

β�t
+
(

1

2β
− 1

)
u′′

n

]
...

+ C
[

γ un

β�t
− u′

n

(
1 − γ

β

)
− �tu′′

n

(
1 − γ

2β

)]
(5.47)

Note that once β and �t are given specific numerical values, A is an array of constant values for a
particular set of differential equations. This, of course, is not the case for Bn which changes with each
iteration. Having determined un+1 we use Eqs. (5.42) and (5.43) to determine u′′

n+1 and u′
n+1.

Knowing u′′
n+1 we can determine u′

n+1 the iterative process can then be continued. We now proceed
in this way for the number of iterations required.

It remains to choose values for γ and β. An undamped system (that is C = 0) is conditionally stable

if γ ≥ 1/2, and unconditionally stable if γ ≥ 1/2 and β ≥ 1
4

(
γ + 1

2

)2
. However, γ > 1/2 introduces

artificial damping into the solution, and so Newmark chose γ = 1/2 and β = 1/4. This is sometimes
called the average acceleration method and it is unconditionally stable, meaning that the method will
converge for all time increments. If β is chosen to be 1/6 the method is called the linear acceleration
method, but it is only conditionally stable.

It is important to consider the stability of Newmark’s method, i.e. the conditions under which the
algorithm will converge to the correct solution. In certain circumstances Newmark’s method is uncon-
ditionally stable, this means that the method will converge for all time increments.

This is the case if the following condition is satisfied:

2β ≥ γ ≥ 1/2 (5.48)

For example β = 1/2 and γ = 1/2 satisfy this condition. But it is important to note that certain val-
ues of γ do introduce significant errors in the computation process. The method is called conditionally
convergent when convergence is guaranteed only for a limited range of the step size. This condition is
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given by:

�t ≤ 1

ωmax

√
γ
2 − β

(5.49)

where β ≤ 1/2 and γ ≥ 1/2.
The value ωmax can be calculated from the characteristic equation or the eigenvalue problem of the

differential equations.
The following MATLAB function, newmark, implements this procedure.

function [tp,x] = newmark(M,C,K,F,tspan,n,x0,xd0)

% M, C, K are matrices multiplying xddot, xdot and x repectively

% F is column vector of exciations. x0, xd0 are initial x0 and xd vectors

% tspan = [t_initial t_final]; n is tspan/t_increment

dt = (tspan(2)-tspan(1))/n;

tp(1) = tspan(1);

x(:,1) = x0’;

xd(:,1) = xd0’;

gamma = 1/2; beta = 1/4;

A = (1/(beta*dt^2))*M+(gamma/(beta*dt))*C+K; invA = inv(A);

xdd(:,1) = inv(M)*(F(:,1)-C*xd(:,1)-K*x(:,1));

for i = 1:n

B = (F(:,i+1)+...

M*((1/(beta*dt^2))*x(:,i)+(1/(beta*dt))*xd(:,i)+ ...

(1/(2*beta)-1)*xdd(:,i))+C*((gamma/(beta*dt))*x(:,i)+...

(gamma/beta-1)*xd(:,i)+(gamma/beta-2)*(dt/2)*xdd(:,i)));

x(:,i+1) = invA*B;

xdd(:,i+1) = (1/(beta*dt^2))*(x(:,i+1)-x(:,i))...

-(1/(beta*dt))*xd(:,i)-((1/(2*beta))-1)*xdd(:,i);

xd(:,i+1) = xd(:,i)+(1-gamma)*dt*xdd(:,i)+gamma*dt*xdd(:,i+1);

tp(i+1) = tp(i)+dt;

end

x = x’;

We now illustrate the application of Newmark’s method to solving the system shown in Fig. 2.8.
The equations of motion for this system are given in (2.35) and these equations can be written in matrix
form as

Mẍ + Kx = 0

For the purposes of this illustration, we will add an external force to the system given by f(t) and a
damping matrix, C, so that the above equation becomes

Mẍ + Cẋ + Kx = f(t)
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M and K are given by (2.38) and repeated here for convenience.

M =
⎡
⎣ 10 0 0

0 20 0
0 0 30

⎤
⎦ kg and K =

⎡
⎣ 45 −20 −15

−20 45 −25
−15 −25 40

⎤
⎦ kN/m

x lists the displacements of the three coordinates. We will make C = 3 × 10−2K and apply a half sine
pulse of 0.29 s duration with a peak value of 50 N at coordinate x3. The MATLAB script e4s506.m calls
both newmark and ode45 to solve this problem.

%e4s506.m
clear all
t_init = 0; t_final = 3;
t_incr = 0.005;
n = (t_final-t_init)/t_incr;
tt = t_init:t_incr:t_final;
trange = [t_init t_final];
M = [10 0 0;0 20 0;0 0 30];
K = 1e3*[45 -20 -15;-20 45 -25;-15 -25 40];
C = 3e-2*K;
F(1,:) = 0*tt;
F(2,:) = 0*tt;
omega = pi/.29;
F(3,:) = 50*sin(omega*tt);
for j = 1:n

pulse(j) = sin(omega*tt(j));
if tt(j) > pi/omega

pulse(j) = 0;
end

end
F(3,1:n) = 50*pulse;
x0 = [0 0 0];
xd0= [0 0 0];
[tp,x1] = newmark(M,C,K,F,trange,n,x0,xd0);
x1 = 1000*x1;
figure(1), plot(tp,x1(:,1),’k’,tp,x1(:,2),’k’,tp,x1(:,3),’k’,tp,0*tp,’k’)
xlabel(’Time, s’)
ylabel(’x, mm’)
axis([0 3 -5 10])
hold on
figure(1), plot(tt(1:60),5*pulse(1:60),’.k’)
hold off
[t,x2] = ode45(’f10’,[t_init:t_incr:t_final],[0 0 0 0 0 0]);
x2 = 1000*x2;
d(:,1) = (x1(:,1)-x2(:,1));
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FIGURE 5.14

Graph showing the three coordinate responses of a
mass-spring-damper system, shown by full lines,
when excited by a half sine pulse, shown by a dotted
line.

FIGURE 5.15

Plot showing the difference between the Newmark
and 4th-order Runge–Kutta method solutions for the
three coordinates.

d(:,2) = (x1(:,2)-x2(:,2));

d(:,3) = (x1(:,3)-x2(:,3));

figure(2), plot(tp,d(:,1),’k’,tp,d(:,2),’k’,tp,d(:,3),’k’,tp,0*tp,’k’)

xlabel(’Time, s’)

ylabel(’Difference, mm’)

axis([0 3 -1e-2 1e-2])

The function f10, required by function ode45, is as follows:

function yprime = f10(t,y)

m = [10 0 0;0 20 0;0 0 30];

k = 1e3*[45 -20 -15;-20 45 -25;-15 -25 40];

c = 3e-2*k; f =[0; 0; 50];

omega = pi/.29;

pulse = sin(omega*t);

if t > pi/omega

pulse = 0;

end

A = [zeros(3,3) eye(3,3); -m\k -m\c];

b = [zeros(3,1); m\f*pulse];

yprime = A*y+b;

Running script e4s506.m generates Figs. 5.14 and 5.15. Fig. 5.14 shows the response of the three
coordinates and the half sine pulse. The pulse is scaled a factor of 10 in order to display on the graph.
Fig. 5.15 shows the difference between the output of newmark and ode45. It is seen that the maximum
difference is 0.006 mm.
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5.12 CHAOTIC SYSTEMS
Chaos arises in several disciplines, including meteorology, physics, environmental science, engineer-
ing, economics, biology and ecology. Because of this it is perhaps surprising that chaotic motion was
not properly recognized until the 1960s.

Chaotic systems are difficult to define. Essentially they are dynamic systems that are highly sensi-
tive to small differences in their initial conditions and also to rounding errors in numerical computation.
These differences produce widely diverging outcomes for such systems. In 1972 Edward Lorenz pre-
sented a talk to the American Association for the Advancement of Science entitled “Predictability:
Does the Flap of a Butterfly’s Wings in Brazil Set a Tornado in Texas?”. The theme of this presentation
was that small changes in the state of the atmosphere can result in large differences in its later states.
The term butterfly effect has entered popular culture as a symbol of chaos.

Chaos occurs even though such systems are deterministic, meaning that their future behavior is fully
determined by their initial conditions, with no random elements involved. Given exactly the same initial
conditions, the same result is obtained. Thus, despite its “random” appearance, chaos is a deterministic
outcome.

A simple example of a chaotic system quoted by Lorenz (1993) is a pin ball machine. At the start
of the game, the ball is given an initial velocity. The ball then rolls through an array of pins. Striking a
pin changes the ball’s direction and the ball subsequently strikes other pins in the array. The slightest
change in the initial velocity of the ball will cause it to strike different pins and take a totally different
route through the array of pins.

5.12.1 THE LORENZ EQUATIONS
As an example of a system of three simultaneous equations, we consider the Lorenz system. This
system has a number of important applications including weather forecasting. The system has the
form

dx/dt = s (y − x)

dy/dt = rx − y − xz

dz/dt = xy − bz

subject to appropriate initial conditions. As the parameters s, r , and b are varied through various ranges
of values, the solutions of this system of differential equations vary in form. In particular, for certain
values of the parameters the system exhibits chaotic behavior. To provide more accuracy in the com-
putation process we use the MATLAB function ode45 rather than ode23. The MATLAB script e4s507.m
for solving this problem is given below.

% e4s507.m Solution of the Lorenz equations
r = input(’enter a value for the constant r ’);
simtime = input(’enter runtime ’);
acc = input(’enter accuracy value ’);
xprime = @(t,x) [10*(x(2)-x(1)); r*x(1)-x(2)-x(1)*x(3); ...

x(1)*x(2)-8*x(3)/3];
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FIGURE 5.16

Solution of Lorenz equations for r = 126.52, s = 10,
and b = 8/3 using an accuracy of 0.000005 and
terminating at t = 8.

FIGURE 5.17

Solution of Lorenz equations where each variable is
plotted against time. Conditions are the same as those
used to generate Fig. 5.16. Note the unpredictable
nature of the solutions.

initx = [-7.69 -15.61 90.39]’;

tspan = [0 simtime];

options = odeset(’RelTol’,acc);

[t x] = ode45(xprime,tspan,initx,options);

% Plot results against time

figure(1), plot(t,x,’k’)

xlabel(’Time’), ylabel(’x’)

figure(2), plot(x(:,1),x(:,3),’k’)

xlabel(’x’), ylabel(’z’)

The results of running script e4s507.m are given in Figs. 5.16 and 5.17. Fig. 5.16 is characteristic of
the Lorenz equations and shows the complexity of the relationship between x and z. Fig. 5.17 shows
how x, y, and z change with time.

For r = 126.52 and for other large values of r the behavior of this system is chaotic. In fact for
r > 24.7 most orbits exhibit chaotic wandering. The trajectory passes around two points of attrac-
tion, called strange attractors, switching from one to another in an apparently unpredictable fashion.
This appearance of apparently random behavior is remarkable considering the clearly deterministic
nature of the problem. However, for other values of r the behavior of the trajectories is simple and
stable.

We now consider the case of the Lorenz equations with s = 10, b = 8/3, and r = 28.
Fig. 5.18 shows the solution of the Lorenz equations with initial conditions of x = [5 5 5] and
x = [5.0091 4.9997 5.0060]. Fig. 5.19 shows the solution of Lorenz equations with the initial con-
ditions x = [5 5 5] but with two different accuracies; the default accuracy of the MATLAB function
ode45; namely an absolute tolerance of 10−6 and a relative tolerance of 10−3, and an increased accu-
racy with an absolute tolerance of 10−10 and a relative tolerance of 10−8.
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FIGURE 5.18

Solution of Lorenz equations for r = 28, s = 10, and
b = 8/3. Initial conditions x = [5 5 5] shown by the full
line, and x = [5.0091 4.9997 5.0060] shown by the
dashed line. Note the sudden divergence of the two
solutions from each other and unpredictable nature of
the solutions.

FIGURE 5.19

Solution of Lorenz equations for r = 28, s = 10, and
b = 8/3. The full line shows the solution using the
default accuracy of the MATLAB Runge–Kutta 4/5
function. The dashed line shows a higher accuracy
solution. Note the sudden divergence of the two
solutions from each other and unpredictable nature of
the solutions.

5.12.2 DUFFING’S EQUATION
The Duffing oscillator is described by Duffing’s equation: a second-order differential equation of the
form

mẍ + cẋ + kx + hx3 = f (t)

This equation might represent, for example, an electric circuit or a mechanical oscillator. In a me-
chanical oscillator, m is the system mass, c is the viscous damping coefficient, k and h are stiffness
coefficients and f (t) is the force applied to the system. This force is a function of time, t . Duffing’s
equation is, of course, a non-linear differential equation since it contains a term in x3. The equation can
be solved approximately by seeking a series solution and considering only a small number of terms in
the series. These approximate solutions can be very revealing and provide information about the free
vibration of the oscillator by setting f (t) to zero, or the system response to a non-zero force f (t).
Here we seek a numerical solution using the MATLAB function ode45. In order to use ode45 we
must transform the second-order differential equation into a pair of first-order differential equations
thus

mu̇ = f (t) − cu − kx − hx3 and ẋ = u

We consider two cases. In each case we assume m = 1 kg, c = 5 Ns/m, k = −5000 N/m, h =
50 × 106 N/m3, and f = 50 sin(ωt) N. In each case only the frequency of the applied force and the
initial conditions are changed. The following script e4s508.m solves Duffing’s equation and generates
Figs. 5.20–5.25.
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% e4s508.m
clear all
close all
% Solution of Duffing’s equation
% x_ddot+c*x_dot+k*x+h*x^3 = f*cos(omega*t)
c = 10; k = -5000; h = 50e6; f = 30;
% Case 1 omega = 100
omega = 100;
omega_Hz = omega/2/pi;
qprime = @(t,q)[q(2); -c*q(2)-k*q(1)-h*q(1)^3+f*cos(omega*t)];
dt = 0.001; nt = 8192; T = nt*dt;
t = 0:dt:(nt-1)*dt;
[t q] = ode45(qprime,[0:dt:(nt-1)*dt],[0 0]);
figure(1), plot(t,1000*q(:,1),’k’,t,5*cos(omega*t),’k--’)
axis([2 3 -25 25])
xlabel(’Time, s’)
ylabel(’Displacement, mm’)
grid
% Case 2 omega = 120
omega = 120;
omega_Hz = omega/2/pi;
qprime = @(t,q)[q(2); -c*q(2)-k*q(1)-h*q(1)^3+f*cos(omega*t)];
[t q11] = ode45(qprime,[0:0.001:1],[0 0]);
[t q12] = ode45(qprime,[0:0.001:1],[0.001 1]);
figure(2), plot(t,1000*q11(:,1),’k’,t,1000*q12(:,1),’k--’)
grid
xlabel(’Time, s’)
ylabel(’Displacement, mm’)
[t4 q4] = ode45(qprime,[0:0.001:2],[0.001000 0]);
[t5 q5] = ode45(qprime,[0:0.001:2],[0.001001 0]);
[t6 q6] = ode45(qprime,[0:0.001:2],[0.001002 0]);
figure(3), plot(t4,1000*q4(:,1),’k’,t5,1000*q5(:,1),’k--’,t6,1000*q6(:,1),’k-.’)
grid
axis([0 2 -20 20])
xlabel(’Time, s’)
ylabel(’Displacement, mm’)
[t q] = ode45(qprime,[15:0.001:20],[0 0]);
x = 1000*q(:,1); v = q(:,2); theta = omega*t;
figure(4); plot(x,v,’k’)
grid
xlabel(’Displacement, mm’)
ylabel(’Velocity, m/s’)
[t1 q1] = ode45(qprime,[0:2*pi/omega:400],[0 0]);
figure(5), plot(1000*q1(300:end,1),q1(300:end,2),’k.’)
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FIGURE 5.20

Case 1: The full line is the output from Duffing
oscillator. ω = 100 rad/s (15.92 Hz). Zero initial
conditions. The dashed line is the input force,
arbitrarily scaled in amplitude.

FIGURE 5.21

Output from Duffing oscillator. ω = 120 rad/s. Full line
gives output with zero initial conditions. Dashed line
give output with an initial displacement of 1 mm and
an initial velocity of 1 m/s.

axis([-20 20 -1.1 1.1])
xlabel(’Displacement, mm’)
ylabel(’Velocity, m/s’)
[t1 q1] = ode45(qprime,[0:2*pi/omega:400],[0 0]);
[t2 q2] = ode45(qprime,[0:2*pi/omega:400],[0.001 1]);
figure(6)
plot(1000*q2(775:25:2000,1),q2(775:25:2000,2),’ko’,1000*q1(775:25:2000,1),...
q1(775:25:2000,2),’k+’)
axis([-20 20 -1.1 1.1])
xlabel(’Displacement, mm’)
ylabel(’Velocity, m/s’)

Case 1. Input frequency ω = 100 rad/s (15.92 Hz). With the values of the two initial conditions
equal to zero, the oscillator output is shown in Fig. 5.20. Also shown in the figure is the input force, its
amplitude arbitrarily scaled to fit the graph. It can be seen that the output frequency is about one third
of the input frequency. This can be confirmed by using the discrete Fourier transform (see Chapter 8).
The Fourier transform shows the major frequency component in the output is ω/3 and there are also
smaller frequency components at ω and 5ω/3. However, introducing an initial velocity of 1 m/s causes
the ω/3 and 5ω/3 frequency components in the output to vanish so that the ω frequency component is
dominant. There is then also a small 2ω frequency component present.

Case 2. Input frequency ω = 120 rad/s (19.10 Hz). At this excitation frequency the character of
the response has changed completely, as shown in Fig. 5.21. The output appears to be unpredictable.
Furthermore, the output with initial conditions of velocity and displacement equal to zero, is strikingly
different from the output with an initial displacement of 1 mm and an initial velocity of 1 m/s ex-
cept, perhaps, in the overall amplitude. Even more remarkable are the three plots shown in Fig. 5.22.
In each case the initial velocity is zero but the three initial displacements are 1 mm, 1.001 mm and
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FIGURE 5.22

Output from Duffing oscillator. ω = 120 rad/s. Solution
with zero initial velocity and initial displacements of 1,
1.001, and 1.002 mm. (Shown by full, dashed and
dot-dashed lines respectively.)

FIGURE 5.23

Output from Duffing oscillator. Phase plane plot.
ω = 120 rad/s.

1.002 mm. The outputs differ from each other even though the difference in the initial displacements
are only 1 and 2 µm. Clearly, this is an example of chaotic motion. If we plot the output displacement
against the output velocity for a short period, Fig. 5.22 is obtained. It is difficult to draw any useful
conclusions from this plot, and so we plot the so-called Poincaré map or section to clarify the situation.
The output displacement and velocity are sampled once per cycle of the excitation or input signal fre-
quency, for a large number of cycles and the resulting large number of sample points is plotted in the
displacement–velocity plane. Thus if T = 2π/ω then the samples are taken at multiples of T , that is
Ts = 0, T , 2T , ..., nT . The Poincaré map for this system is shown in Fig. 5.23. We see that there are
areas where points cluster and other areas devoid of values. If we change the initial displacement from
zero to 1 mm and the initial velocity from zero to 1 m/s the Poincaré map appears unchanged. How can
this be since the output is so influenced by the initial condition, as shown in Fig. 5.21? The explanation
is that if we plot a small number of the output points at the same instances of time but with the two
different sets of initial conditions, the points on the Poincaré map are in different locations but, none
the less, they are confined in the same regions. This is shown in Fig. 5.24. A large number of points
from either output will create the same Poincaré map but the points generated from the two different
sets of initial conditions will not be coincident with each other in the Poincaré map. The Poincaré map
helps to clarify the relationship between displacement and velocity.

5.13 DIFFERENTIAL EQUATIONS APPLIED TO NEURAL NETWORKS
Different types of neural networks have been used to solve a wide range of problems. Neural net-
works often consist of several layers of “neurons” that are “trained” by fixing a set of weights. These
weights are found by minimizing the sum of squares of the difference between actual and required out-
puts. Once trained, the networks can be used to classify a range of inputs. However, here we consider
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FIGURE 5.24

Poincaré map showing output from Duffing oscillator.
ω = 120 rad/s.

FIGURE 5.25

Output from Duffing oscillator showing where points
from two solutions lie on a Poincaré map. + and o
indicate points generated from two different initial
conditions with ω = 120 rad/s.

a different approach that uses a neural network that may be based directly on considering a system
of differential equations. This approach is described by Hopfield and Tank (1985, 1986), who demon-
strated the application of neural networks to solving specific numerical problems. It is not our intention
to provide the full details or proofs of this process here.

Hopfield and Tank, in their 1985 and 1986 papers, utilized a system of differential equations which
take the form

dui

dt
= −ui

τ
+

n−1∑
j=0

TijVj + Ii for i = 0,1, ... n − 1 (5.50)

where τ a constant usually taken as 1. This system of differential equations represents the interaction
of a system of n neurons, and each differential equation is a simple model of a single biological neuron.
(This is only one of a number of possible models of a neural network.) Clearly, to establish a network
of such neurons, they must be able to interact with each other and this interaction must be represented
in the differential equations. The Tij provide the strengths of the interconnections between the ith and
j th neuron and the Ii provide the externally applied current to the ith neuron. These Ii may be viewed
as inputs to the system. The Vj values provide the outputs from the system and are directly related to
the uj so that we may write Vj = g(uj ). The function g, called a sigmoidal function, may be specified,
for example, by

Vj = (1 + tanhuj )/2 for all j = 0,1, ..., n − 1

A plot of this function is given in Fig. 5.26.
Having provided such a model of a neural network, the question still remains: how can we show

that it can be used to solve specific problems? This is the key issue and a significant problem in itself.
Before we can solve a given problem using a neural network we must first reformulate our problem so
that it can be solved by this approach.
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FIGURE 5.26

Plot of sigmoid function V = (1 + tanhu)/2.

To illustrate this process, Hopfield and Tank chose as an example the simple problem of binary
conversion. That is, to find the binary equivalent of a given decimal number. Since there is no obvious
and direct relationship between this problem and the system of differential equations (5.50) which
model the neural network, a more direct link has to be established.

Hopfield and Tank have shown that the stable state solution of (5.50), in terms of the Vj , is given
by the minima of the energy function:

E = −1

2

n−1∑
i=0

n−1∑
j=0

TijViVj −
n−1∑
j=0

IjVj (5.51)

It is an easy matter to link the solution of the binary conversion problem to the minimization of the
function (5.51).

Hopfield and Tank consider the energy function

E = 1

2

⎧⎨
⎩x −

n−1∑
j=0

Vj 2j

⎫⎬
⎭

2

+
n−1∑
j=0

22j−1Vj

(
1 − Vj

)
(5.52)

Now the minimum of (5.52) will be attained when x = 
Vj 2j and Vj = 0 or 1. Clearly the first term
ensures that the required binary representation is achieved while the second term provides that the Vj

take either 0 or 1 values when the value of E is minimized. On expanding this energy function (5.52)
and comparing it with the general energy function (5.51) we find that if we make

Tij = −2i+j for i �= j and Tij = 0 when i = j

Ij = −22j−1 + 2j x

then the two energy functions are equivalent, apart from a constant. Thus the minimum of one gives the
minimum of the other. Solving the binary conversion problem expressed in this way is thus equivalent
to solving the system of differential equations (5.50) with this special choice of values for Tij and Ii .
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In fact, using an appropriate choice of Tij and Ii , a range of problems can be represented by a neural
network in the form of the system of differential equations (5.50). Hopfield and Tank have extended
this process from the simple example considered above to attempting to solve the very challenging
traveling salesman problem. The details of this are given in Hopfield and Tank (1985, 1986).

In MATLAB we may use ode23 or ode45 to solve this problem. The crucial part of this exercise
is to define the function which gives the right-hand sides of the differential equation system for the
neural network. This can be done very simply using the function hopbin below. This function gives
the right-hand side for the differential equations which solve the binary conversion problem. In the
definition of function hopbin, sc is the decimal value we wish to convert.

function neurf = hopbin(t,x)

global n sc

% Calculate synaptic current

I = 2.^[0:n-1]*sc-0.5*2.^(2.*[0:n-1]);

% Perform sigmoid transformation

V = (tanh(x/0.02)+1)/2;

% Compute interconnection values

p = 2.^[0:n-1].*V’;

% Calculate change for each neuron

neurf = -x-2.^[0:n-1]’*sum(p)+I’+2.^(2.*[0:n-1])’.*V;

This function hopbin is called by the script e4s509.m to solve the system of differential equations
which define the neural network and hence simulate its operation.

% e4s509.m

% Hopfield and Tank neuron model for binary conversion problem

global n sc

n = input(’enter number of neurons ’);

sc = input(’enter number to be converted to binary form ’);

simtime = 0.2; acc = 0.005;

initx = zeros(1,n)’;

options = odeset(’RelTol’,acc);

%Call ode45 to solve equation

[t x] = ode45(’hopbin’,[0 simtime],initx,options);

V = (tanh(x/0.02)+1)/2;

bin = V(end,n:-1:1);

for i = 1:n

fprintf(’%8.4f’, bin(i))

end

fprintf(’\n\n’)

plot(t,V,’k’)

xlabel(’Time’), ylabel(’Binary values’)

Running this script to convert the decimal number 5 gives
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FIGURE 5.27

Neural network finds the binary equivalent of 5 using 3 neurons and an accuracy of 0.005. The three curves
show the convergence to the binary digits 1, 0, and 1.

enter number of neurons 3
enter number to be converted to binary form 5
1.0000 0.0000 0.9993

together with Fig. 5.27. This plot shows how the neural network model converges to the required
results, that is, V(1) = 1, V(2) = 0 and V(3) = 1 or binary number 101. As a further example, we
convert the decimal number 59 using 7 neurons as follows:

enter number of neurons 7
enter number to be converted to binary form 59
0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.9999

Again, a correct result.
This is an application of neural networks to a trivial problem. A real test for neural computing is

the traveling salesman problem. The MATLAB neural network toolbox provides a range of functions to
solve neural network problems.

5.14 STIFF EQUATIONS
When the solution of a system of differential equations contains components which change at signif-
icantly different rates for given changes in the independent variable, the equation system is said to be
“stiff”. When this phenomenon is present, a particularly careful choice of the step size must be made
if stability is to be achieved.

We will now consider how the stiffness phenomenon arises in an apparently simple system of
differential equations. Consider the system given below.

dy1/dt = −by1 − cy2

dy2/dt = y1
(5.53)
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This system may be written in matrix form as

dy/dt = Ay (5.54)

The solution of (5.54) is

y1 = A exp(r1t) + B exp(r2t)

y2 = C exp(r1t) + D exp(r2t)
(5.55)

where A, B, C, and D are constants set by the initial conditions. It can easily be verified that r1 and r2
are the eigenvalues of the matrix A.

If a numerical procedure is applied to solve these systems of differential equations, the success of
the method will depend crucially on the eigenvalues of the matrix A and in particular the ratio of the
smallest and largest eigenvalues.

As an example of a matrix with widely spaced eigenvalues we can take the 8 × 8 Rosser matrix;
this is available in MATLAB as rosser. The sequence of statements

>> a = rosser; lambda = eig(a);
>> eigratio = max(abs(lambda))/min(abs(lambda))

eigratio =
3.2285e+15

produces a matrix with eigenvalue ratios of order 1016. Thus a system of ordinary first-order differen-
tial equations involving this matrix would be pathologically difficult to solve. The significance of the
eigenvalue ratio in relation to the required step size can be generalized to systems of many equations.
Consider the system of n equations

dy/dt = Ay + P(t) (5.56)

where y is an n component column vector, P(t) is an n component column vector of functions of t and
A is an n × n matrix of constants. It can be shown that the solution of this system takes the form

y (t) =
n∑

i=1

vi di exp (ri t) + s (t) (5.57)

Here r1, r2, ... are the eigenvalues and d1, d2, ... the eigenvectors of A. The vector function s(t)
is the particular integral of the system, sometimes called the steady-state solution since for negative
eigenvalues the exponential terms should die away with increasing t . If it is assumed that the rk < 0
for k = 1, 2, 3, ... and we require the steady-state solution of system (5.56), then any numerical method
applied to solve this problem may face significant difficulties, as we have seen. We must continue the
integration until the exponential components have been reduced to negligible levels and yet we must
take sufficiently small steps to ensure stability, thus requiring many steps over a large interval. This is
the most significant effect of stiffness.

The definition of stiffness can be extended to any system of the form (5.56). The stiffness ratio is
defined as the ratio of the largest and smallest eigenvalues of A and gives a measure of the stiffness of
the system.
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The methods used to solve stiff problems must be based on stable techniques. The MATLAB func-
tion ode23s uses continuous step size adjustment and therefore is able to deal with such problems,
although the solution process may be slow. If we use a predictor–corrector method, not only must this
method be stable but the corrector must also be iterated to convergence. An interesting discussion of
this topic is given by Ralston and Rabinowitz (1978). Specialized methods have been developed for
solving stiff problems, and Gear (1971) has provided a number of techniques which have been reported
to be successful. Note that although explicit methods are commonly used for stiff equations, implicit
methods can be a good choice for this type of problem.

5.15 SPECIAL TECHNIQUES
A further set of predictor–corrector equations may be generated by making use of an interpolation
formula due to Hermite. An unusual feature of these equations is that they contain second-order deriva-
tives. It is usually the case that the calculation of second-order derivatives is not particularly difficult
and consequently this feature does not add a significant amount of work to the solution of the problem.
However, it should be noted that in using a computer program for this technique the user has to supply
not only the function on the right-hand side of the differential equation but its derivative as well. To the
general user this may be unacceptable.

The equations for Hermite’s method take the form

y
(1)
n+1 = yn + h(y′

n − 3y′
n−1)/2 + h2(17y′′

n + 7y′′
n−1)/12

y
∗ (1)
n+1 = y

(1)
n+1 + 31(yn − y

(1)
n )/30

y
′ (1)
n+1 = f (tn+1, y

∗ (1)
n+1 )

(5.58)

For k = 1, 2, 3, ...

y
(k+1)
n+1 = yn + h(y

′ (k)
n+1 + y′

n)/2 + h2(−y
′′ (k)
n+1 + y′′

n)/12

This method is stable and has a smaller truncation error at each step than Hamming’s method. Thus it
may be worthwhile accepting the additional effort required by the user. We note that since we have

dy/dt = f (t, y)

then

d2y/dt2 = df/dt

and thus y′′
n , etc., are easily calculated as the first derivative of f . The MATLAB function fhermite

implements this method, and the script is given below. Note that in this function, the function f must
provide both the first and second derivatives of y.

function [tvals, yvals] = fhermite(f,tspan,startval,step)
% Hermite’s method for solving
% first order differential equation dy/dt = f(t,y).
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% Example call: [tvals, yvals] = fhermite(f,tspan,startval,step)
% The initial and final values of t are given by tspan = [start finish].
% Initial value of y is given by startval, step size is given by step.
% The function f(t,y) and its derivative must be defined by the user.
% 3 steps of Runge-Kutta are required so that hermite can start.
% Set up matrices for Runge-Kutta methods
b = [ ]; c = [ ]; d = [ ];
order = 4;
b = [1/6 1/3 1/3 1/6]; d = [0 0.5 0.5 1];
c = [0 0 0 0;0.5 0 0 0;0 0.5 0 0;0 0 1 0];
steps = (tspan(2)-tspan(1))/step+1;
y = startval; t = tspan(1);
ys(1) = startval; w = feval(f,t,y); fval(1) = w(1); df(1) = w(2);
yvals = startval; tvals = tspan(1);
for j = 2:2

k(1) = step*fval(1);
for i = 2:order

w = feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)’);
k(i) = step*w(1);

end
y1 = y+b*k’; ys(j) = y1; t1 = t+step;
w = feval(f,t1,y1); fval(j) = w(1); df(j) = w(2);
%collect values together for output
tvals = [tvals, t1]; yvals = [yvals, y1];
t = t1; y = y1;

end
%hermite now applied
h2 = step*step/12; er = 1;
for i = 3:steps

y1 = ys(2)+step*(3*fval(1)-fval(2))/2+h2*(17*df(2)+7*df(1));
t1 = t+step; y1m = y1; y10 = y1;
if i>3, y1m = y1+31*(ys(2)-y10)/30; end
w = feval(f,t1,y1m); fval(3) = w(1); df(3)=w(2);
yc = 0; er = 1;
while abs(er)>0.0000001

yp = ys(2)+step*(fval(2)+fval(3))/2+h2*(df(2)-df(3));
w = feval(f,t1,yp); fval(3) = w(1); df(3) = w(2);
er = yp-yc; yc = yp;

end
fval(1:2) = fval(2:3); df(1:2) = df(2:3);
ys(2) = yp;
tvals = [tvals, t1]; yvals = [yvals, yp];
t = t1;

end
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FIGURE 5.28

Relative error in the solution of dy/dt = y using Hermite’s method. Initial condition y = 1 when t = 0 and a
step of 0.5.

Fig. 5.28 gives the error when solving the specific equation dy/dt = y using the same step size and
starting point as for Hamming’s method – see Fig. 5.9. For this particular problem Hermite’s method
performs better than Hamming’s method.

Finally, we compare the Hermite, Hamming, and Adams–Bashforth–Moulton methods for the dif-
ficult problem

dy/dt = −10y given y = 1 when t = 0

The script e4s510.m implements these comparisons.

% e4s510.m
vg = @(t,x) [-10*x 100*x];
v = @(t,x) -10*x;
disp(’Solution of dx/dt = -10x’)
t0 = 0; y0 = 1;
tf = 1; tinc = 0.1; steps = floor((tf-t0)/tinc+1);
[t,x1] = abm(v,[t0 tf],y0,tinc);
[t,x2] = fhamming(v,[t0 tf],y0,tinc);
[t,x3] = fhermite(vg,[t0 tf],y0,tinc);
disp(’t abm Hamming Hermite Exact’);
for i = 1:steps

fprintf(’%4.2f%12.7f%12.7f’,t(i),x1(i),x2(i))
fprintf(’%12.7f%12.7f\n’,x3(i),exp(-10*(t(i))))

end

Note that for the function fhermite, we must supply both the first and second derivatives of y with
respect to t . For the first derivative, we have directly dy/dt = −10y but the second derivative d2y/dt2

is given by −10dy/dt = −10(−10y) = 100y. Consequently, the function takes the form

vg = @(t,x) [-10*x 100*x];
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The functions abm and fhamming require only the first derivative of y with respect to t and we define
function thus:

v = @(t,x) -10*x;

Running the above script provides the following results, demonstrating the superiority of the Hermite
method.

Solution of dx/dt = -10x
t abm Hamming Hermite Exact
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.10 0.3750000 0.3750000 0.3750000 0.3678794
0.20 0.1406250 0.1406250 0.1381579 0.1353353
0.30 0.0527344 0.0527344 0.0509003 0.0497871
0.40 -0.0032654 0.0109440 0.0187528 0.0183156
0.50 -0.0171851 0.0070876 0.0069089 0.0067379
0.60 -0.0010598 0.0131483 0.0025454 0.0024788
0.70 0.0023606 0.0002607 0.0009378 0.0009119
0.80 -0.0063684 0.0006066 0.0003455 0.0003355
0.90 -0.0042478 0.0096271 0.0001273 0.0001234
1.00 0.0030171 -0.0065859 0.0000469 0.0000454

One feature which may be used to improve many of the methods discussed above is step size ad-
justment. This means that we adjust the step size h according to the progress of the iteration. One
criterion for adjusting h is to monitor the size of the truncation error. If the truncation error is smaller
than the accuracy requirement, we can increase h; however, if the truncation error is too large, we can
reduce h. Step size adjustment can lead to considerable additional work; for example, if a predictor–
corrector method is used, new initial values must be calculated. The following method is an interesting
alternative to this kind of procedure.

5.16 EXTRAPOLATION TECHNIQUES
The extrapolation method described in this section is based on a similar procedure to that used in
Romberg integration, introduced in Chapter 4. The procedure begins by obtaining successive initial
approximations for yn+1 using a modified mid-point method. The interval sizes used for obtaining
these approximations are calculated from

hi = hi−1/2 for i = 1, 2, . . . (5.59)

with the initial value h0 given.
Once these initial approximations have been obtained, we can use (5.60), the extrapolation formula,

to obtain improved approximations.

Tm, k = (4mTm−1, k+1 − Tm−1, k)/(4m − 1)

for m = 1,2, . . . and k = 1,2, . . . s − m
(5.60)
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The calculations are set out in an array in much the same way as the calculations for Romberg’s method
for integration described in Chapter 4. When m = 0, the values of T0,k for k = 0,1,2, ..., s are taken as
the successive approximations to the values of yn+1 using the hi values obtained from (5.59).

The formula for calculating the approximations used for the initial values T0,k in the above array
are computed using the following equations.

y1 = y0 + hy′
0

yn+1 = yn−1 + 2hy′
n for n = 1, 2 . . . , Nk

(5.61)

Here k = 1,2, ... and Nk is the number of steps taken in the range of interest, so that Nk = 2k as the
size of the interval is halved each time. The independent variable increment between yn+1 and yn−1 is
2h. Values of this increment may lead to significant variations in the magnitude of the error. Because
of this, instead of using the final value of yn+1 given by (5.61), Gragg (1965) has suggested that at the
final step these values be smoothed using the intermediate value yn. This leads to the values for T0,k

T0, k = (yk
N−1 + 2yk

N + yk
N+1)/4

where the superscript k denotes the value at the kth division of the interval.
Alternatives to the method of Gragg are available for finding the initial values in the function

rombergx and various combinations of predictor–correctors may be used. It should be noted, how-
ever, that if the corrector is iterated until convergence is achieved, this will improve the accuracy of the
initial values but at considerable computational expense for smaller step sizes, i.e., for larger N values.
The MATLAB function rombergx implements the extrapolation method and is given below.

function [v W] = rombergx(f,tspan,intdiv,inity)
% Solves dy/dt = f(t,y) using Romberg’s method.
% Example call: [v W] = rombergx(f,tspan,intdiv,inity)
% The initial and final values of t are given by tspan = [start finish].
% Initial value of y is given by inity.
% The number of interval divisions is given by intdiv.
% The function f(t,y) must be defined by the user.
W = zeros(intdiv-1,intdiv-1);
for index = 1:intdiv

y0 = inity; t0 = tspan(1);
intervals = 2^index;
step = (tspan(2)-tspan(1))/intervals;
y1 = y0+step*feval(f,t0,y0);
t = t0+step;
for i = 1:intervals

y2 = y0+2*step*feval(f,t,y1);
t = t+step;
ye2 = y2; ye1 = y1; ye0 = y0; y0 = y1; y1 = y2;

end
tableval(index) = (ye0+2*ye1+ye2)/4;

end
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for i = 1:intdiv-1
for j = 1:intdiv-i

table(j) = (tableval(j+1)*4^i-tableval(j))/(4^i-1);
tableval(j) = table(j);

end
tablep = table(1:intdiv-i);
W(i,1:intdiv-i) = tablep;

end
v = tablep;

We can now call this function to solve dx/dt = −10x with x = 1 at t = 0. The following MATLAB

statement solves this differential equation when t = 0.5:

>> [fv P] = rombergx(@(t,x) -10*x,[0 0.5],7,1)

fv =
0.0067

P =
-2.5677 0.2277 0.1624 0.0245 0.0080 0.0068
0.4141 0.1580 0.0153 0.0069 0.0067 0
0.1539 0.0131 0.0068 0.0067 0 0
0.0125 0.0068 0.0067 0 0 0
0.0068 0.0067 0 0 0 0
0.0067 0 0 0 0 0

The final value, 0.0067, is better than any of the results achieved for this problem by other methods
presented in this chapter. It must be noted that only the final value is found; other values in a given
interval can be obtained if intermediate ranges are considered.

This completes our discussion of those types of differential equations known as initial value prob-
lems. In Chapter 6 we consider a different type of differential equation known as a boundary value
problem.

5.17 SIMULINK
Simulink is part of MATLAB and can only be used when MATLAB is installed. Simulink is used to
model, simulate, and analyze dynamic systems. The systems can be linear or non-linear, modeled in
continuous or sampled time, or a mixture of both. Simulink provides a graphical user interface that
allows the user to drag and drop the appropriate blocks in order to create the required block diagram
to model the system. The wide range of blocks in the block library comprise sources (inputs to the
system), sinks (outputs from the system) and both linear and non-linear process blocks, and connectors.
Simulink also allows the user to modify or create blocks of their own. The parameters for each block
are set by the user to be appropriate for their specific problem.

It is reasonable to ask why Simulink was developed. MATLAB provides a range of functions
to solve differential equation and hence to simulate and analyze dynamic systems. Where Simulink
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proves its value is in simulating more complicated dynamic systems, perhaps combining the dynamics
of two or more systems. A further advantage of Simulink is that it is possible to visualize a system
in terms of process block diagrams (as control engineers often do) rather than in terms of systems of
differential equations. A further advantage is the ease with which non-linear phenomena such as dead
zones, limits, hysteresis, and so on can be incorporated into the model.

In this brief introduction to Simulink we provide some examples of the way block diagrams can
be developed to simulate some simple systems. We do not give details of how the process blocks are
selected, dragged, and dropped into the model nor how connections are made between blocks, which,
in any case, is quite intuitive. The purpose of this introduction is to show how simple problems can be
represented by Simulink models. We do not provide the output from the models because in this context
the output data is only of secondary interest.

We now provide a series of Simulink examples.

Example 5.4. Suppose we wish to simulate the dynamic system described by the following second-
order differential equation:

mẍ + cẋ + kx = f0 sin(ωt) (5.62)

We begin by isolating the highest derivative of the equation to obtain

ẍ = (f0/m) sin(ωt) − (c/m)ẋ − (k/m)x (5.63)

To create the Simulink model we begin by dragging and dropping two integration process blocks,
labeled internally 1

s , see Fig. 5.29. The integration process blocks perform numerical integration. The
input to the process block (Integrator 1) is labeled x ddot and its output is x dot. This output becomes
the input to Integrator 2 and the output of this integrator is x. A connection is made from x dot to
one of the gain process block, labeled Gain c/m, set to a gain of c/m. Gain means that the signal is
increased or multiplied by this quantity to give an output (c/m)x dot. Similarly x is connected to the
other gain process block, labeled Gain k/m, with a gain of k/m to give an output of (k/m)x. At the left
of the Simulink diagram is a process block that generates a sine wave, labeled Sine Wave. The output
from this block is a sine wave of amplitude f/m, and is connected to a summing unit. Also connected to
the summing unit is the negatives of (c/m)x dot and (k/m)x. From (5.63), (f0/m) sin(ωt) − (c/m)ẋ +
(k/m)x is equal to ẍ, so the output of the summing block is x ddot which is connected to the input of
integrator 1. Finally, x and x dot are connected to a Scope block, labeled Scope 1, which, as the name
suggests, displays x and ẋ against the simulation time.

Before we run the model, we must open the Sine Wave block and set the frequency and amplitude
of the input; we must also open the integrators to specify any initial conditions required, in this case
the initial velocity at Integrator 1 and initial the displacement at Integrator 2, and open the Gain blocks
to set the required gains. Finally, we open the Model Simulation Parameters and set the start and end
times of the simulation, the ODE solver to be used (ode45 in this case), relative and absolute accuracy,
step size, and so on.

Rearranging (5.62) to isolate the ẍ terms is not the only arrangement we might consider for a
Simulink model. We could arrange (5.62) to isolate the x term as thus:

x = (f0/k) sin(ωt) − (m/k)ẍ − (c/k)ẋ
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FIGURE 5.29

Model of a second-order differential equation, (5.62).

Simulating this equation would require two stages of differentiation. Although Simulink provides
a differentiation process block, one should not simulate (5.62) in this way. Numerical differentiation is
a noisy process that will lead to errors.

Example 5.5. In Example 5.4, we have used two integrator process blocks to determine the velocity
and displacement from acceleration. Basically, we need as many stages of integration as the order of
the ordinary differential equation. Because many ordinary differential equations arising from real world
problems are second order, Simulink provides a second-order integrator, that is a block that combines
two integrator blocks. For example, suppose we wish to simulate

ẍ + F signẋ + kx = 0

Rearranging this equation in terms of ẍ gives

ẍ = −F signẋ − kx

In this example, there is no external excitation, only the non-zero initial displacements and/or ve-
locities cause the subsequent changes in x. Also, there is no ẋ term. Energy dissipation is by a constant
force F which opposes the motion and changes direction with the sign of ẋ. This form of energy
dissipation is sometimes called Coulomb damping. The Simulink model for the system is shown in
Simulink Fig. 5.30.

Note the ease with which we are able to model the non-linear Coulomb damping.

Example 5.6. In this example, we simulate the same system as simulated in Example 5.4. However,
rather than a simulation based on the ODE that describes the system, we begin by converting (5.62)
to an equivalent transfer function. To do this we take the Laplace Transform of (5.62). The Laplace
transform is described in Section 10.12 of Chapter 10.
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FIGURE 5.30

Model of a second-order differential equation with Coulomb damping.

FIGURE 5.31

A second-order system modeled by a transfer function.

Denoting the Laplace transform of x(t) by X(s) then L(x(t)) = X(s) and L(ẋ(t)) = sX(s) + x(0)

and L(ẍ(t)) = s2X(s)+sx(0)+v(0) and where x(0) and v(0) are the initial displacement and velocity,
respectively. Applying this transform to (5.62) and assuming the initial conditions are zero gives

(ms2 + cs + k)X(s) = F(s) (5.64)

Rearranging, (5.64) becomes

X(s)

F (s)
= 1

ms2 + cs + k
(5.65)

The expression on the right side of (5.65) is the transfer function for (5.62). Comparing Simulink
Fig. 5.31 with Simulink Fig. 5.29, we see that the two integrators and two gain processes have been
replaced by a Simulink transfer function block.

Example 5.7. We now give the Simulink model for Van der Pol’s equation. Van der Pol’s equation is

ẍ − μ(1 − x2)ẋ + x = 0

The equation named after a Dutch electrical engineer who investigated the performance of an elec-
trical circuit described by this equation. The equation has a non-linear damping term. To model it in
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FIGURE 5.32

Model of Van der Pol’s equation.

Simulink we express the equation as

ẍ = μ(1 − x2)ẋ − x

The block diagram, Simulink Fig. 5.32 shows to stages of integration (using a double integration
block). The x output is connected to both inputs of the product block to give the output signal x
squared. In a summing block, this output is subtracted from unity. The output from the summing block
is multiplied by x dot and then x is subtracted from it to generate x ddot; the input to the integrator.
Note that instead of using a Scope block to view x or x dot against time, here we use an XY block
and view x against x dot. If we start with a small initial condition, the oscillations grow and reach a
limit cycle beyond which the vibration cannot grow. In contrast, if we start with a large initial condition
the vibrations level decreases until a limit cycle is reached, below which the vibration level cannot
fall. By examining the coefficient of ẋ we can intuitively recognize this. When x2 < 1 the ẋ term is
negative and the vibration level will increase. When x2 > 1 the ẋ term is positive and vibration levels
will decrease.

Example 5.8. Consider the equations

m11ẍ + c11ẋ + c12ẏ + k11x + k12y = X(t) (5.66)

m22ÿ + c21ẋ + c22ẏ + k21x + k22y = Y(t) (5.67)

We will initially neglect the damping, (ẋ and ẏ), terms. Thus, with some rearrangement (5.66) and
(5.67) become

ẍ = −(k11/m11)x − (k12/m11)y + X(t) (5.68)

ÿ = −(k21/m22)x − (k22/m22)y + Y(t) (5.69)
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FIGURE 5.33

Model of a pair of simultaneous ordinary differential equations.

Fig. 5.33 illustrates the difficulty of simulating several simultaneous ODEs as separate ODE with
interconnections. In this case we only have two equations and we have neglected ẋ and ẏ terms, but
the flow diagram is already cluttered; many more ordinary differential equations in the system would
make assembling a process diagram impossible.

However, if the two simultaneous equations, (5.66) and (5.67), are written in matrix notation we
have

Mq̈ + Cq̇ + Kq = f(t) (5.70)

where q is a vector of system displacements, [x y]T, M, C, and K are the system mass, damping,
and stiffness matrices and f(t) is a vector of input forces, [X Y ]T. The easiest way of simulating this
system in Simulink is to use a space-state representation. The classical state space model for a system
is described by:

ẋ = Ax + Bu (5.71)

y = Cx + Du

where A is called the state or system matrix, B is the input matrix, C is the output matrix and D is
called the feed-through matrix. The vector x is the state vector, u is the input vector, and y is the output
vector.

The question is, how do we rearrange (5.70) into a state space form? To obtain the state space
representation we begin by multiplying (5.70) by M−1 to give

q̈ = −M−1Cq̇ − M−1Kq + M−1f(t) (5.72)
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FIGURE 5.34

Two simultaneous ordinary differential equations modeled in state space form.

We now let q = x1, q̇ = x2, and f(t) = u(t) so that (5.72) becomes

ẋ2 = −M−1Cx2 − M−1Kx1 + M−1u(t) (5.73)

Noting that

ẋ1 = x2 (5.74)

we can combine (5.73) and (5.74) to give

[
ẋ1

ẋ2

]
=
[

0 I
−M−1K −M−1C

][
x1
x2

]
+
[

0
M−1

]
u(t) (5.75)

and

q = [I 0
][x1

x2

]
+ 0u(t) (5.76)

Comparing (5.75) and (5.76) with (5.71) we see that

A =
[

0 I
−M−1K −M−1C

]
x =

[
q
q̇

]
B =

[
0

M−1

]
u(t) =

[
0
I

]
f(t)

and

y =
[

q
0

]
C = [I 0

]
D = 0

Simulink has a state space process block. The matrices A, B, C, and D are specified and an input u
must be provided. The output from the process, y can then be connected to a display. This is illustrated
in Simulink Fig. 5.34.

The Simulink simulations shown in Examples 5.4 to 5.8 have one feature in common; they are
all simulations of differential equations. It is possible to simulate algebraic equations, for example
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FIGURE 5.35

Model to determine the root of a cubic equation.

we could easily simulate y = ax + b in Simulink. The danger when simulating algebraic equation is
the accidental inclusion of an “algebraic loop”. This is a loop exists in the Simulink block diagram
with only direct feed-through blocks within the loop. A feed-through block output depends on its
input and no integration is involved. Examples of a feed-through blocks include a gain block and math
function blocks. It further illustrates an algebraic loop, consider a simulation that involves an input x

to a summing block. If there are no other inputs to the summing block, the output from the block will
also be x. However, suppose we take a connection from the output, pass it through a gain block, with
a gain of 10, and connect it to the summing block. Then an input of x = 1 will produce a feedback of
10 into the summing junction which will give an output of 1 + 10 = 1. This output is feedback and
becomes 10 × 11 = 110 at the summing junction. Clearly, the output of the summing block rapidly
tends a numeric overflow and Simulink stops. The following example solves an algebraic equation by
simulation, but does contain an algebraic loop.

Example 5.9. Consider a model of a process to determine the smallest root of the cubic equation

x3 + ax + b = 0

Note that there is no x2 term in this equation. However, Simulink can find the lowest root of any
equation.

The Simulink Fig. 5.35 shows the block diagram for the process. At the left side of the diagram
we see two inputs. One input, the constant b, is connected directly to a summing block; the other
input, the constant a, is multiplied by x and connected to a summing block. Also connected to the
summing block is x × x2 = x3. The output from the summing block, equal to x3 + ax + b is fed into
the block labeled Solve f (z) = 0. This block iteratively determines a value of x to make the input to
the block equal zero. At each iteration the current best estimate for x is fed back to allow an update
value for x3 + ax + b to be determined. Once convergence has reached the tolerance level set in the
Solve f (z) = 0 block, the value of x is passed to the display.

Simulink allows the user to mask a subsection of a block diagram. A mask hides the details and
content of a selected subsystem so that it appears in the block diagram as a single block. (See Fig. 5.36.)
If desired by the user, the masked block can have its own parameter dialog box and icon. Furthermore,
it can be placed in the custom created block library.
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FIGURE 5.36

The Simulink model of Fig. 5.35 replaced by a single mask.

For readers with Simulink, an excellent example of a Simulink model can be found by from the
MATLAB command window by entering

>> shower

This is a simulation of a temperature control system for a shower that uses fuzzy logic. There are four
masked blocks. For example the hot water valve block itself contains seven lower level blocks.

5.18 SUMMARY
In this chapter, we have developed a range of MATLAB functions for solving differential equations and
systems of differential equations which supplement those provided in MATLAB. We have demonstrated
how these functions may be used to solve a wide variety of problems. One particular problem studied
is that of a differential equation that is chaotic. We have also briefly introduced the MATLAB Simulink
toolbox.

5.19 PROBLEMS
5.1. A radioactive material decays at a rate that is proportional to the amount that remains. The

differential equation which models this process is

dy/dt = −ky where y = y0 when t = t0

Here y0 represents the mass at the time t0. Solve this equation for t = 0 to 10 given that y0 = 50
and k = 0.05, using:
(a) the function feuler, with h = 1,0.1,0.01.
(b) the function eulertp, with h = 1,0.1.
(c) the function rkgen, set for the classical method, with h = 1.
Compare your results with the exact solution, y = 50 exp(−0.05t).

5.2. Solve y′ = 2xy with initial conditions y0 = 2 when x0 = 0 in the range x = 0 to 2. Use the
classical, Merson, and Butcher variants of the Runge–Kutta method, all implemented in function
rkgen, with step h = 0.2. Note that the exact solution is y = 2 exp(x2).

5.3. Repeat Problem 5.1 using the following predictor–corrector methods with h = 2 and for t = 0
to 50:
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(a) Adams–Bashforth–Moulton’s method, function abm.
(b) Hamming’s method, function fhamming.

5.4. Express the following second-order differential equation as a pair of first-order equations:

xy′′ − y′ − 8x3y3 = 0

with the initial conditions y = 1/2 and y′ = −1/2 at x = 1. Solve the pair of first-order equations
using both ode23 and ode45 in the range 1 to 4. The exact solution is given by y = 1/(1 + x2).

5.5. Use function fhermite to solve:
(a) Problem 5.1 with h = 1.
(b) Problem 5.2 with h = 0.2.
(c) Problem 5.2 with h = 0.02.

5.6. Use the MATLAB function rombergx to solve the following problems. In each case use eight
divisions.
(a) y′ = 3y/x with initial conditions x = 1, y = 1. Determine y when x = 20.
(b) y′ = 2xy with initial conditions x = 0, y = 2. Determine y when x = 2.

5.7. Consider the predator–prey problem described in Section 5.10.2. This problem may be extended
to consider the effect of culling on the interacting populations by subtracting a term from both
equations in (5.28) as follows:

dP/dt = K1P − CPQ − S1P

dQ/dt = K2Q − DPQ − S2Q

Here S1 and S2 are constants which provide the culling level for the populations. Use ode45 to
solve this problem with K1 = 2, K2 = 10, C = 0.001, and D = 0.002 and initial values of the
population P = 5000 and Q = 100. Assuming that S1 and S2 are equal, experiment with values
in the range 1 to 2. There is a wealth of experimental opportunity in this problem and the reader
is encouraged to investigate different values of S1 and S2.

5.8. Solve the Lorenz equations given in Section 5.12.1 for r = 1, using ode23.
5.9. Use the Adams–Bashforth–Moulton method to solve dy/dt = −5y, with y = 50 when t = 0, in

the range t = 0 to 6. Try step sizes, h, of 0.1, 0.2, 0.25, and 0.4. Plot the error against t for each
case. What can you deduce from these results with regard to the stability of the method? The
exact answer is y = 50e−5t .

5.10. The following first-order differential equation represents the growth in a population in an envi-
ronment that can support a maximum population of K:

dN/dt = rN (1 − N/K)

where N(t) is the population at time t and r is a constant. Given N = 100 when t = 0, we use
the MATLAB function ode23, solve this differential equation in the range 0 to 200, and plot a
graph of N against time. Take K = 10,000 and r = 0.1.

5.11. The Leslie–Gower predator–prey problem takes the form

dN1/dt = N1(r1 − cN1 − b1N2)

dN2/dt = N2 (r2 − b2 (N2/N1))
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where N1 = 15 and N2 = 15 at time t = 0. Use ode45 to solve this equation given r1 = 1,
r2 = 0.3, c = 0.001, b1 = 1.8, and b2 = 0.5. Plot N1 and N2 in the range t = 0 to 40.

5.12. By setting u = dx/dt , reduce the following second-order differential equation to two first-order
differential equations.

d2x

dt2
+ k

(
1

v1
+ 1

v2

)
dx

dt
= 0

where x = 0 and dx/dt = 10 when t = 0. Use the MATLAB function ode45 to solve this problem
given that v1 = v2 = 1 and k = 10.

5.13. A model for a conflict between guerilla, g2, and government forces, g1, is given by the equations

dg1/dt = −cg2

dg2/dt = −rg2g1

Given that the government forces number 2000 and the guerilla forces number 700 at time t = 0,
use the function ode45 to solve this system of equations, taking c = 30 and r = 0.01. You should
solve the equations over the interval time interval 0 to 0.6. Plot a graph of the solution showing
the changes in government and guerilla forces over time.

5.14. The following differential equation provides a simple model of a suspension system. The con-
stant m gives the mass of moving parts, the constant k relates to stiffness of the suspension
system and the constant c is a measure of the damping in the system. F is a constant force
applied at t = 0.

m
d2x

dt2
+ c

dx

dt
+ kx = F

Given that m = 1, k = 4, F = 1 and both x = 0 and dx/dt = 0 when t = 0, use ode23 to
determine the response, x(t) for t = 0 to 8 and plot a graph of x against t in each case. Assume
the following values for c:

(a) c = 0 (b) c = 0.3
√

(mk) (c) c = √
(mk)

(d) c = 2
√

(mk) (e) c = 4
√

(mk)

Comment on the nature of your solutions. The exact solutions are as follows:

For cases (a), (b), and (c) x(t) = F

k

[
1 − 1√

1−ζ 2
e−ζωnt cos (ωdt − φ)

]

For case (d) x (t) = F
k

[
1 + (1 + ωnt) e−ωnt

]
where

ωn =√k/m, ζ = c/(2
√

mk), ωd = ωn

√
1 − ζ 2

φ = tan−1(ζ/

√
1 − ζ 2)

For case (e)

x(t) = F

k

[
1 + 1

2q

(
s2e

s1t − s1e
s2t
)]
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where

q = ωn

√
ζ 1−! s1 = −ζωn + q s2 = −ζωn − q

Plot these solutions and compare them with your numerical solutions.
5.15. Gilpin’s system for modeling the behavior of three interacting species is given by the differential

equations:

dx1/dt = x1 − 0.001x2
1 − 0.001kx1x2 − 0.01x1x3

dx2/dt = x2 − 0.001kx1x2 − 0.001x2
2 − 0.001x2x3

dx3/dt = −x3 + 0.005x1x3 + 0.0005x2x3

given x1 = 1000, x2 = 300, and x3 = 400 at time t = 0. Taking k = 0.5, use ode45 to solve this
system of equations in the range t = 0 to t = 50 and plot the behavior of the population of the
three species against time.

5.16. A problem which arises in planet formation is where a range of objects called planetesimals
coagulate to form larger objects and this coagulation continues until a stable state is reached
where a number planetary size objects have been created. To simulate this situation we assume
that a minimum size object exists of mass m1 and the masses of all other objects are integral
multiples of the mass of this object. Thus there are nk objects of mass mk where mk = km1.
Then the manner in which the number of objects of specific mass changes over time t is given
by the Coagulation Equation as follows:

dnk

dt
= 1

2

∑
i+j=k

Aijninj − nk

max k∑
i=k+1

Akini

The values Aij are the probabilities of collisions between the objects i and j . A simple inter-
pretation of this equation is that number of bodies of mass nk is increased by collisions between
bodies of lesser mass but the decreased by collisions with larger bodies.
As an exercise write out the equations for this system for the case where there are only three
different sizes of planetesimals and assign Aij equal to ninj /(1000(ni + nj )). Note that the
division by 1000 ensures that impacts are relatively rare which seems a plausible assumption
in the vast volume of space considered. The initial values for the numbers of planetesimals
n1, n2, n3 are as taken as 200, 25, and 1, respectively.
Solve the resulting system using the MATLAB function ode45 using a time interval of 2 units.
Study the case where the values of the collision probabilities are calculated using the varying
values of the number of planetesimals as time varies. Plot graphs of your results.

5.17. The following example studies the effect of life on a planetary environment. A relatively simple
way of studying these effects is to consider the concept of daisy world. This envisages a world
inhabited by only two life forms; white and black daisies. This situation can be modeled a pair
of differential equations where the area covered by the black daisies ab and the area covered by
the white daisies aw changes with time t as follows:

dab/dt = ab(xβb − γ )

daw/dt = aw(xβw − γ )



5.19 PROBLEMS 299

where x = 1 − ab − aw represents the area not covered by either daisy assuming the total area
of the planet is represented by unity. The value of γ gives the death rate for the daisies and βb

and βw give the growth rate for the black and white daisies respectively. This is related to the
energy they receive from the planetary Sun or the local temperature. Consequently, an empirical
formula may be given for these values as follows:

βb = 1 − 0.003265(295.5 − Tb)
2

and

βw = 1 − 0.003265(295.5 − Tw)2

where the values of Tb and Tw lie in the range 278 to 313 K, where K denotes degrees Kelvin.
Outside this range growth is assumed zero. Taking γ = 0.3, Tb = 295 K, Tw = 285 K and initial
values for ab = 0.2, aw = 0.3, solve the system of equations for t = [0,10] using the MATLAB

function ode45. Plot graphs of the changes in ab and aw with respect to time. It should be
noted that the extent of the areas covered by the black and white daisies will affect the overall
temperature of the planet, since white and dark areas react differently in the way they absorb
energy from the Sun.

5.18. In an article by Pearce and Shearer (2016), the authors describe how capillaries work in the
circulatory system and how they can be modeled using a network of resistors and capacitors.
In particular the manner in which the capacitor operates with an applied fluctuating current and
consequently alternatively releasing and storing voltage through the resistor reflects the behavior
of the circulatory system. The model of the corresponding basic electrical circuit behavior over
time t , is well established and takes the form:

C
dV

dt
+ V

R
= I (t)

where V is the voltage, R the resistance, C the capacity, and I the current. In terms of blood
flow this may be translated as:

C
dP

dt
+ P

R
= Q0 sin(πt/t0)

where C is called the compliance of the aorta, which corresponds to the concept of capacity, R is
the total resistance of the rest of the circulatory system and the right-hand side of the equation
models the flow of the heart, t0 is the initial time and Q0 is the maximum flow rate. We can use
this first-order differential equation to find the varying values of P .
Solve this equation using the MATLAB function for the solution of differential equations, ode45,
taking R = 10, C = 1.5, R = 40, Q0 = 2.8, and t0 = 0.



6
CHAPTER

BOUNDARY VALUE PROBLEMS

Abstract

In this chapter algorithms for solving certain boundary value problems and problems with both bound-
ary and initial values are given. The solution of a boundary value problem in one independent variable
must satisfy specified conditions at two points, and the solution of a boundary value problem in two in-
dependent variables must satisfy specified conditions along a curve or set of lines enclosing a specified
region.

6.1 CLASSIFICATION OF SECOND-ORDER DIFFERENTIAL EQUATIONS
In this chapter, we restrict the discussion to second-order differential equations in one or two indepen-
dent variables and Fig. 6.1 shows how these equations may be classified. The general form of these
equations for one and two independent variables is given by (6.1) and (6.2), respectively.

A(x)
d2z

dx2
+ f

(
x, z,

dz

dx

)
= 0 (6.1)

A(x,y)
∂2z

∂x2
+ B (x, y)

∂2z

∂x ∂y
+ C (x, y)

∂2z

∂y2
+ f

(
x, y, z,

∂z

∂x
,
∂z

∂y

)
= 0 (6.2)

These equations are linear in the second-order terms, but the terms

f

(
x, z,

dz

dx

)
and f

(
x, y, z,

∂z

∂x
,
∂z

∂y

)

may be linear or non-linear. In particular, (6.2) is classified as an elliptic, parabolic, or hyperbolic
partial differential equation as follows:

If B2 − 4AC < 0, the equation is elliptic.
If B2 − 4AC = 0, the equation is parabolic.
If B2 − 4AC > 0, the equation is hyperbolic.

Since the coefficients A, B, and C are, in general, functions of the independent variables, the classifi-
cation of (6.2) may vary in different regions of the domain in which the problem is defined. We will
commence with a study of (6.1).

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00015-4
Copyright © 2019 Elsevier Inc. All rights reserved.
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FIGURE 6.1

Second-order differential equations with one or two independent variables and their solutions.

6.2 THE SHOOTING METHOD
An initial value problem and a two-point boundary value problem derived from the same differential
equation may have the same solution. For example, consider the differential equation

d2y

dx2
+ y = cos 2x (6.3)

Given the initial conditions that when x = 0, y = 0, and dy/dx = 1, the solution of (6.3) is

y = (cosx − cos 2x) /3 + sinx

However, this solution also satisfies (6.3) with the two boundary conditions x = 0, y = 0, and x = π/2,
y = 4/3.

This observation provides a useful method for solving two-point boundary value problems called
“the shooting method”. As an example, consider the equation

x2 d2y

dx2
− 6y = 0 (6.4)

with boundary conditions y = 1 when x = 1 and y = 1 when x = 2. We will treat this problem as an
initial value problem where y = 1 when x = 1 and assume trial values for dy/dx when x = 1, denoted
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FIGURE 6.2

Solutions of x2(d2y/dx2) − 6y = 0 with initial conditions y = 1 and dy/dx = s when x = 1, for trial values of s.

by s. Fig. 6.2 shows the solution for various trial values of s. It is seen that when s = −1.516, the
solution satisfies the required boundary condition that y = 1 when x = 2. The solution for (6.4) can
be found by changing it into a pair of first-order differential equations by letting z = dy/dx so that
d2y/dx2 = dz/dx and thus (6.4) is equivalent to

dy/dx = z

dz/dx = 6y/x2
(6.5)

This pair of differential equations can be solved using any appropriate numerical method described
in Chapter 5.
We must determine the slope dy/dx that gives the correct boundary condition. This could be achieved
by trial and error, but this is tedious and in practice we can use interpolation. The script e4s601.m
solves (6.5) for four trial slopes using the MATLAB function ode45. The vector s contains trial values
of the slope dy/dx at x = 1. Vector b contains the corresponding values of y when x = 2, computed
by ode45. From these values of y we can interpolate to determine the value of s required to give
y = 1 when x = 2. The interpolation is carried out using the function aitken (described in Chapter 7).
Finally, this interpolated value for the slope, s0, is used in ode45 to determine the correct solution to
(6.5).

% e4s601.m
f = @(x,y)[y(2); 6*y(1)/x^2];
option = odeset(’RelTol’,0.0005);
s = -1.25:-0.25:-2; s0 = [ ];
ncase = length(s); b = zeros(1,ncase);
for i = 1:ncase

[x,y] = ode45(f,[1 2],[1 s(i)],option);
[m,n] = size(y);
b(1,i) = y(m,1);

end
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s0 = aitken(b,s,1)

[x,y] = ode45(f,[1 2],[1 s0],option);

[x y(:,1)]

The right sides of the differential equations (6.5) are defined in the first line of this script. Running
script e4s601 gives

s0 =

-1.5161

ans =

1.0000 1.0000

1.0111 0.9836

1.0221 0.9679

1.0332 0.9529

1.0442 0.9386

1.0692 0.9084

1.0942 0.8812

1.1192

This output is very lengthy and part of it has therefore been deleted. The final stages are as follows:

0.9293

1.9442 0.9501

1.9582 0.9622

1.9721 0.9745

1.9861 0.9871

2.0000 1.0000

The interpolated value of the slope is −1.5161. The first column of ans gives the values of x and the
second gives the corresponding values of y.

Whilst the shooting method is not particularly efficient, it does have the advantage of being able to
solve non-linear boundary value problems. We now examine an alternative method for solving bound-
ary problems: the finite difference method.

6.3 THE FINITE DIFFERENCE METHOD
In Chapter 4, it is shown how derivatives can be approximated by the use of finite differences. We can
use the same approach for the solution of certain types of differential equations. The method effectively
replaces the differential equation by a set of approximate difference equations. The central difference
approximations for the first and second derivatives of z with respect to x are given by (6.6) and (6.7),
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FIGURE 6.3

Equispaced nodal points.

which follow. In these and subsequent equations the operator Dx represents d/dx, D2
x = d2/dx2, etc.

The subscript x is omitted where there is no danger of confusion. Thus at zi ,

Dzi ≈ (−zi−1 + zi+1)/ (2h) (6.6)

D2zi ≈ (zi−1 − 2zi + zi+1)/h2 (6.7)

In (6.6) and (6.7), h is the distance between the nodal points (see Fig. 6.3) and these approximating
formulae have errors of order h2. Higher-order approximations can be generated which have errors of
order h4, but we do not require them. To achieve the same degree of accuracy we can make h smaller.

We can also determine the approximations for unevenly spaced nodal points. For example, it can
be shown that (6.6) and (6.7) become

Dzi ≈ 1

hβ(β + 1)

{
−β2zi−1 −

(
1 − β2

)
zi + zi+1

}
(6.8)

D2zi ≈ 2

h2β(β + 1)
{βzi−1 − (1 + β) zi + zi+1} (6.9)

where h = xi − xi−1 and βh = xi+1 − xi . Note that when β = 1, (6.8) and (6.9) simplify to (6.6) and
(6.7), respectively. Approximation (6.8) has an error of order h2, regardless of the value of β, and (6.9)
has an error of order h for β �= 1 and h2 for β = 1.

Eqs. (6.6) through (6.9) are central difference approximations; that is the approximation for a
derivative uses values of the function on either side of the point at which the derivative is to be de-
termined. These are generally the most accurate approximations, but in some situations, for example at
the left and right boundary nodes, it is necessary to use forward or backward difference approximations.
For example, the forward difference approximation for Dzi is

Dzi ≈ (−zi + zi+1) /h with an error of order h (6.10)

The backward difference approximation for Dzi is

Dzi ≈ (−zi−1 + zi) /h with an error of order h (6.11)

To determine solutions for partial differential equations, we require the finite difference approxima-
tion for various partial derivatives in two or more variables. These approximations can be derived by
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FIGURE 6.4

Grid mesh in rectangular coordinates.

combining some of the previous equations. For example, we can determine the finite difference approx-
imation for ∂2z/∂x2 + ∂2z/∂y2 (that is, ∇2z) from the approximation (6.7) or (6.9). To avoid double
subscripts we will use the notation applied to the mesh shown in Fig. 6.4. Thus, from (6.7),

∇2zi ≈ (zl − 2zi + zr) /h2 + (za − 2zi + zb) /k2

≈ {
r2zl + r2zr + za + zb − 2

(
1 + r2

)
zi

}
/
(
r2h2

) (6.12)

where r = k/h. If r = 1, then (6.12) becomes

∇2zi ≈ (zl + zr + za + zb − 4zi)/h2 (6.13)

These central difference approximations for ∇2zi have an error of O(h2).
The finite difference approximation for the second-order mixed derivative of z with respect to x and

y, ∂2z/∂x∂y or Dxy , is determined by applying (6.6) in the x direction to each term of (6.6) in the y

direction thus:

Dxyzi ≈ [
(zr − zl)a/(2h) − (zr − zl)b/(2h)

]
/(2k)

≈ (zar − zal − zbr + zbl)/(4hk)
(6.14)

We can develop the finite difference approximations in other coordinate systems such as skew and
polar coordinates, and we can have uneven spacing of the node points in any direction; see Salvadori
and Baron (1961).

6.4 TWO-POINT BOUNDARY VALUE PROBLEMS
Before considering the application of finite difference methods to solve a differential equation, we first
consider the nature of the solution. We begin by considering the following second-order inhomoge-
neous differential equation, that is a differential equation with a non-zero right side.

(
1 + x2

) d2z

dx2
+ x

dz

dx
− z = x2 (6.15)
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FIGURE 6.5

Node numbering used in the solution of (6.15).

subject to the boundary conditions x = 0, z = 1 and x = 2, z = 2. The solution of this equation is

z = −
√

5

6
x + 1

3

(
1 + x2

)1/2 + 1

3

(
2 + x2

)
(6.16)

This is the only solution that satisfies both the equation and its boundary conditions. In contrast to this,
consider the solution of the second-order homogeneous equation, that is a differential equation with a
zero right side.

x
d2z

dx2
+ dz

dx
+ λx−1z = 0 (6.17)

subject to the conditions that z = 0 at x = 1 and dz/dx = 0 at x = e (where e = 2.7183...). If λ is a
given constant, this homogeneous equation has the trivial solution z = 0. However, if λ is an unknown,
then we can determine values of λ to give non-trivial solutions for z. Eq. (6.17) is then a characteristic
value or eigenvalue problem. Solving (6.17) gives an infinite number of solutions for λ and z as follows:

zn = sin
{√

λn loge |x|
}

, λn = {(2n + 1)π/2}2 where n = 0, 1, 2, ... (6.18)

The values of λ that satisfy (6.18) are called characteristic values or eigenvalues, and the corresponding
values of z are called characteristic functions or eigenfunctions. This particular type of boundary value
problem is called a characteristic value or eigenvalue problem. It has arisen because both the differential
equation and the specified boundary conditions are homogeneous.

The application of finite differences to the solution of boundary value problems is now illustrated
by Examples 6.1 and 6.2.

Example 6.1. Determine an approximate solution for (6.15). We begin by multiplying (6.15) by 2h2

and writing d2z/dx2 as D2z, etc., to give

2(1 + x2)(h2D2z) + xh (2hDz) − 2h2z = 2h2x2 (6.19)

Using (6.6) and (6.7) we can replace (6.19) by

2(1 + x2
i )(zi−1 − 2zi + zi+1) + xih(−zi−1 + zi+1) − 2h2zi = 2h2x2

i (6.20)

Fig. 6.5 shows x divided into four segments (h = 1/2) with nodes numbered 1 to 5. Applying (6.20) to
nodes 2, 3, and 4 gives
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At node 2: 2(1 + 0.52)(z1 − 2z2 + z3) + 0.25(−z1 + z3) − 0.5z2 = 0.5(0.52)

At node 3: 2(1 + 1.02)(z2 − 2z3 + z4) + 0.50(−z2 + z4) − 0.5z3 = 0.5(1.02)

At node 4: 2(1 + 1.52)(z3 − 2z4 + z5) + 0.75(−z3 + z5) − 0.5z4 = 0.5(1.52)

The problem boundary conditions are x = 0, z = 1 and x = 2, z = 2. Thus z1 = 1 and z5 = 2. Using
these values, the preceding equations can be simplified and written in matrix form thus:

⎡
⎣ −44 22 0

28 −68 36
0 46 −108

⎤
⎦

⎡
⎣ z2

z3
z4

⎤
⎦ =

⎡
⎣ −17

4
−107

⎤
⎦

This equation system can easily be solved using MATLAB as follows:

>> A = [-44 22 0;28 -68 36;0 46 -108];
>> b = [-17 4 -107].’;
>> y = A\b

y =
0.9357
1.0987
1.4587

Note that the rows in the previous matrix equation can always be scaled in order to make the coefficient
matrix symmetrical. This is important in a large problem.

To increase the accuracy of the solution, we must increase the number of nodal points which con-
sequently decrease h. However, formulating the finite difference approximation by hand for a large
number of nodes is a tedious and error-prone process. The MATLAB function twopoint implements
the process of solving the second-order boundary problem given by differential equation (6.21) together
with appropriate boundary conditions.

C (x)
d2z

dx2
+ D (x)

dz

dx
+ E (x) z = F (x) (6.21)

The user must supply a vector listing the values of nodal points chosen. These do not have to be
equispaced. The user must also supply vectors listing the values of C(x), D(x), E(x), and F(x) for the
nodal points. Finally, the user must provide the boundary conditions which can be expressed in terms
of either z or dz/dx.

function y = twopoint(x,C,D,E,F,flag1,flag2,p1,p2)
% Solves 2nd order boundary value problem
% Example call: y = twopoint(x,C,D,E,F,flag1,flag2,p1,p2)
% x is a row vector of n+1 nodal points.
% C, D, E and F are row vectors
% specifying C(x), D(x), E(x) and F(x).
% If y is specified at node 1, flag1 must equal 1.
% If y’ is specified at node 1, flag1 must equal 0.
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% If y is specified at node n+1, flag2 must equal 1.
% If y’ is specified at node n+1, flag2 must equal 0.
% p1 & p2 are boundary values (y or y’) at nodes 1 and n+1.
n = length(x)-1;
h(2:n+1) = x(2:n+1)-x(1:n);
h(1) = h(2); h(n+2) = h(n+1);
r(1:n+1) = h(2:n+2)./h(1:n+1);
s = 1+r;
if flag1==1

y(1) = p1;
else

slope0 = p1;
end
if flag2==1

y(n+1) = p2;
else

slopen = p2;
end
W = zeros(n+1,n+1);
if flag1==1

c0 = 3;
W(2,2) = E(2)-2*C(2)/(h(2)^2*r(2));
W(2,3) = 2*C(2)/(h(2)^2*r(2)*s(2))+D(2)/(h(2)*s(2));
b(2) = F(2)-y(1)*(2*C(2)/(h(2)^2*s(2))-D(2)/(h(2)*s(2)));

else
c0=2;
W(1,1) = E(1)-2*C(1)/(h(1)^2*r(1));
W(1,2) = 2*C(1)*(1+1/r(1))/(h(1)^2*s(1));
b(1) = F(1)+slope0*(2*C(1)/h(1)-D(1));

end
if flag2==1

c1 = n-1;
W(n,n) = E(n)-2*C(n)/(h(n)^2*r(n));
W(n,n-1) = 2*C(n)/(h(n)^2*s(n))-D(n)/(h(n)*s(n));
b(n) = F(n)-y(n+1)*(2*C(n)/(h(n)^2*s(n))+D(n)/(h(n)*s(n)));

else
c1 = n;
W(n+1,n+1) = E(n+1)-2*C(n+1)/(h(n+1)^2*r(n+1));
W(n+1,n) = 2*C(n+1)*(1+1/r(n+1))/(h(n+1)^2*s(n+1));
b(n+1) = F(n+1)-slopen*(2*C(n+1)/h(n+1)+D(n+1));

end
for i = c0:c1

W(i,i) = E(i)-2*C(i)/(h(i)^2*r(i));
W(i,i-1) = 2*C(i)/(h(i)^2*s(i))-D(i)/(h(i)*s(i));
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FIGURE 6.6

Finite difference solution of (1 + x2)(d2z/dx2) + xdz/dx − z = x2. The ◦ indicates the finite difference
estimate; the continuous line is the exact solution.

W(i,i+1) = 2*C(i)/(h(i)^2*r(i)*s(i))+D(i)/(h(i)*s(i));
b(i) = F(i);

end
z = W(flag1+1:n+1-flag2,flag1+1:n+1-flag2)\b(flag1+1:n+1-flag2)’;
if flag1==1 & flag2==1, y = [y(1); z; y(n+1)]; end
if flag1==1 & flag2==0, y = [y(1); z]; end
if flag1==0 & flag2==1, y = [z; y(n+1)]; end
if flag1==0 & flag2==0, y = z; end

We can use this function twopoint to solve (6.15) for nine nodes using script e4s602:

% e4s602.m
x = 0:.2:2;
C = 1+x.^2; D = x; E = -ones(1,11); F = x.^2;
flag1 = 1; p1 = 1; flag2 = 1; p2 = 2;
z = twopoint(x,C,D,E,F,flag1,flag2,p1,p2);
B = 1/3; A = -sqrt(5)*B/2;
xx = 0:.01:2;
zz = A*xx+B*sqrt(1+xx.^2)+B*(2+xx.^2);
plot(x,z,’o’,xx,zz)
xlabel(’x’); ylabel(’z’)

This script, e4s602, outputs the graph of Fig. 6.6.
The results from the finite difference analysis are very accurate. This is because the solution of the

boundary problem, given by (6.16), is well approximated by a low-order polynomial.

Example 6.2. Determine the approximate solution of (6.17) subject to the boundary conditions that
z = 0 at x = 1 and dz/dx = 0 at x = e. The exact eigensolutions are given by λn = {(2n+1)π/2}2 and
zn(x) = sin{(2n + 1)(π/2) loge |x|}, where n = 0,1, ...,∞. We will use the node-numbering scheme
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FIGURE 6.7

Node numbering used in the solution of (6.17).

shown in Fig. 6.7. To apply the boundary condition at x = e we must consider the finite difference
approximation for Dz at node 5 (that is, at x = e) and make Dz5 = 0. Applying (6.6), we have

2hDz5 = −z4 + z6 = 0 (6.22)

Note that, because we are using central difference approximations, we have been forced to introduce
the fictitious node 6. (Alternatively, at the right boundary we could have chosen to use a backward
difference approximation thereby avoiding the need for the ficitious node.)
However, from (6.22), z6 = z4. Multiplying (6.17) by 2h2 gives

2x(h2D2z) + h(2hDz) = −λ2x−1h2z

Thus

2xi (zi−1 − 2zi + zi+1) + h(−zi−1 + zi+1) = −λ2x−1
i h2zi

Now L = e − 1 = 1.7183; thus h = L/4 = 0.4296. Applying (6.19) to nodes 2 through 5, we have

At #2: 2(1.4296)(z1 − 2z2 + z3) + 0.4296(−z1 + z3) = −2λ(1.4296)−1(0.4296)2z2
At #3: 2(1.8591)(z2 − 2z3 + z4) + 0.4296(−z2 + z4) = −2λ(1.8591)−1(0.4296)2z3
At #4: 2(2.2887)(z3 − 2z4 + z5) + 0.4296(−z3 + z5) = −2λ(2.2887)−1(0.4296)2z4
At #5: 2(2.7183)(z4 − 2z5 + z6) + 0.4296(−z4 + z6) = −2λ(2.7183)−1(0.4296)2z5

Letting z1 = 0 and z6 = z4 leads to

⎡
⎢⎢⎣

−5.7184 3.2887 0 0
3.2887 −7.4364 4.1478 0

0 4.1478 −9.1548 5.0070
0 0 10.8731 −10.8731

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z2
z3
z4
z5

⎤
⎥⎥⎦

= λ

⎡
⎢⎢⎣

−0.2582 0 0 0
0 −0.1985 0 0
0 0 −0.1613 0
0 0 0 −0.1358

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z2
z3
z4
z5

⎤
⎥⎥⎦

We can solve these equations using MATLAB as follows:

>> A = [-5.7184 3.2887 0 0;3.2887 -7.4364 4.1478 0;
0 4.1478 -9.1548 5.0070; 0 0 10.8731 -10.8731];
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FIGURE 6.8

The finite difference estimates for the first and second eigenfunctions of x(d2z/dx2) + dz/dx + λz/x = 0,
denoted by a ∗ and a ◦ respectively: solid lines show the exact eigenfunctions z0(x) and z1(x).

>> B = diag([-0.2582 -0.1985 -0.1613 -0.1358]);
>> [u lambda] = eig(A,B)

u =
-0.5424 1.0000 -0.4365 0.0169
-0.8362 0.1389 1.0000 -0.1331
-0.9686 -0.6793 -0.3173 0.5265
-1.0000 -0.9112 -0.8839 -1.0000

lambda =
2.5110 0 0 0

0 20.3774 0 0
0 0 51.3254 0
0 0 0 122.2197

The exact values for the lowest four eigenvalues are 2.4674, 22.2066, 61.6850, and 120.9027. Be-
cause we are using only a small number of nodes, there are significant errors in computed eigenvalues,
(lambda). The graph of Fig. 6.8 shows the first two eigenfunctions z0(x) and z1(x) and the estimates
derived from the first and second columns of the preceding array u. Note that the values of u have been
scaled to make those corresponding to the node z5 either 1 or −1. The script e4s603 evaluates and
plots the exact eigenfunctions z0(x) and z1(x) and plots the scaled sample points which estimate these
functions.

% e4s603.m
x = 1:.01:exp(1);
% compute eigenfunction values scaled to 1 or -1.
z0 = sin((1*pi/2)*log(abs(x)));
z1 = sin((3*pi/2)*log(abs(x)));
% plot eigenfuctions
plot(x,z0,x,z1), hold on
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% Discrete approximations to eigenfunctions
% Scaled to 1 or -1.
u0 = [0.5424 0.8362 0.9686 1];
u1 = (1/0.9112)*[1 0.1389 -0.6793 -0.9112];
% determine x values for plotting
r = (exp(1)-1)/4;
xx = [1+r 1+2*r 1+3*r 1+4*r];
plot(xx,u0,’*’,xx,u1,’o’), hold off
axis([1 exp(1) -1.2 1.2])
xlabel(’x’), ylabel(’z’)

6.5 PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
The general second-order partial differential equation in terms of the independent variables x and y is
given by (6.2). The equation is repeated here, except that y has been replaced by t .

A(x, t)
∂2z

∂x2
+ B(x, t)

∂2z

∂x∂t
+ C(x, t)

∂2z

∂t2
+ f

(
x, t, z,

∂z

∂x
,
∂z

∂t

)
= 0 (6.23)

This equation will be a parabolic equation if B2 − 4AC = 0. Parabolic equations are not defined in a
closed domain, but propagate in an open domain. For example, the one-dimensional heat-flow equation,
which describes heat flow assuming no energy generation, is

K
∂2u

∂x2
= ∂u

∂t
, 0 < x < L and t > 0 (6.24)

where K is the thermal diffusivity and u is the temperature of the material. Comparing (6.24) with
(6.23), we see that A, B, and C of (6.23) are K , 0, and 0, respectively, so that the term B2 − 4AC is
zero and the equation is parabolic.

To solve this equation, boundary conditions must be specified at x = 0 and x = L and initial con-
ditions when t = 0 must be given. To develop a finite difference solution, we divide the spatial domain
into n sections, each of length h, so that h = L/n, and consider as many time steps as required, each
time step of duration k. A finite difference approximation for (6.24) at node (i, j) is obtained by re-
placing ∂2u/∂x2 by the central difference approximation (6.7) and ∂u/∂t by the forward difference
approximation (6.10) to give

K

(
ui−1,j − 2ui,j + ui+1,j

h2

)
=

(−ui,j + ui,j+1

k

)
(6.25)

or

ui,j+1 = ui,j + α(ui−1,j − 2ui,j + ui+1,j ), i = 0, 1, ..., n; j = 0, 1, ... (6.26)

In (6.26), α = Kk/h2. Node (i, j) is the point x = ih and at time jk. Eq. (6.26) allows us to determine
ui,j+1, that is u at time j + 1 from values of u at time j . Values of ui,0 are provided by the initial
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conditions; values of u0,j and un,j are obtained from the boundary conditions. This method of solution
is called the explicit method.

In the numeric solution of parabolic partial differential equations, solution stability and convergence
are important. It can be proved that when using the explicit method we must make α ≤ 0.5 to ensure
a steady decay of the entire solution. This requirement means that the grid separation in time must
sometimes be very small, necessitating a very large number of time steps.

An alternative finite difference approximation for (6.24) is obtained by considering node (i, j + 1).
We again approximate ∂2u/∂x2 by the central difference approximation (6.7), but we approximate
∂u/∂t by the backward difference approximation (6.11) to give

K

(
ui−1,j+1 − 2ui,j+1 + ui+1,j+1

h2

)
=

(−ui,j + ui,j+1

k

)
(6.27)

This equation is identical to (6.25) except that approximation is made at the (j + 1)th time step instead
of at the j th time step. Rearranging (6.27) with α = Kk/h2 gives

(1 + 2α)ui,j+1 − α(ui+1,j+1 + ui−1,j+1) = ui,j (6.28)

where i = 0,1, ..., n; j = 0,1, .... The three variables on the left side of this equation are unknown.
However, if we have a grid of n + 1 spatial points, then at time j + 1 there are n − 1 unknown nodal
values and two known boundary values. We can assemble the set of n − 1 equations of the form of
(6.28) thus:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ −α 0 · · · 0
−α γ −α · · · 0

0 −α γ · · · 0
...

...
...

...

0 0 0 · · · −α

0 0 0 · · · γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1,j+1
u2,j+1
u3,j+1

...

un−2,j+1
un−1,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1,j + αu0
u2,j

u3,j

...

un−2,j

un−1,j + αun

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where γ = 1+2α. Note that u0 and un are the known boundary conditions, assumed to be independent
of time. By solving the preceding equation system, we determine u1, u2, ..., un−1 at time step j + 1
from u1, u2, ..., un−1 at time step j . This approach is called the implicit method. Compared with the
explicit method, each time step requires more computation; however, the method has the significant
advantage that it is unconditionally stable. However, although stability does not place any restriction
on α, h and k must be chosen to keep the discretization error small to maintain accuracy.

The following function heat implements an implicit finite difference solution for the parabolic
differential equation (6.24).

function [u alpha] = heat(nx,hx,nt,ht,init,lowb,hib,K)
% Solves parabolic equ’n.
% e.g. heat flow equation.
% Example call: [u alpha] = heat(nx,hx,nt,ht,init,lowb,hib,K)
% nx, hx are number and size of x panels
% nt, ht are number and size of t panels
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% init is a row vector of nx+1 initial values of the function.
% lowb & hib are boundaries at low and hi values of x.
% Note that lowb and hib are scalar values.
% K is a constant in the parabolic equation.
alpha = K*ht/hx^2;
A = zeros(nx-1,nx-1); u = zeros(nt+1,nx+1);
u(:,1) = lowb*ones(nt+1,1);
u(:,nx+1) = hib*ones(nt+1,1);
u(1,:) = init;
A(1,1) = 1+2*alpha; A(1,2) = -alpha;
for i = 2:nx-2

A(i,i) = 1+2*alpha;
A(i,i-1) = -alpha; A(i,i+1) = -alpha;

end
A(nx-1,nx-2) = -alpha; A(nx-1,nx-1) = 1+2*alpha;
b(1,1) = init(2)+init(1)*alpha;
for i = 2:nx-2, b(i,1) = init(i+1); end
b(nx-1,1) = init(nx)+init(nx+1)*alpha;
[L,U] = lu(A);
for j = 2:nt+1

y = L\b; x = U\y;
u(j,2:nx) = x’; b = x;
b(1,1) = b(1,1)+lowb*alpha;
b(nx-1,1) = b(nx-1,1)+hib*alpha;

end

We now use the function heat to study how the temperature distribution in a brick wall varies with
time. The wall is 0.3 m thick and is initially at a uniform temperature of 100◦C. For the brickwork,
K = 5 × 10−7 m/s2. If the temperature of both surfaces is suddenly lowered to 20◦C and kept at
this temperature, we wish to plot the subsequent variation of temperature through the wall at 440 s
(7.33 min) intervals over a period of 22,000 s (366.67 min).

To study this problem we will use a mesh with 15 subdivisions of x and 50 subdivisions of t in
e4s604 thus:

% e4s604.m
K = 5e-7; thick = 0.3; tfinal = 22000;
nx = 15; hx = thick/nx;
nt = 50; ht = tfinal/nt;
init = 100*ones(1,nx+1); lowb = 20; hib = 20;
[u al] = heat(nx,hx,nt,ht,init,lowb,hib,K);
alpha = al, surfl(u)
axis([0 nx+1 0 nt+1 0 120])
view([-217 30]), xlabel(’x - node nos.’)
ylabel(’Time - node nos.’), zlabel(’Temperature’)

Running script e4s604 gives



316 CHAPTER 6 BOUNDARY VALUE PROBLEMS

FIGURE 6.9

Plot shows how the distribution of temperature
through a wall varies with time.

FIGURE 6.10

Variation in the temperature in the center of a wall.
The steadily decaying solution denote by the solid line
was generated using the implicit method of solution;
the temperatures computed by the explicit method of
solution are denoted by ◦. Note how the explicit
method of solution gives temperatures that are
oscillating and diverging with time.

alpha =
0.5500

together with the plot shown in Fig. 6.9. The preceding plot shows how the temperature across the wall
decreases with time. Fig. 6.10 shows the variation of temperature with time at the center of the wall,
calculated by both the implicit method (using the MATLAB function heat) and the explicit method
using the same mesh size. In the latter case a MATLAB function is not provided. It is seen that the
solution determined using the explicit method becomes unstable with increasing time. We expect this
because the mesh size has been chosen to make α = 0.55.

6.6 HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
Consider the following equation:

c2 ∂2u

∂x2
= ∂2u

∂t2
, 0 < x < L and t > 0 (6.29)

This is the one-dimensional wave equation, and like the heat-flow problem of Section 6.5, its solution
usually propagates in an open domain. Eq. (6.29) describes the wave in a taught string where c is the
velocity of propagation of the waves in the string. Comparing (6.29) with (6.23), we see that B2 −
4AC = −4c2(−1). Since c2 is positive, B2 − 4AC > 0 and the equation is hyperbolic. Eq. (6.29) is
subject to boundary conditions at x = 0 and x = L and also subject to initial conditions when t = 0.

We now develop equivalent finite difference approximations for these equations. Dividing L into n

sections so that h = L/n and consider time steps of duration k. Approximating (6.29) by central finite
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difference approximations based on (6.7) at node (i, j), we have

c2
(

ui−1,j − 2ui,j + ui+1,j

h2

)
=

(
ui,j−1 − 2ui,j + ui,j+1

k2

)

or

(ui−1,j − 2ui,j + ui+1,j ) − (1/α2)(ui,j−1 − 2ui,j + ui,j+1) = 0

where α2 = c2k2/h2, i = 0,1, ..., n, and j = 0,1, .... Node (i, j) is the point x = ih at time t = jk.
Rearranging the preceding equation gives

ui,j+1 = α2(ui−1,j + ui+1,j ) + 2(1 − α2)ui,j − ui,j−1 (6.30)

When j = 0, (6.30) becomes

ui, 1 = α2(ui−1, 0 + ui+1, 0) + 2(1 − α2)ui, 0 − ui, −1 (6.31)

To solve a hyperbolic partial differential equation, initial values of u(x) and ∂u/∂t must be specified.
Let these values be Ui and Vi , respectively, where i = 0,1, ..., n. We can replace ∂u/∂t by its central
finite difference approximation based on (6.6) thus:

Vi = (−ui,−1 + ui,1)/(2k)

Thus,

−ui,−1 = 2kVi − ui,1 (6.32)

In (6.31) we replace ui,0 by Ui and ui,−1 by using (6.32) to give

ui,1 = α2(Ui−1 + Ui+1) + 2(1 − α2)Ui + 2kVi − ui,1

so that

ui,1 = α2(Ui−1 + Ui+1)/2 + (1 − α2)Ui + kVi (6.33)

Eq. (6.33) is the starting equation and allows us to determine the values of u at time step j = 1. Once
we obtain these values, we can use (6.30) to provide an explicit method of solution. To ensure stability,
the parameter α should be equal to or less than one. However, if α is less than one, the solution becomes
less accurate.

The following function, fwave, implements an explicit finite difference solution for (6.29).

function [u alpha] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c)
% Solves hyperbolic equ’n, e.g. wave equation.
% Example: [u alpha] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c)
% nx, hx are number and size of x panels
% nt, ht are number and size of t panels
% init is a row vector of nx+1 initial values of the function.
% initslope is a row vector of nx+1 initial derivatives of
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% the function.
% lowb is a column vector of nt+1 boundary values at the
% low value of x.
% hib is a column vector of nt+1 boundary values at hi value of x.
% c is a constant in the hyperbolic equation.
alpha = c*ht/hx;
u = zeros(nt+1,nx+1);
u(:,1) = lowb; u(:,nx+1) = hib; u(1,:) = init;
for i = 2:nx

u(2,i) = alpha^2*(init(i+1)+init(i-1))/2+(1-alpha^2)*init(i) ...
+ht*initslope(i);

end
for j = 2:nt

for i = 2:nx
u(j+1,i)=alpha^2*(u(j,i+1)+u(j,i-1))+(2-2*alpha^2)*u(j,i) ...
-u(j-1,i);

end
end

We now use the fwave function to examine the effect of displacing the boundary at one end of a taut
string by 10 units in a positive direction for the time period t = 0.1 to t = 4 units.

% e4s605.m
T = 4; L = 1.6;
nx = 16; nt = 40; hx = L/nx; ht = T/nt;
c = 1; t = 0:nt;
hib = zeros(nt+1,1); lowb = zeros(nt+1,1);
lowb(2:5,1) = 10;
init = zeros(1,nx+1); initslope = zeros(1,nx+1);
[u al] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c);
alpha = al, surfl(u)
axis([0 16 0 40 -10 10])
xlabel(’Position along string’)
ylabel(’Time’), zlabel(’Vertical displacement’)

Running this script produces the following output, together with Fig. 6.11.

alpha =
1

Fig. 6.11 shows that the disturbance at the boundary travels along the string. At the other boundary,
it is reflected and becomes a negative disturbance. This process of reflection and reversal continues at
each boundary. The disturbance travels at a velocity c and its shape does not change. Similarly, pressure
fluctuations do not change as they travel along a speaking tube; if pressure fluctuations representing the
sound “HELLO” enter the tube, the sound “HELLO” is detected at the other end. In practice, energy
loss, which is not included in this model, would cause the amplitude of the disturbance to decay to zero
over a period of time.
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FIGURE 6.11

Solution of (6.29) subject to specific boundary and initial conditions.

6.7 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
The solution of a second-order elliptic partial differential equation is determined over a closed region,
and the shape of the boundary and its condition at every point must be specified. Some important
second-order elliptic partial differential equations, which arise naturally in the description of physical
systems, are

Laplace’s equation: ∇2z = 0 (6.34)

Poisson’s equation: ∇2z = F(x, y) (6.35)

Helmholtz’s equation: ∇2z + G(x,y)z = F(x, y) (6.36)

where ∇2z = ∂2z/∂x2 + ∂2z/∂y2 and z(x, y) is an unknown function. Note that the Laplace and
Poisson equations are special cases of Helmholtz’s equation. In general, these equations must satisfy
boundary conditions that are specified in terms of either the function value or the derivative of the func-
tion which is normal to the boundary. Furthermore, a problem can have mixed boundary conditions. If
we compare (6.34), (6.35), and (6.36) to the standard second-order partial differential equation in two
variables, that is

A(x,y)
∂2z

∂x2
+ B(x, y)

∂2z

∂x∂y
+ C(x, y)

∂2z

∂y2
+ f

(
x, y, z,

∂z

∂x
,
∂z

∂y

)
= 0

we see that in each case A = C = 1 and B = 0, so that B2 − 4AC < 0, confirming that the equations
are elliptic.

Laplace’s equation is homogeneous, and if a problem has boundary conditions that are also homo-
geneous then the solution, z = 0, will be trivial. Similarly in (6.35), if F(x, y) = 0 and the problem
boundary conditions are homogeneous, then z = 0. However, in (6.36) we can scale G(x,y) by a
factor λ, so that (6.36) becomes

∇2z + λG(x, y)z = 0 (6.37)

This is a characteristic or eigenvalue problem, and we can determine values of λ and corresponding
non-trivial values of z(x, y).
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FIGURE 6.12

Temperature distribution around a plane section. Nodes 1 and 2 are shown.

The elliptic equations (6.34) through (6.37) can only be solved in a closed form for a limited num-
ber of situations. For most problems, it is necessary to use a numerical approximation. Finite difference
methods are relatively simple to apply, particularly for rectangular regions. We will now use the finite
difference approximation for ∇2z, given by (6.12) or (6.13), to the solve some elliptic partial differen-
tial equations over a rectangular domain.

Example 6.3. Laplace’s equation. Determine the distribution of temperature in a rectangular plane
section, subject to a temperature distribution around its edges as follows:

x = 0, T = 100y; x = 3, T = 250y; y = 0, T = 0; and y = 2, T = 200+(100/3)x2

The section shape, the boundary temperature distribution and the two chosen nodes where we require
the values of the temperature to be computed, are shown in Fig. 6.12.

The temperature distribution is described by Laplace’s equation. Solving this equation by the finite
difference method, we apply (6.13) to nodes 1 and 2 of the mesh shown in Fig. 6.12. This gives

(233.33 + T2 + 0 + 100 − 4T1)/h2 = 0

(333.33 + 250 + 0 + T1 − 4T2)/h2 = 0

where T1 and T2 are the unknown temperatures at nodes 1 and 2, respectively, and h = 1. Rearranging
these equations gives [ −4 1

1 −4

][
T1

T2

]
=

[ −333.33
−583.33

]

Solving this equation, we have T1 = 127.78 and T2 = 177.78.

If we require a more accurate solution of Laplace’s equation, then we must use more nodes and
the computation burden increases rapidly. The following MATLAB function ellipgen uses the finite
difference approximation (6.12) to solve the general elliptic partial differential equations (6.34) through
(6.37) for a rectangular domain only. The function is also limited to problems in which the boundary
value is specified by values of the function z(x, y), not its derivative. If the user calls the function with
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10 arguments, the function solves (6.34) through (6.36); see Examples 6.4 and 6.5. Calling it with the
first six arguments causes it to solve (6.37); see Example 6.6.

function [a,om] = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn)
% Function either solves:
% nabla^2(z)+G(x,y)*z = F(x,y) over a rectangular region.
% Function call: [a,om]=ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn)
% hx, hy are panel sizes in x and y directions,
% nx, ny are number of panels in x and y directions.
% F and G are (nx+1,ny+1) arrays representing F(x,y), G(x,y).
% bx0 and bxn are row vectors of boundary conditions at x0 and xn.
% each beginning at y0. Each is (ny+1) elements.
% by0 and byn are row vectors of boundary conditions at y0 and yn.
% each beginning at x0. Each is (nx+1) elements.
% a is an (nx+1,ny+1) array of sol’ns, inc the boundary values.
% om has no interpretation in this case.
% or the function solves
% (nabla^2)z+lambda*G(x,y)*z = 0 over a rectangular region.
% Function call: [a,om]=ellipgen(nx,hx,ny,hy,G,F)
% hx, hy are panel sizes in x and y directions,
% nx, ny are number of panels in x and y directions.
% G are (ny+1,nx+1) arrays representing G(x,y).
% In this case F is a scalar and specifies the
% eigenvector to be returned in array a.
% Array a is an (ny+1,nx+1) array giving an eigenvector,
% including the boundary values.
% The vector om lists all the eigenvalues lambda.
nmax = (nx-1)*(ny-1); r = hy/hx;
a = zeros(ny+1,nx+1); p = zeros(ny+1,nx+1);
if nargin==6

ncase = 0; mode = F;
end
if nargin==10

test = 0;
if F==zeros(nx+1,ny+1), test = 1; end
if bx0==zeros(1,ny+1), test = test+1; end
if bxn==zeros(1,ny+1), test = test+1; end
if by0==zeros(1,nx+1), test = test+1; end
if byn==zeros(1,nx+1), test = test+1; end
if test==5

disp(’WARNING - problem has trivial solution, z = 0.’)
disp(’To obtain eigensolution use 6 parameters only.’)
return

end
bx0 = bx0(1,ny+1:-1:1); bxn = bxn(1,ny+1:-1:1);
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a(1,:) = byn; a(ny+1,:) = by0;
a(:,1) = bx0’; a(:,nx+1) = bxn’; ncase = 1;

end
for i = 2:ny

for j = 2:nx
nn = (i-2)*(nx-1)+(j-1);
q(nn,1) = i; q(nn,2) = j; p(i,j) = nn;

end
end
C = zeros(nmax,nmax); e = zeros(nmax,1); om = zeros(nmax,1);
if ncase==1, g = zeros(nmax,1); end
for i = 2:ny

for j = 2:nx
nn = p(i,j); C(nn,nn) = -(2+2*r^2); e(nn) = hy^2*G(j,i);
if ncase==1, g(nn) = g(nn)+hy^2*F(j,i); end
if p(i+1,j)~=0

np = p(i+1,j); C(nn,np) = 1;
else

if ncase==1, g(nn) = g(nn)-by0(j); end
end
if p(i-1,j)~=0

np = p(i-1,j); C(nn,np) = 1;
else

if ncase==1, g(nn) = g(nn)-byn(j); end
end

if p(i,j+1)~=0
np = p(i,j+1); C(nn,np) = r^2;

else
if ncase==1, g(nn) = g(nn)-r^2*bxn(i); end

end
if p(i,j-1)~=0

np = p(i,j-1); C(nn,np) = r^2;
else

if ncase==1, g(nn) = g(nn)-r^2*bx0(i); end
end

end
end
if ncase==1

C = C+diag(e); z = C\g;
for nn = 1:nmax

i = q(nn,1); j = q(nn,2); a(i,j) = z(nn);
end

else
[u,lam] = eig(C,-diag(e));
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[om,k] = sort(diag(lam)); u = u(:,k);
for nn = 1:nmax

i = q(nn,1); j = q(nn,2);
a(i,j) = u(nn,mode);

end
end

We now give examples of the application of the ellipgen function.

Example 6.4. Use function ellipgen to solve Laplace’s equation over a rectangular region subject
to the boundary conditions shown in Fig. 6.12. The script e4s606.m calls the function to solve this
problem using a 12 × 12 mesh. The example is the same as Example 6.3, but a finer mesh is used in
the solution.

% e4s606.m
Lx = 3; Ly = 2;
nx = 12; ny = 12; hx = Lx/nx; hy = Ly/ny;
by0 = 0*[0:hx:Lx];
byn = 200+(100/3)*[0:hx:Lx].^2;
bx0 = 100*[0:hy:Ly];
bxn = 250*[0:hy:Ly];
F = zeros(nx+1,ny+1); G = F;
a = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn);
aa = flipud(a); colormap(gray)
surfl(aa)
xlabel(’x direction’)
ylabel(’y direction’)
zlabel(’Temperature’)
axis([0 12 0 12 0 500])

The output from this script is the surface plot shown in Fig. 6.13. The actual temperatures can be
obtained from aa.

Example 6.5. Poisson’s equation. Determine the deflection of a uniform square membrane, held at its
edges and subject to a distributed load which can be approximated to a unit load at each node. This
problem is described by Poisson’s equation, (6.35), where F(x, y) specifies the load on the membrane.
We use the following script to determine the deflection of this membrane using the MATLAB function
ellipgen.

% e4s607.m
Lx = 1; Ly = 1;
nx = 18; ny = 18; hx = Lx/nx; hy = Ly/ny;
by0 = zeros(1,nx+1); byn = zeros(1,nx+1);
bx0 = zeros(1,ny+1); bxn = zeros(1,ny+1);
F = -ones(nx+1,ny+1); G = zeros(nx+1,ny+1);
a = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn);
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FIGURE 6.13

Finite difference estimate for the temperature distribution for the problem defined in Fig. 6.12.

FIGURE 6.14

Deflection of a square membrane subject to a distributed load.

surfl(a)
axis([1 nx+1 1 ny+1 0 0.1])
xlabel(’x-node nos.’), ylabel(’y-node nos.’)
zlabel(’Displacement’)
max_disp = max(max(a))

Running this script gives the output shown in Fig. 6.14 together with

max_disp =
0.0735

This compares with the exact value of 0.0737.

Example 6.6. Characteristic value problem. Determine the natural frequencies and mode shapes of
a freely vibrating square membrane held at its edges. This problem is described by the eigenvalue
problem (6.37). The natural frequencies are related to the eigenvalues, and the mode shapes are the
eigenvectors. The following MATLAB script, e4s608, determines the eigenvalues and vectors. It calls
the function ellipgen and outputs a list of eigenvalues and provides Fig. 6.15, showing the second
mode shape of the membrane.
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FIGURE 6.15

Finite difference approximation of the second mode of vibration of a uniform rectangular membrane.

Table 6.1 Finite difference (FD)
approximations compared with exact
eigenvalues for a uniform rectangular
membrane

FD approximation Exact Error (%)
14.2318 14.2561 0.17
27.3312 27.4156 0.31
43.5373 43.8649 0.75
49.0041 49.3480 0.70
56.6367 57.0244 0.70

% e4s608.m
Lx = 1; Ly = 1.5;
nx = 20; ny = 30; hx = Lx/nx; hy = Ly/ny;
G = ones(nx+1,ny+1); mode = 2;
[a,om] = ellipgen(nx,hx,ny,hy,G,mode);
eigenvalues = om(1:5), surf(a)
view(140,30)
axis([1 nx+1 1 ny+1 -1.2 1.2])
xlabel(’x - node nos.’), ylabel(’y - node nos.’)
zlabel(’Relative displacement’)

Running script e4s608.m gives

eigenvalues =
14.2318
27.3312
43.5373
49.0041
56.6367

These eigenvalues compare with the exact values given in Table 6.1.
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6.8 SUMMARY
In this chapter, we examined the application of finite difference methods to a broad range of second-
order ordinary and partial differential equations. A major problem in the development of scripts is
the difficulty of accounting for the wide variety of boundary conditions and boundary shapes that can
occur. Software packages have been developed to solve the partial differential equations that arise in
computational fluid dynamics and continuum mechanics, using either finite difference or finite element
methods; however, they are both complex and expensive because they allow the user total freedom to
define boundary shapes and conditions.

6.9 PROBLEMS
6.1. Classify the following second-order partial differential equations:

∂2y

∂t2
+ a

∂2y

∂x∂t
+ 1

4
(a2 − 4)

∂2y

∂x2
= 0

∂u

∂t
− ∂

∂x

(
A(x, t)

∂u

∂x

)
= 0

∂2ϕ

∂x2
= k

∂2(ϕ2)

∂y2
wherek > 0

6.2. Use the shooting method to solve y′′ + y′ − 6y = 0, where the prime denotes differentiation
with respect to x, given the boundary conditions y(0) = 1 and y(1) = 2. Note that an illustrative
script for the shooting method is given in Section 6.2. Use trial slopes in the range −3 : 0.5 : 2.
Compare your results with those you obtain using the finite difference method with 10 divisions.
The finite difference method is implemented by function twopoint. Note that the exact solution
is

y = 0.2657 exp(2x) + 0.7343 exp(−3x)

6.3. (a) Use the shooting method to solve y′′ − 62y′ + 120y = 0, where the prime denotes differ-
entiation with respect to x, given the boundary conditions y(0) = 0 and y(1) = 2. Solve this
equation by applying the shooting method, using trial slopes in the range −0.5 : 0.1 : 0.5. Note
that the exact solution is

y = 1.751302152539304 × 10−26{exp(60x) − exp(2x)}

(b) By substituting x = 1 − p in the original differential equation, show that y′′ + 62y′ +
120y = 0, where the prime denotes differentiation with respect to p. Note that the boundary
conditions of this problem are y(0) = 2 and y(1) = 0. Solve this equation by applying the
shooting method, using trial slopes in the range 0 to −150 with a step of −30 at p = 0. Note
that a very good approximation to the solution is y = 2 exp(−60p).
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Compare the two answers you obtain for (a) and (b). Note that an illustrative script for the
shooting method is given in Section 6.2. Also solve (a) and (b) using the finite difference method,
implemented in twopoint. Use 10 divisions and repeat with 50 divisions. You should plot your
answers and compare with a plot of the exact solution.

6.4. Solve the boundary value problem xy′′ + 2y′ − xy = ex given that y(0) = 0.5 and y(2) =
3.694528, using the finite difference method implemented by the function twopoint. Use 10
divisions in the finite difference solution and plot the results, together with the exact solution,
y = exp(x)/2.

6.5. Determine the finite difference equivalence of the characteristic value problem defined by y′′ +
λy = 0, where y(0) = 0 and y(2) = 0. Use 20 divisions in the finite difference method. Then
solve the finite difference equations using the MATLAB function eig to determine the lowest
value of λ, that is the lowest eigenvalue.

6.6. Solve the parabolic equation (6.24) with K = 1, subject to the following boundary conditions:
u(0, t) = 0, u(1, t) = 10, u(x,0) = 0 for all x except x = 1. When x = 1, u(1,0) = 10. Use the
function heat to determine the solution for t = 0 to 0.5 in steps of 0.01 with 20 divisions of x.
You should plot the solution for ease of visualization.

6.7. Solve the wave equation, (6.29) with c = 1, subject to the following boundary and initial con-
ditions: u(t,0) = u(t,1) = 0, u(0, x) = sin(πx) + 2 sin(2πx), and ut (0, x) = 0, where the
subscript t denotes partial differentiation with respect to t . Use the function fwave to deter-
mine the solution for t = 0 to 4.5 in steps of 0.05, and use 20 divisions of x. Plot your results
and compare with a plot of the exact solution, which is given by

u = sin(πx) cos(πt) + 2 sin(2πx) cos(2πt).

6.8. Solve the equation

∇2V + 4π2(x2 + y2)V = 4π cos{π(x2 + y2)}

over the square region 0 ≤ x ≤ 0.5 and 0 ≤ y ≤ 0.5. The boundary conditions are

V (x,0) = sin(πx2), V (x,0.5) = sin{π(x2 + 0.25)}
V (0, y) = sin(πy2), V (0.5, y) = sin{π(y2 + 0.25)}

Use the function ellipgen to solve this equation with 15 divisions of x and y. Plot your results
and compare with a plot of the exact solution, which is given by V = sin{π(x2 + y2)}.

6.9. Solve the eigenvalue problem ∇2z + λG(x, y)z = 0 over a rectangular region bounded by 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1.5, z = 0 at all boundaries. Use the function ellipgen with six divisions
in x and nine divisions in y. The function G(x,y) over this grid is given by the MATLAB

statements G = ones(10,7); G(4:7,3:5) = 3*ones(4,3);. This represents a membrane with
a central area thicker than its periphery. The eigenvalues are related to the natural frequencies
of this membrane.
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6.10. Solve Poisson’s equation ∇2φ + 2 = 0 over the region shown with a = 1 at the boundary where
φ = 0. You will have to assemble the finite difference equation by hand, applying (6.13) to each
of the 10 nodes, and then use MATLAB to solve the resulting linear equation system.



7
CHAPTER

ANALYZING DATA

Abstract

In this chapter we consider a variety of methods for interpolating and fitting functions to data; describe
some of the MATLAB functions that are available for this purpose and develop some additional ones.
Least squares methods are described together with regression analysis, the Kalman filter and principal
component analysis.

7.1 INTRODUCTION
We fit functions to two general classes of data: data which is exact and data which is known to contain
errors. When we fit a function to exact data, we fit to the points exactly. When we fit a function to data
that is known to contain errors, we try to obtain the best fit to the trend of the data, using some criterion.
The user must exercise skill in making a sensible choice of the function to fit the specific data.

We begin by examining polynomial interpolation which is an example of fitting to exact data.

7.2 INTERPOLATION USING POLYNOMIALS
Suppose y is some unknown function of x. Given a table of values of x and y, we may wish to obtain a
value of y corresponding to a value of x that is not tabulated. Interpolation implies that the untabulated
value of x is within the range of the tabulated data. If the untabulated x is outside this range, the process
is called extrapolation and is often less accurate.

The simplest form of interpolation is linear interpolation. In this method only the pair of data points
enclosing the required value are used. Thus if (x0, y0) and (x1, y1) are two adjacent data points in a
tabulation, to obtain the value of y corresponding to an x where x0 < x < x1, we fit the straight line
y = ax + b to these points and evaluate y thus:

y = [y0(x1 − x) + y1(x − x0)]/(x1 − x0) (7.1)

We may use the MATLAB function interp1 for this purpose. For example, consider the function
y = x1.9, tabulated at x = 1,2, ...,5. If we require estimates of y for x = 2.5 and 3.8, we may use
interp1 setting the third parameter as ’linear’ to obtain linear interpolation as follows:

>> x = 1:5;
>> y = x.^1.9;
>> interp1(x,y,[2.5,3.8],’linear’)

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00016-6
Copyright © 2019 Elsevier Inc. All rights reserved.
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ans =
5.8979 12.7558

The exact answers are y = 5.7028 and y = 12.6354 corresponding to x = 2.5 and 3.8 respectively. For
some applications the values obtained by linear interpolation may be sufficiently accurate.

Interpolation becomes more accurate when more of the tabulated data values are used because we
can fit a higher-degree polynomial. A polynomial of degree n can be adjusted to pass through n + 1
data points. We do not need to know the coefficients of the polynomial explicitly, but they are used
implicitly in the procedure to estimate y for a given value of x. For example, MATLAB allows cubic
interpolation to be used by calling interp1 with the third parameter set as ’pchip’. The following
example implements cubic interpolation using the same data as the previous example.

>> interp1(x,y,[2.5 3.8],’pchip’)

ans =
5.6938 12.6430

It can be seen that the cubic interpolation has given a much more accurate result.
An algorithm that provides an efficient method for fitting any degree polynomial to data is Aitken’s

algorithm. In this procedure a sequence of polynomial functions are fitted to the data. As the degree
of the polynomial is increased, more of the data points are used and the accuracy of the interpolation
improves.

Aitken’s algorithm proceeds as follows. Suppose we have five pairs of data values labeled 1,2, ...,5
and we wish to determine y∗, the value of y corresponding to a given x∗. Initially the algorithm de-
termines straight lines (i.e., first-degree polynomials) that pass through data points 1 and 2, 1 and 3,
1 and 4, and 1 and 5, as shown in Fig. 7.1A. These four straight lines allow the procedure to determine
four, probably poor, estimates for y∗.

Using x2, x3, ..., x5 from the tabulated data and the four estimates of y∗ determined from the first-
degree polynomial, the algorithm repeats the procedure above using these new points but this now
provides second-degree polynomials through the sets of data points {1,2,3}, {1,2,4}, and {1,2,5}, as
shown in Fig. 7.1B. From these second-degree polynomials, the procedure determines three improved
estimates for y∗.

Using x3, x4, x5 from the tabulated data and the three new estimates for y∗ obtained from the
second-degree polynomials, the algorithm computes the third-degree polynomials passing through the
sets of data points {1,2,3,4} and {1,2,3,5}, as shown in Fig. 7.1C to allow the procedure to determine
two further improved estimates for y∗. Finally a fourth-degree polynomial is computed that fits all the
data. This fourth-degree polynomial provides the best estimate for y∗, as shown in Fig. 7.1D.

Aitken’s algorithm has two advantages. First of all it is very efficient. Each new estimate for y∗
requires only two multiplications and one division so that for n + 1 data points, the estimate using all
the data requires n(n + 1) multiplications and n(n + 1)/2 divisions. It is interesting to note that if we
attempted to determine the coefficients of a polynomial passing through n+1 data points by assembling
a set of n + 1 linear equations, then in addition to the computation required to assemble the equations,
we would require (n + 1)3/2 multiplications and divisions to solve them. The second advantage of
Aitken’s algorithm is that the process is adding an additional point at each stage. This allows the
algorithm to fit higher-degree polynomials at each stage and, in general, to increase the accuracy of
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FIGURE 7.1

Increasing the degree of the polynomial to fit the given data. (A) 1st degree; (B) 2nd degree; (C) 3rd degree;
(D) 4th degree.

the estimate. When there is no significant change in the estimate, the maximum obtainable accuracy
has been reached and the process can be terminated, avoiding further and unnecessary computation.
The MATLAB function aitken shown below implements Aitken’s algorithm. The user must provide a
set of data for the vectors x and y. The function then determines a value of y corresponding to xval.
The function provides the best value and, if required, a table showing all the intermediate values of the
Aitken algorithm can be obtained.

function [Q R] = aitken(x,y,xval)
% Aitken’s method for interpolation.
% Example call: [Q R] = aitken(x,y,xval)
% x and y give the table of values. Parameter xval is
% the value of x at which interpolation is required.
% Q is interpolated value, R gives table of intermediate results.
n = length(x); P = zeros(n);
P(1,:) = y;
for j = 1:n-1

for i = j+1:n
P(j+1,i) = (P(j,i)*(xval-x(j))-P(j,j)*(xval-x(i)))/(x(i)-x(j));

end
end
Q = P(n,n); R = [x.’ P.’];

We now use this function to determine the reciprocal of 1.03 from a table of 10 equispaced values
of x in the range 1 to 2 and y = 1/x. The script below calls the function aitken to solve this example:
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% e4s701.m
x = 1:.2:2; y = 1./x;
[interpval table] = aitken(x,y,1.03);
fprintf(’Interpolated value= %10.8f\n\n’,interpval)
disp(’Table = ’)
disp(table)

Running script e4s701.m gives the following output:

interpolated value= 0.97095439

Table =
1.0000 1.0000 0 0 0 0 0
1.2000 0.8333 0.9750 0 0 0 0
1.4000 0.7143 0.9786 0.9720 0 0 0
1.6000 0.6250 0.9813 0.9723 0.9713 0 0
1.8000 0.5556 0.9833 0.9726 0.9713 0.9710 0
2.0000 0.5000 0.9850 0.9729 0.9714 0.9711 0.9710

Notice that the first column in this table contains the tabulated x values, the second column contains
the tabulated y values and the remaining columns give successively higher-degree polynomial inter-
polants generated by Aitken’s method. The zeros in this table are padding: The number of estimates in
each column decreases as the estimates use more of the data. The exact value is y = 0.970873786; thus
the Aitken interpolated value of y = 0.97095439 is correct to four decimal places. Linear interpolation
gives 0.9750, a much poorer result with an error of approximately 0.2%.

Aitken’s method provides an interpolated value of y for a given value of x by fitting a polynomial
to the data but the coefficients of the polynomial are not determined explicitly. Conversely, we can fit
a polynomial explicitly to the data, determine its coefficients, and then determine the required inter-
polated value by evaluating the polynomial. This approach may be less computationally efficient. The
MATLAB function polyfit(x,y,n) fits a polynomial of degree n through the data given by x and y and
returns the coefficients of descending powers of x. For an exact fit, n must equal m − 1 where m is the
number of data points. The polynomial represented by the coefficients p can then be evaluated using
the polyval function. For example, to determine the reciprocal of 1.03 from a table of 6 equispaced
values of x in the range 1 to 2 and y = 1/x, we have

% e4s702.m
x = 1:.2:2; y = 1./x;
p = polyfit(x,y,5)
interpval = polyval(p,1.03);
fprintf(’interpolated value = %10.8f\n’,interpval)

Running script e4s702.m gives

p =
-0.1033 0.9301 -3.4516 6.7584 -7.3618 4.2282

interpolated value = 0.97095439
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Thus

y = −0.1033x5 + 0.9301x4 − 3.4516x3 + 6.7584x2 − 7.3618x + 4.2282

The interpolated value is identical to that given by Aitken’s method, as indeed it must be (except
for possible rounding errors in the computation) because there is only one polynomial that passes
through all 6 data points and both methods have used it. We use the MATLAB function polyfit again
in Section 7.7.

7.3 INTERPOLATION USING SPLINES
The spline is used to connect data points to each other using a curve which appears to the eye to be
smooth, either for the purpose of visualization in design drawings or for interpolation. It has certain
advantages over the use of a high-degree polynomial which has a tendency to oscillate between data
values. This oscillation is illustrated in Fig. 7.4. Here an eight-degree polynomial if fitted to eight data
points.

We begin with a historical example of ship design. Ships’ hulls have always curved in a complex
manner in two dimensions. Fig. 7.2 shows hull sections for a 74 gun British warship, circa 1813.
The data points are taken from the original plans, and splines have been used to join the data points
together smoothly. Each line shows a section of the ship; the innermost line is close to the stern, and
the outermost line is near amidships. The graph gives a clear impression of the way the ship builder
chose to reduce the ship’s cross-section toward the stern.

Polynomials of varying degrees are used for splines, but here we only consider the cubic spline. The
cubic spline is a series of cubic polynomials joining data points or “knots”. Suppose we have n data
points joined by n− 1 polynomials. Each cubic polynomial has four unknown coefficients so that there
are 4(n − 1) coefficients to be determined. Obviously each polynomial must pass through the two data
points it joins. This provides 2(n − 1) equations that must be satisfied. In order that the polynomials
join together smoothly, we require both continuity of slope (y′) and curvature (y′′) between adjacent
polynomials at the n − 2 internal data points. This gives 2(n − 2) extra equations, making a total of
4n − 6 equations. With these equations we can determine an identical number of coefficients uniquely,
and so to determine the 4n − 4 unknown coefficients, two further equations are required. The two
remaining conditions can be chosen arbitrarily, but usually one of the following is used:

1. If the slope of the required curve is known at the outer ends, we can impose these two constraints.
More often than not, these slopes are not known.

2. We can make the curvature at the outer ends zero, i.e., y′′
1 = y′′

n = 0. (These are called natural
splines but have no particular advantage.)

3. We can make the curvature at x1 and xn equal to x2 and xn−1, respectively.
4. We can make the curvature at x1 a linear extrapolation of the curvature at x2 and x3. Similarly, we

make the curvature at xn a linear extrapolation of the curvature at xn−1 and xn−2.
5. We can make y′′′ continuous at x2 and xn−1. Since at any internal point, y, y′, y′′, and y′′′ are

always made continuous, adding this condition is equivalent to using the same polynomial in the
two outer panels. This is called the “not a knot” condition and is used in the MATLAB function
spline.
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FIGURE 7.2

Use of splines to define cross-sections of a ship’s hull.

Table 7.1 Data for spline fit

x 0 1 2 3 4
y 3 1 0 2 4

We now illustrate the two uses of the MATLAB function spline applied to the small set of data given
in Table 7.1. Running the following script

% e4s703.m

x = 0:4; y = [3 1 0 2 4];

xval = 1.5; yval = spline(x,y,xval)

p = spline(x,y)

Running script e4s703 gives

yval =

0.1719

p =

form: ’pp’

breaks: [0 1 2 3 4]

coefs: [4x4 double]

pieces: 4

order: 4

dim: 1

where yval is the interpolated value. There may be some occasions when the user wishes to know the
values of the coefficient of the polynomials. In this case the p-p form is required, where the abbreviation
p-p means piecewise polynomial. The output p is a structure array that provides this information. In
particular,
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>> c = p.coefs

c =
0.5417 -1.1250 -1.4167 3.0000
0.5417 0.5000 -2.0417 1.0000

-0.7083 2.1250 0.5833 0
-0.7083 -0.0000 2.7083 2.0000

The parameter c gives all the required polynomial coefficient. In this example, these coefficients
are combined with the powers of x as follows:

y = c11x
3 + c12x

2 + c13x + c14, 0 ≤ x ≤ 1

y = c21(x − 1)3 + c22(x − 1)2 + c23(x − 1) + c24, 1 ≤ x ≤ 2

y = c31(x − 2)3 + c32(x − 2)2 + c33(x − 2) + c34, 2 ≤ x ≤ 3

y = c41(x − 3)3 + c42(x − 3)2 + c43(x − 3) + c44, 3 ≤ x ≤ 4

It is not necessary for the MATLAB user to know the details of how the p-p values are interpreted.
MATLAB provides a function ppval which evaluates a composite polynomial provided its p-p values
are known. If x and y are vectors of data, then y1 = spline(x,y,x1) is equivalent to the statements
p = spline(x,y); y2 = ppval(p,x1).

The script e4s704.m gives a plot of the spline fit to the data of Table 7.1.

% e4s704.m
x = 0:4; y = [3 1 0 2 4];
xx = 0:.1:4; yy = spline(x,y,xx);
plot(x,y,’o’,xx,yy)
axis([0 4 -1 4])
xlabel(’x’), ylabel(’y’)

Running script e4s704.m generates Fig. 7.3.
In Section 7.2 we show how polynomials are used in interpolation. However, their use is not always

appropriate. When the data points are widely spaced, and when there are sudden changes in the y

values, then polynomials can give very poor results. For example, the nine data points in Fig. 7.4 are
taken from the function

y = 2{1 + tanh(2x)} − x/10

This function changes abruptly, and if an eighth-degree polynomial is fitted to the data it oscillates
and the path between data points bears no relationship to the true path. In contrast the spline fit is
reasonably smooth and close to the true function.

The reader should note that the MATLAB function interp1 can also be used to fit splines to data.
The call interp1(x,y,xi,’spline’) is identical to spline(x,y,xi).

A special type of spline is the Bézier curve. This is a cubic function defined by four points. The two
end points are used, together with two ’control’ points. The slope of the curve at one end is a tangent
to the line between that end point and one of the control points. Similarly, the slope at the other end
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FIGURE 7.3

Spline fit to the data of Table 7.1 denoted by o.

FIGURE 7.4

The solid curve shows the function y = 2{1 + tanh(2x)} − x/10. The dashed line shows an eighth-degree
polynomial fit; the dotted line shows a spline fit.

point is a tangent to the line between that end point and the other control point. In interactive computer
graphics, the positions of the control points can be moved on the screen in order to adjust the slope of
the curve at the end points.

7.4 MULTIPLE REGRESSION: LEAST SQUARES CRITERION
We now consider the problem of fitting a function to a relatively large amount of data that contains
errors. It would not be sensible, nor computationally possible, to fit a very high-degree polynomial to a
large amount of experimental data as may be done for interpolation. What is required is a function that
smooths out fluctuations in the data due to errors and reveals any underlying trend. We therefore adjust
the coefficients of a chosen function to provide a ‘best fit’ according to some criterion. For example,
the criterion may be to minimize the maximum error, the sum of the modulus of the errors or the sum
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of the squares of the errors between the chosen function and the actual data points. The least squares
method is the most widely used of these criteria. We now examine how this process is carried out.

Suppose we have an n component vector of observations y and p separate vectors of explanatory
variables, x1,x2, ...,xp. The variables x1,x2, ...,xp are generally independent vectors which are mea-
sured with negligible error or even controlled in an experiment and y is a single dependent variable,
uncontrolled and containing random measurement errors. In some cases x1, x2, and so on, may be
different functions of a single explanatory variable – in which case we call them predictors (see Sec-
tions 7.7 and 7.8). Our basic model consists of a regression equation and is said to be a regression of y
upon the explanatory variables x1,x2, ...,xp. We assume a simple linear regression model, and so for
observation xi we have

yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi, i = 1, 2, . . . , n (7.2)

where βj (j = 0,1,2..., p) are the unknown coefficients and εi are random errors. Initially we simply
assume that these random errors are identically distributed with a zero mean and a common unknown
variance, σ 2, and that they are independent of each other. This implies that

β0 + β1x1i + β2x2i + ... + βpxpi

represents the mean value of yi .
Our main task is to find an estimate bj for each unknown βj so that we can estimate the mean of yi

by fitting a function of the form

ŷj = b0 + b1x1i + b2x2i + ... + bpxpi, i = 1, 2, . . . , n (7.3)

The difference between the observed and the fitted value for the ith observation is

ei = yi − ŷi (7.4)

The parameter ei is called the residual and is an estimate of the corresponding random error εi . Our
criterion for choosing the bj estimates is that they should minimize the sum of the squares of the
residuals, which is often called the sum of squares of the errors and is denoted by SSE. Thus

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi )
2 (7.5)

To perform the necessary calculations efficiently, we rewrite the model in matrix form as follows. We
define b as a (p + 1) × 1 vector such that

b = [b0 b1 ... bp]T

Similarly we define e, y, u, and xj to be n × 1 vectors thus:

e = [e1 e2 ... en]T

y = [y1 y2 ... yn]T



338 CHAPTER 7 ANALYZING DATA

u = [1 1 ... 1]T

xj = [xj1 xj2 ... xjn]T, j = 1,2, ..., p

From these vectors the n × (p + 1) matrix, X, can be defined as follows:

X = [u x1 x2 ... xp]
This matrix corresponds to the coefficients of the equation system (7.3). From (7.4) the residuals may
then be written as

e = y − Xb

and the SSE, from (7.5), is then

SSE = eTe = (y − Xb)T(y − Xb) (7.6)

Differentiating the SSE with respect to b, we get a vector of partial derivatives, as follows:

∂

∂b
(SSE) = −2XT(y − Xb)

Matrix differentiation is described in Appendix A. Equating this derivative to zero we have Xb = y
and this over-determined system of equations could be solved directly to obtain the coefficients b
using the MATLAB operator \. However, in this instance it is more convenient to proceed as follows.
Pre-multiplying Xb = y by XT, we obtain what are called the normal equations thus:

XTXb = XTy

The formal solution of these equations is then

b = (XTX)−1XTy = CXTy (7.7)

where

C = (XTX)−1 (7.8)

Note that C is a (p + 1) × (p + 1) square matrix.
Using the expression for b in (7.7), the vector of fitted values corresponding to y is

ŷ = Xb = XCXTy

So, defining H = XCXT, we can write

ŷ = Hy (7.9)

The matrix H, which converts y to ŷ (“y-hat”) is called the hat matrix and plays an important role in
the interpretation of the regression model. Among its important properties is that it is idempotent (see
Appendix A).



7.5 DIAGNOSTICS FOR MODEL IMPROVEMENT 339

From (7.7) it can be shown that minimum value of SSE is given by

SSE = yT(I − H)y (7.10)

where I is an n × n identity matrix. Our original data consisted of n sets of observations and we have
introduced p + 1 constraints into the system to estimate the parameters β0, β1, ..., βp , so there are now
(n−p−1) degrees of freedom. Statistical theory shows that by dividing the minimum SSE from (7.10)
by the number of degrees of freedom, we obtain an unbiased estimate of the unknown error variance,
σ 2, which is

s2 = SSE

n − p − 1
= yT(I − H)y

n − p − 1
(7.11)

On its own, the value of s obtained by fitting a single model is not very informative. However, we can
also use H to evaluate the overall goodness of fit on an absolute scale and to examine how good each
bj is, as an estimate of the corresponding βj .

The most widely used measure of the overall goodness of fit is the coefficient of determination, R2,
which is defined by

R2 =
n∑

i=1

(ŷi − ȳ)2
/ n∑

i=1

(yi − ȳ)2

where

ȳ = 1

n

n∑
i=1

yi

Thus, ȳ is the mean of the observed y values. Using matrix notation, we can evaluate R2 from the
equivalent definition:

R2 = yT(H − uuT/n)y

yT(I − uuT/n)y
(7.12)

The value of R2 will lie between 0 and 1 and represents the proportion of the total observed variance
of y that is accounted for by the explanatory variables. Thus a value close to 1 indicates that nearly
all the observed variance is accounted for and we have a good fit. However, on its own this does not
necessarily indicate that the model is satisfactory because the value of R2 can always be increased by
introducing more explanatory variables, even though their introduction can have other effects which are
very undesirable. In the next section, we briefly consider some methods for deciding which explanatory
variables should be included in the model.

7.5 DIAGNOSTICS FOR MODEL IMPROVEMENT
To see which variables might be removed in order to improve our original model, we now examine the
bj estimates in more detail to check whether they indicate that the corresponding βj coefficients are
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non-zero. This would confirm that the corresponding xj really do contribute to explaining y, or in the
case of b0, whether it is appropriate to include the constant term β0 in the model.

If we make the assumption that the random errors, εi , are normally distributed, it can be shown that
each of the bj estimates behave as if they were observed values of normal random variables whose
means are the βj and whose covariance matrix is s2C where C is defined by (7.8). Thus the covariance
matrix is

s2C = s2

⎡
⎢⎢⎢⎢⎢⎣

c00 c01 c02 . . . c0p

c11 c12 . . . c1p

c22 . . . c2p

...

cpp

⎤
⎥⎥⎥⎥⎥⎦

Note that we numbered the rows and columns of C from zero to p. The matrix C is symmetric and so
the sub-diagonal elements are not shown.

The variance of the distribution for bj is s2 times the corresponding diagonal element of C, and the
standard error (SE) of bj is the square root of this variance thus:

SE(bj ) = s
√

cjj

If βj is really zero, the statistic

t = bj /SE(bj )

has a Student’s t-distribution with n − p − 1 degrees of freedom. Thus a formal hypothesis test may
be carried out to check whether it is reasonable to assume that βj is zero and hence the predictor xj

does not make a significant contribution to explaining y. However, as an initial guide to whether xj

should be included in the regression model, it is usually sufficient to check whether the magnitude of
the corresponding t-statistic is numerically greater than about 2. If |t | > 2, then xj should be left in the
model; otherwise, consideration should be given to removing it.

When there is more than one explanatory variable or predictor in the original regression, there is a
possibility that two or more of these may be highly correlated with each other. This situation is called
multicollinearity; when it occurs the columns in X corresponding to the correlated variables are almost
linearly related, and this causes XTX and its inverse C to be ill-conditioned. Although we shall be able
to solve the normal equations for the given b, as long as XTX does not actually become singular, the
solution is very sensitive to small changes in the data and there will be large off-diagonal elements in C,
indicating highly correlated bj estimates. It is therefore worth calculating the correlation matrix which
shows the correlation between y and each of the explanatory variables and the correlations between
all pairs of explanatory variables. As in the case of the covariance matrix, we number the rows and
columns of the correlation matrix from 0 to p. Thus the correlation matrix is

⎛
⎜⎜⎝

y x1 x2

y r00 r01 r02 . . .

x1 r10 r11 r12 . . .

x2 r20 r21 r22 . . .

. . . . . . . . . . . .

⎞
⎟⎟⎠
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where we define the typical element of the correlation matrix rij to be the correlation between xi and
xj and r0j to be the correlation between y and xj .

In situations such as polynomial regression, which is considered in Section 7.7, there will always
be high correlations between the predictors, but examination of the t-statistics may indicate that some
of the predictors do not contribute significantly to explaining y. Those with the smallest |t | and the
smallest |r0j | are the most obvious candidates for discarding.

Another set of statistics which are useful in this context are the variance inflation factors (VIFs).
To find the VIF for xj , we regress xj upon the other p − 1 explanatory variables and calculate the
coefficient of determination, R2

j . The corresponding VIF is

VIFj = 1

1 − R2
j

If xj is almost entirely explained by the other variables, R2
j will be close to 1 and VIFj will be large.

A good working rule is to regard any xj with VIFj > 10 as a candidate for removal.
Note that when there are only two explanatory variables, they will always have equal variance

inflation factors; if these are greater than 10, it is best to discard the variable which has the smallest
correlation with y. When the model contains predictors that are different functions of some common
explanatory variable, the corresponding VIF values may be very large, as in the case of polynomial
regression described in Section 7.7. Such models would normally be considered for physical data when
predictors of this type could be shown to have a causal relationship with y.

The following MATLAB function mregg2 implements multiple regression; the diagnostics necessary
for model improvement are also computed.

function [s_sqd R_sqd b SE t VIF Corr_mtrx residual] = mregg2(Xd,con)
% Multiple linear regression, using least squares.
% Example call:
% [s_sqd R_sqd bt SEt tt VIFt Corr_mtrx residual] = mregg2(Xd,con)
% Fits data to y = b0 + b1*x1 + b2*x2 + ... bp*xp
% Xd is a data array. Each row of X is a set of data.
% Xd(1,:) = x1(:), Xd(2,:) = x2(:), ... Xd(p+1,:) = y(:).
% Xd has n columns corresponding to n data points and p+1 rows.
% If con = 0, no constant is used, if con ~= 0, constant term is used.
% Output arguments:
% s_sqd = Error variance, R_Sqd = R^2.
% b is the row of coefficients b0 (if con~=0), b1, b2, ... bp.
% SE is the row of standard error for the coeff b0 (if con~=0),
% b1, b2, ... bp.
% t is the row of the t statistic for the coeff b0 (if con~=0),
% b1, b2, ... bp.
% VIF is the row of the VIF for the coeff b0 (if con~=0), b1, b2, ... bp.
% Corr_mtrx is the correlation matrix
% residual is an arrray of 4 columns and n rows.
% For each row i, the residual
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% array contains the value of y(i), the residual(i), the standardized
% residual(i) and the Cook distance(i) where i is the ith data value.
if con==0

cst = 0;
else

cst = 1;
end
[p1,n] = size(Xd);
p = p1-1; pc = p+cst;
y = Xd(p1,:)’;
if cst==1

w = ones(n,1);
X = [w Xd(1:p,:)’];

else
X = Xd(1:p,:)’;

end
C = inv(X’*X); b = C*X’*y; b = b.’;
H = X*C*X’; SSE = y’*(eye(n)-H)*y;
s_sqd = SSE/(n-pc); Cov = s_sqd*C;
Z = (1/n)*ones(n);
num = y’*(H-Z)*y; denom = y’*(eye(n)-Z)*y;
R_sqd = num/denom;
SE = sqrt(diag(Cov)); SE = SE.’;
t = b./SE;
% Compute correlation matrix
V(:,1) = (eye(n)-Z)*y;
for j = 1:p

V(:,j+1) = (eye(n)-Z)*X(:,j+cst);
end
SS = V’*V; D = zeros(p+1,p+1);
for j=1:p+1

D(j,j) = 1/sqrt(SS(j,j));
end
Corr_mtrx = D*SS*D;
% Compute VIF
for j = 1+cst:pc

ym = X(:,j);
if cst==1

Xm = X(:,[1 2:j-1,j+1:p+1]);
else

Xm = X(:,[1:j-1,j+1:p]);
end
Cm = inv(Xm’*Xm); Hm = Xm*Cm*Xm’;
num = ym’*(Hm-Z)*ym; denom = ym’*(eye(n)-Z)*ym;
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R_sqr(j-cst) = num/denom;
end
VIF = 1./(1-R_sqr); VIF = [0 VIF];
% Analysis of residuals
ee = zeros(length(y),1); sr = zeros(length(y),1);
cd = zeros(length(y),1);
if nargout>7

ee = (eye(n)-H)*y;
s = sqrt(s_sqd);
sr = ee./(s*sqrt(1-diag(H)));
cd = (1/pc)*(1/s^2)*ee.^2.*(diag(H)./((1-diag(H)).^2));
residual = [y ee sr cd];

end

To use mregg2 it is necessary to provide the (p + 1) × n data array, Xd, where p is the number of
explanatory variables and n is the number of data sets. Rows 1 to p contain the values of the explanatory
variables, x1 to xp, and row p + 1 contains the corresponding value of y. If the parameter con is set to
zero, then the constant term is removed from the regression model; otherwise, it is included. Examples
of the use of the function mregg2 are given in Sections 7.6 and 7.7.

The multiple regression model has wider applications. For example:

1. Polynomial regression. Here y is required to be a polynomial function of a single variable x, so that
xj in the general model is replaced by xj . Thus we have

yi = β0 + β1xi + β2x
2
i + . . . + βpx

p
i + εi, i = 1, 2, . . . , n (7.13)

Although this is no longer linear in the explanatory variable x, it is still linear in the βj coefficients
and so the theory for the linear regression model still applies. We can use mregg2 to carry out
polynomial regression where the rows of data are x, x2, x3, ... and the last row of data is y. (See
Examples 7.3, 7.4, 7.5.)

2. Multiple polynomial regression. Suppose that we wished to fit data to the following regression
model:

yi = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + εi, i = 1, 2, . . . , n

In this case the five predictors are x1, x2, x2
1 , x2

2 , and x1x2. The predictors are still linear in the βj

coefficients. To use the function mregg2 the six rows of the data array for must contain the values
of x1, x2, x2

1 , x2
2 , and x1x2 and y respectively.

7.6 ANALYSIS OF RESIDUALS
Besides considering the contributions made by each of the explanatory variables or predictors, it is
important to consider how well the model fits at each data point and whether our assumptions about
the error distribution are valid.
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We recall from Section 7.9 that

ŷ = Hy

so we may write the residual vector as

e = y − Hy = (I − H)y

It can be shown that the diagonal elements of s2(I − H) represents the variances of the individual
residuals, so the standard deviation of ei is s

√
1 − hii . Since the standard deviation varies from one

data point to another, it is difficult to make a direct comparison between residuals at different points.
However, if we standardize the residuals by dividing each by its standard deviation, we obtain statis-
tics that are similar to the t-ratios which we used for analyzing b. Thus the standardized residual,
ri is

ri = ei

s
√

1 − hii

i = 1, 2, ..., n

To distinguish this from other kinds of standardized residuals, it is sometimes called the Studentized
residual. If the assumptions behind our model are correct, the average value of the standardized resid-
ual should be close to zero but if any |ri | is larger than about 2 this may indicate one or more of the
following:

1. that the point where this occurs is an outlier,
2. that the assumption about equal error variance at all points is incorrect,
3. there has been a fault in specifying the model.

In this context, an outlier is an observation that was not obtained under the same conditions as the
others. It is not always easy to distinguish points that result from mistakes in observation from those
that correspond to values of the explanatory variables that lie far away from those used for the other
observations. Such points tend to have a large influence on the fitting process.

A useful statistic for measuring the influence of a particular point is the Cook’s distance, di , which
combines the size of the squared residual with the distance of a particular point from the mean value,
called the leverage. This is the corresponding diagonal element of H determined by the values of the
explanatory variables.

di =
(

1

p + 1

)
e2
i

s2

[
hii

(1 − hii)
2

]
i = 1, 2, . . . n

Any point for which di > 1 will have a considerable effect on the regression and should be checked
in detail. The point may have been correctly observed and provide information that is very useful in
model building, but the modeler should be aware of its influence.

Example 7.1. Fit a regression model to the data given by X0, X1, and Xd in script e4s705.m. (To save
space the data is given in the form required by the function mregg2.) The first row, second, and third
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rows of the matrices are the values of the explanatory variables x1, x2, and x3, respectively, and the
fourth row contains the corresponding values of y. The script e4s705.m implements this.

% e4s705.m
X0 = [1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00;

2.00 2.00 4.00 4.00 6.00 2.00 2.00 4.00;
0 1.00 0 1.00 2.00 0 1.00 0;

-2.52 -2.71 -8.34 -8.40 -14.60 -0.62 -0.47 -6.49];
X1 = [2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00;

6.00 2.00 2.00 2.00 4.00 6.00 6.00 6.00;
0 0 1.00 2.00 1.00 0 1.00 2.00;

-12.46 1.36 1.40 1.60 -4.64 -10.34 -10.43 -10.30];
Xd = [X0 X1];
[s_sqd R_sqd b SE t VIF Corr_mtrx res] = mregg2(Xd,1);

fprintf(’Error variance = %7.4f R_squared = %7.4f \n\n’,s_sqd,R_sqd)
fprintf(’ Coeff SE t_ratio VIF \n’)
fprintf(’Constant : %7.4f %7.4f %8.2f \n’,b(1),SE(1),t(1))
fprintf(’Coeff x1 : %7.4f %7.4f %8.2f %8.2f\n’,b(2),SE(2),t(2),VIF(2))
fprintf(’Coeff x2 : %7.4f %7.4f %8.2f %8.2f\n’,b(3),SE(3),t(3),VIF(3))
fprintf(’Coeff x3 : %7.4f %7.4f %8.2f %8.2f\n\n’,b(4),SE(4),t(4),VIF(4))
fprintf(’Correlation matrix \n’)
disp(Corr_mtrx)
fprintf(’\n y Residual St Residual Cook dist\n’)
for i = 1:length(Xd)

fprintf(’%12.4f %12.4f %12.4f %12.4f\n’,res(i,1), ...
res(i,2), res(i,3), res(i,4))

end

Running script e4s705.m gives

Error variance = 0.0147 R_squared = 0.9996

Coeff SE t_ratio VIF
Constant : 1.3484 0.1006 13.40
Coeff x1 : 2.0109 0.0358 56.10 1.03
Coeff x2 : -2.9650 0.0179 -165.43 1.03
Coeff x3 : -0.0001 0.0412 -0.00 1.04

Correlation matrix
1.0000 0.2278 -0.9437 -0.0944
0.2278 1.0000 0.1064 0.1459

-0.9437 0.1064 1.0000 0.1459
-0.0944 0.1459 0.1459 1.0000
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y Residual St Residual Cook dist
-2.5200 0.0508 0.4847 0.0196
-2.7100 -0.1390 -1.3223 0.1426
-8.3400 0.1609 1.5062 0.1617
-8.4000 0.1010 0.9274 0.0507
-14.6000 -0.1688 -1.9402 0.8832
-0.6200 -0.0601 -0.5458 0.0157
-0.4700 0.0901 0.8035 0.0270
-6.4900 0.0000 0.0002 0.0000
-12.4600 -0.0399 -0.3835 0.0130
1.3600 -0.0909 -0.8808 0.0730
1.4000 -0.0508 -0.4736 0.0154
1.6000 0.1493 1.5774 0.3958

-4.6400 -0.1607 -1.4227 0.0755
-10.3400 0.0692 0.6985 0.0602
-10.4300 -0.0206 -0.1930 0.0026
-10.3000 0.1095 1.1123 0.1589

The coefficient of x3 is small, and, more importantly, the corresponding absolute value of the t-ratio
is very small (it is in fact not zero, but −0.0032). This suggests that x3 does not make a significant
contribution to the model and can be removed.

If we change the last value of y to −8.3 (and showing the analysis of the residuals only), we have

y Residual St Residual Cook dist
-2.5200 0.3499 0.7758 0.0503
-2.7100 -0.0756 -0.1670 0.0023
-8.3400 0.3095 0.6735 0.0323
-8.4000 0.0140 0.0300 0.0001
-14.6000 -0.6418 -1.7153 0.6903
-0.6200 0.1361 0.2876 0.0044
-0.4700 0.0507 0.1052 0.0005
-6.4900 0.0457 0.0941 0.0003
-12.4600 -0.1447 -0.3232 0.0093
1.3600 0.0024 0.0054 0.0000
1.4000 -0.1930 -0.4184 0.0120
1.6000 -0.2284 -0.5610 0.0501

-4.6400 -0.4534 -0.9331 0.0325
-10.3400 -0.1384 -0.3247 0.0130
-10.4300 -0.4638 -1.0077 0.0713
-8.3000 1.4308 3.3791 1.4664

For the observation y = −8.3, we see that the residual, the standard residual, and Cook’s distance are
all large, compared with the values for the rest of the data. Either we have a recording error in this
particular observation or the data is correct and thus the model we are using fits this particular data
point poorly.
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Example 7.2. Using the same data as Example 7.1, fit a regression model using the explanatory vari-
ables x1 and x2 only. The data array is not shown in the script e4s706.m.

% e4s706.m
X0 ....
X1 ....
Xd = [X0 X1];
[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd([1 2 4],:),1);
fprintf(’Error variance = %7.4f R_squared = %7.4f \n\n’,s_sqd,R_sqd)
fprintf(’ Coeff SE t_ratio VIF \n’)
fprintf(’Constant : %7.4f %7.4f %8.2f \n’,b(1),SE(1),t(1))
fprintf(’Coeff x1 : %7.4f %7.4f %8.2f %8.2f\n’,b(2),SE(2),t(2),VIF(2))
fprintf(’Coeff x2 : %7.4f %7.4f %8.2f %8.2f\n\n’,b(3),SE(3),t(3),VIF(3))
fprintf(’Correlation matrix \n’)
disp(Corr_mtrx)

Running script e4s706.m gives

Error variance = 0.0135 R_squared = 0.9996

Coeff SE t_ratio VIF
Constant : 1.3483 0.0960 14.04
Coeff x1 : 2.0109 0.0341 58.91 1.01
Coeff x2 : -2.9650 0.0171 -173.71 1.01

Correlation matrix
1.0000 0.2278 -0.9437
0.2278 1.0000 0.1064

-0.9437 0.1064 1.0000

This is a better model than that derived in Example 7.1 because the absolute values of the t-ratios are
now all greater than 2. In fact, the original data was generated from the model

y = 1.5 + 2x1 − 3x2 + random errors

Thus x3 was not linked to the model used to generate the data and variations in x3 only appeared to
influence y because of the random errors in the measurement of y.

Note that the standard errors (SEs) can used to construct confidence intervals for bj . In this case,
the true values of each βj lie within the 95% confidence interval: that is, the interval within which we
expect that βj would lie with a probability of 0.95 if we did not know its true value. The precise width
of the 95% confidence interval depends on the number of degrees of freedom (see Section 7.4), but to
a reasonable approximation βj lies between bj − 2SE(bj ) and bj + 2SE(bj ).

More comprehensive presentations of aspects of multiple regression, model improvement, and re-
gression analysis can be found in Draper and Smith (1998), Walpole and Myers (1993), and Anderson
et al. (1993).
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7.7 POLYNOMIAL REGRESSION
The polynomial regression model, is given by (7.13) and is repeated here:

yi = β0 + β1xi + β2x
2
i + . . . + βpx

p
i + εi, i = 1, 2, . . . , n

Although this is no longer linear in the explanatory variable x, it is still linear in the βj coefficients
and so the theory for the linear regression model still applies.

The processes of fitting, checking the bj estimates and deciding whether some predictors can be
discarded may be done in the same manner as in the general case described in Section 7.4. The diagnos-
tics for model improvement and residual analysis also follow the general case described in Sections 7.5
and 7.6. It will inevitably be found that there are quite high correlations between the predictors, which
are now all powers of the same explanatory variable. As discussed in Section 7.5, these high correla-
tions between predictors can result in an ill-conditioned coefficient matrix XTX. For a large number of
data points this matrix tends to the Hilbert matrix.

In Chapter 2, it is shown that the Hilbert matrix is very ill-conditioned. To illustrate the influence
of this on the accuracy of computations, we note that the number of decimal places lost when working
with an ill-conditioned matrix A is given approximately by the MATLAB expression log10(cond(A)).
Thus, if we were fitting a fifth-degree polynomial, the number of decimal places that could be lost may
be estimated by log10(cond(hilb(5))). This equals 5.6782; that is five or six of the 16 significant
digits that MATLAB uses are lost. One way to avoid this difficulty is to formulate the problem so that
no system of linear equations has to be solved. An ingenious way of doing this is to use orthogonal
polynomials. We will not describe this method here but refer the reader to Lindfield and Penny (1989).
However, the worst effects of ill-conditioning can be avoided provided that p (which now represents
the degree of the fitted polynomial) is kept reasonably small.

If the diagnostics which we have developed in Sections 7.4, 7.5, and 7.6 are required, then we can
use the function mregg2, given in Section 7.5 for polynomial regression and in this case the data must be
prepared as follows. The first row of the array Xd contains the values of x, the second row contains the
values of x2 and so on. The last row contains the corresponding values of y. In interpreting the output
from mregg2 note that all the VIF values are inevitably high because the powers of x are correlated
with each other. The usual rule about discarding predictors with VIF > 10 should be ignored since we
have good reason to suppose that a polynomial model is appropriate.

If the diagnostics are not required, the calculation of the bj estimates can be done using the
MATLAB function polyfit. This uses the method of least squares to fit a polynomial of specified
degree to given data. The following examples illustrate some of these issues.

Example 7.3. Fit a cubic polynomial to the following data which has been generated from y =
2 + 6x2 − x3 with added random errors. The random errors have a normal distribution with a zero
mean value and a standard deviation of 1. The script e4s707.m calls the MATLAB function polyfit to
determine the coefficients of the cubic polynomial followed by polyval to evaluate it for plotting. It
then calls the function mregg2 to compute a regression model using x, x2, and x3 as the explanatory
variables.
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% e4s707.m
x = 0:.25:6;
y = [1.7660 2.4778 3.6898 6.3966 6.6490 10.0451 12.9240 15.9565 ...

17.0079 21.1964 24.1129 25.5704 28.2580 32.1292 32.4935 34.0305 ...
34.0880 32.9739 31.8154 30.6468 26.0501 23.4531 17.6940 9.4439 ...
1.7344];

xx = 0:.02:6;
p = polyfit(x,y,3), yy = polyval(p,xx);
plot(x,y,’o’,xx,yy)
axis([0 6 0 40]), xlabel(’x’), ylabel(’y’)
Xd = [x; x.^2; x.^3; y];
[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);
fprintf(’Error variance = %7.4f R_squared = %7.4f \n\n’,s_sqd,R_sqd)
fprintf(’ Coeff SE t_ratio VIF \n’)
fprintf(’Constant : %7.4f %7.4f %8.2f \n’,b(1),SE(1),t(1))
fprintf(’Coeff x : %7.4f %7.4f %8.2f %8.2f\n’,b(2),SE(2),t(2),VIF(2))
fprintf(’Coeff x^2 : %7.4f %7.4f %8.2f %8.2f\n’,b(3),SE(3),t(3),VIF(3))
fprintf(’Coeff x^3 : %7.4f %7.4f %8.2f %8.2f\n\n’,b(4),SE(4),t(4),VIF(4))
fprintf(’Correlation matrix \n’)
disp(Corr_mtrx)

Running script e4s707.m gives the following output, together with the graphs shown in Fig. 7.5. The
polynomial coefficients from polyfit are in the order of descending powers of x. The diagnostic output
from mregg2 is self-explanatory.

p =
-0.9855 5.8747 0.1828 2.2241

Error variance = 0.5191 R_squared = 0.9966

Coeff SE t_ratio VIF
Constant : 2.2241 0.4997 4.45
Coeff x : 0.1828 0.7363 0.25 84.85
Coeff x^2 : 5.8747 0.2886 20.36 502.98
Coeff x^3 : -0.9855 0.0316 -31.20 202.10

Correlation matrix
1.0000 0.4917 0.2752 0.1103
0.4917 1.0000 0.9659 0.9128
0.2752 0.9659 1.0000 0.9858
0.1103 0.9128 0.9858 1.0000

Note that the absolute value of the t-ratio for the explanatory variable x is less than 2, indicating that x

should be removed (see Example 7.4).
The cubic polynomial that fits the data is

ŷ = 2.2241 + 0.1828x + 5.8747x2 − 0.9855x3
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FIGURE 7.5

Fitting a cubic polynomial to data. Data points are denoted by o.

Example 7.4. Fit a cubic polynomial to data of Example 7.3 but use the explanatory variables x2 and
x3 only. The script e4s708.m solves this problem:

% e4s708.m

x = 0:.25:6; y = 2+6*x.^2-x.^3;

y = y+randn(size(x)); Xd = [x.^2; x.^3; y];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf(’Error variance = %7.4f R_squared = %7.4f \n\n’,s_sqd,R_sqd)

fprintf(’ Coeff SE t_ratio VIF \n’)

fprintf(’Constant : %7.4f %7.4f %8.2f \n’,b(1),SE(1),t(1))

fprintf(’Coeff x^2 : %7.4f %7.4f %8.2f %8.2f\n’,b(2),SE(2),t(2),VIF(2))

fprintf(’Coeff x^3 : %7.4f %7.4f %8.2f %8.2f\n\n’,b(3),SE(3),t(3),VIF(3))

fprintf(’Correlation matrix \n’)

disp(Corr_mtrx)

Running script e4s708.m gives

Error variance = 0.4970 R_squared = 0.9965

Coeff SE t_ratio VIF

Constant : 2.3269 0.2741 8.49

Coeff x^2 : 5.9438 0.0750 79.21 35.52

Coeff x^3 : -0.9926 0.0130 -76.61 35.52

Correlation matrix

1.0000 0.2752 0.1103

0.2752 1.0000 0.9858

0.1103 0.9858 1.0000
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Thus our improved model (compared with Example 7.3) is

ŷ = 2.32692.1793 + 5.9438x2 − 0.99261.0084x3

The true βj are well within the 95% confidence limits given by this improved model. The error variance
of 0.4970 is somewhat less than the unit variance of the random errors initially added to the data.

Example 7.5. Fit a third- and a fifth-degree polynomial to data generated from the function

y = sin{1/(x + 0.2)} + 0.2x

contaminated with random noise, normally distributed with a standard deviation of 0.06 to simulate
measurement errors as follows:

>> xs = [0:0.05:0.25 0.25:0.2:4.85];
>> us = sin(1./(xs+1))+0.2*xs+0.06*randn(size(xs));
>> save testdata1 xs us

The 30 data values are stored in the file testdata1 so that it can be used in an example in Section 7.8.
The script e4s709.m loads the data, fits and plots the least squares polynomial.

% e4s709.m
load testdata
xx = 0:.05:5;
t1 = ’Error variance = %7.4f R_squared = %7.4f \n\n’;
t2 = ’ Coeff SE t_ratio VIF \n’;
t3 = ’Constant : %7.4f %7.4f %8.2f \n’;
t4 = ’Coeff x : %7.4f %7.4f %8.2f %12.2f\n’;
t4a = ’Coeff x : %7.4f %7.4f %8.2f \n’;
t5 = ’Coeff x^2 : %7.4f %7.4f %8.2f %12.2f\n’;
t6 = ’Coeff x^3 : %7.4f %7.4f %8.2f %12.2f\n’;
t7 = ’Coeff x^4 : %7.4f %7.4f %8.2f %12.2f\n’;
t8 = ’Coeff x^5 : %7.4f %7.4f %8.2f %12.2f\n’;
t9 = ’Correlation matrix \n’;
p = polyfit(xs,us,3), yy = polyval(p,xx);
Xd = [xs; xs.^2; xs.^3; us];
[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);
fprintf(t1,s_sqd,R_sqd), fprintf(t2)
fprintf(t3,b(1),SE(1),t(1))
fprintf(t4,b(2),SE(2),t(2),VIF(2))
fprintf(t5,b(3),SE(3),t(3),VIF(3))
fprintf([t6 ’\n’],b(4),SE(4),t(4),VIF(4))
fprintf(t9), disp(Corr_mtrx)
[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,0);
fprintf(t1,s_sqd,R_sqd), fprintf(t2)
fprintf(t4a,b(1),SE(1),t(1))
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fprintf(t5,b(2),SE(2),t(2),VIF(2))

fprintf([t6 ’\n’],b(3),SE(3),t(3),VIF(3))

fprintf(t9), disp(Corr_mtrx)

plot(xs,us,’ko’,xx,yy,’k’), hold on

axis([0 5 -2 2])

p = polyfit(xs,us,5), yy = polyval(p,xx);

Xd = [xs; xs.^2; xs.^3; xs.^4; xs.^5; us];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf(t1,s_sqd,R_sqd), fprintf(t2)

fprintf(t3,b(1),SE(1),t(1))

fprintf(t4,b(2),SE(2),t(2),VIF(2))

fprintf(t5,b(3),SE(3),t(3),VIF(3))

fprintf(t6,b(4),SE(4),t(4),VIF(4))

fprintf(t7,b(5),SE(5),t(5),VIF(5))

fprintf([t8 ’\n’],b(6),SE(6),t(6),VIF(6))

fprintf(t9)

disp(Corr_mtrx)

plot(xx,yy,’k--’), xlabel(’x’), ylabel(’y’), hold off

Fig. 7.6 shows the result of fitting a third- and a fifth-degree polynomial to the data and clearly displays
the inadequacies of these polynomial approximations. The polynomials oscillate about the points and
do not fit the data satisfactorily. In Section 7.8 we see that we can improve the fit by using different
functions. The output from script e4s709.m is as follows:

p =

0.0842 -0.6619 1.5324 -0.0448

Error variance = 0.0980 R_squared = 0.6215

Coeff SE t_ratio VIF

Constant : -0.0448 0.1402 -0.32

Coeff x : 1.5324 0.3248 4.72 79.98

Coeff x^2 : -0.6619 0.1708 -3.87 478.23

Coeff x^3 : 0.0842 0.0239 3.52 193.93

Correlation matrix

1.0000 0.5966 0.4950 0.4476

0.5966 1.0000 0.9626 0.9049

0.4950 0.9626 1.0000 0.9847

0.4476 0.9049 0.9847 1.0000

The absolute value of the t-ratio for the constant terms is low, implying that it should not be included
in the cubic model. The script also fits a cubic equation without a constant term to the data and gives
the following output:
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FIGURE 7.6

Fitting third- and fifth-degree polynomials (that is, a full and a dashed line, respectively) to a sequence of data.
Data points are denoted by o.

Error variance = 0.0947 R_squared = 0.6200

Coeff SE t_ratio VIF
Coeff x : 1.4546 0.2116 6.87
Coeff x^2 : -0.6285 0.1329 -4.73 35.13
Coeff x^3 : 0.0801 0.0199 4.02 299.50

Correlation matrix
1.0000 0.5966 0.4950 0.4476
0.5966 1.0000 0.9626 0.9049
0.4950 0.9626 1.0000 0.9847
0.4476 0.9049 0.9847 1.0000

This is a more robust model. Finally, script e4s709.m fits a fifth-degree polynomial to the data and
gives the following, final, output:

p =
0.0434 -0.5856 2.8998 -6.3340 5.7099 -0.5789

Error variance = 0.0341 R_squared = 0.8783

Coeff SE t_ratio VIF
Constant : -0.5789 0.1122 -5.16
Coeff x : 5.7099 0.6443 8.86 904.01
Coeff x^2 : -6.3340 0.9052 -7.00 38560.71
Coeff x^3 : 2.8998 0.4918 5.90 234903.50
Coeff x^4 : -0.5856 0.1137 -5.15 262672.06
Coeff x^5 : 0.0434 0.0094 4.62 38084.24
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FIGURE 7.7

Polynomials of degree 4, 8, and 12 attempting to fit a sequence of data indicated by o in the graph.

Correlation matrix

1.0000 0.5966 0.4950 0.4476 0.4172 0.3942

0.5966 1.0000 0.9626 0.9049 0.8511 0.8041

0.4950 0.9626 1.0000 0.9847 0.9555 0.9232

0.4476 0.9049 0.9847 1.0000 0.9918 0.9742

0.4172 0.8511 0.9555 0.9918 1.0000 0.9949

0.3942 0.8041 0.9232 0.9742 0.9949 1.0000

Note the large values of VIF, caused by the regression being based on different functions of a single
explanatory variable.

We now illustrate a difficulty that can sometime arise when trying to fit a polynomial function to
data. To illustrate the problem we will begin by simulating experimental data based on the following
relationship:

y = 1√
0.02 + (

4 − x2
)2

(7.14)

Data values are generated by sampling this function from x = 1 to x = 3 in increments of 0.05, and
small random errors are added to simulate measurement errors. The results of attempting to fit polyno-
mials to these data values are shown in Fig. 7.7. The plot shows that as the degree of the polynomial
is increased from 4 to 8, and finally to 12, the polynomial fits the data better in the sense that the to-
tal least squares error decreases, but the higher degree polynomials tend to oscillate between the data
points. Thus even a twelfth-degree polynomial does not accurately represent the data, nor does it give
us any insight into the underlying mathematical relationship between x and y. Furthermore, the twelfth-
degree is polynomial is badly conditioned and MATLAB outputs a warning to the user concerning this
ill-conditioning. We return to this problem is Section 7.10.
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7.8 FITTING GENERAL FUNCTIONS TO DATA
We now consider a regression based on (7.2) with the separate explanatory variables xj replaced by
predictors which are various functions φj of a single explanatory variable x with values xi :

yi = β0 + β1ϕ1 (xi) + β2ϕ2 (xi) + . . . + βpϕp (xi) + εi

The analysis presented in Section 7.4 extends directly to this regression model. Hence, we can use the
MATLAB function mregg2 to fit a set of any prescribed functions to data.

Consider again Example 7.5 of Section 7.7. We will fit the following function (or model) to the
data:

ŷ = b1 sin {1/ (x + 0.2)} + b2x

This function has been chosen because the data was originally generated from it with b1 = 1 and
b2 = 0.2 with normally distributed random noise added. Note that there is no constant term in our
model. The script e4s710.m calls the function mregg2. Note how the first row of the data matrix for
mregg2 contains the values of sin(1/(x + 0.2)) and the second row contains the values of x.

% e4s710.m
load testdata
Xd = [sin(1./(xs+0.2)); xs; us];
[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,0);
fprintf(’Error variance = %7.4f\n\n’,s_sqd)
fprintf(’ Coeff SE t_ratio\n’)
fprintf(’sin(1/(x+0.2)): %7.4f %7.4f %8.2f \n’,b(1),SE(1),t(1))
fprintf(’Coeff x : %7.4f %7.4f %8.2f \n\n’,b(2),SE(2),t(2))
fprintf(’Correlation matrix \n’)
disp(Corr_mtrx)
xx = 0:.05:5; yy = b(1)*sin(1./(xx+0.2))+b(2)*xx;
plot(xs,us,’o’,xx,yy,’k’)
axis([0 5 -1.5 1.5]), xlabel(’x’), ylabel(’y’)

Running this script gives

Error variance = 0.0044

Coeff SE t_ratio
sin(1/(x+0.2)): 0.9354 0.0257 36.46
Coeff x : 0.2060 0.0053 38.55

Correlation matrix
1.0000 0.7461 0.5966
0.7461 1.0000 -0.0734
0.5966 -0.0734 1.0000

and the graph of Fig. 7.8. The function that fits the data in a least squares sense is given by
ŷ = 0.9354 sin {1/ (x + 0.2)} + 0.2060x. This is very close to the original function. Note also that
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FIGURE 7.8

Data sampled from the function y = sin[1/(x + 0.2)] + 0.2x. Data points denoted by o.

the error variance of 0.0044 compares quite well with 0.0036, the variance of the noise that was added
to simulate measurement errors. If a constant term is included in the model, it has a very low absolute
t-ratio, indicating that it should be removed.

7.9 NON-LINEAR LEAST SQUARES REGRESSION
We now consider the problem of fitting data to a function where the relationship between the unknown
coefficients is non-linear. We still use the least squares criterion and there are several methods for fitting
data to this type of model. Here we present a very simple iterative method based on Taylor’s series.

Let y = f (x,a) where f is a non-linear function of x and of the unknown coefficients a. To
determine these coefficients, let a trial set of coefficients by a(0). Thus

y = f
(
x,a(0)

)

This trial solution will not satisfy the requirement that the sum of the squares of the errors is a mini-
mum. However, we can adjust the coefficients a(0) in order to minimize the sum of the squares of the
errors. Thus, letting the improved coefficients be a(1), where

a(1) = a(0) + 	a

we have

y = f
(
x,a(1)

)
= f

(
x,a(0) + 	a

)

Expanding the function as a Taylor series, and retaining only the first derivative terms in the Taylor
series we have

y ≈ f
(
x,a(0)

)
+

m∑
k=0

	ak

[
∂f/∂ak

](0)
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Let f
(0)
i = f

(
xi,a(0)

)
. The error between the function and yi is given by

εi = yi − f
(0)
i −

m∑
k=0

	ak

[
∂fi/∂ak

](0)
, i = 1,2, ...n

Thus the sum of the squares of the errors is

S =
n∑

i=0

{
yi − f

(0)
i −

m∑
k=0

	ak

[
∂fi

∂ak

](0)
}2

To determine the minimum of the sum of the squares of the errors we have

∂S

∂(	ap)
= −2

n∑
i=0

{
y − f

(0)
i −

m∑
k=0

	ak

[
∂fi

∂ak

](0)
}[

∂fi

∂ap

](0)

= 0, p = 0, 1, ...m

Rearranging we have

n∑
i=0

(
y − f

(0)
i

)[ ∂fi

∂ap

](0)

=
m∑

k=0

	ak

{
n∑

i=0

[
∂fi

∂ak

](0) [
∂fi

∂ap

](0)
}

, p = 0, 1, ...m

These equations can be expressed in matrix notation thus

K (	a) = b

where 	a has components 	ap, p = 0,1, ...,m, and

kpk =
n∑

i=0

[
∂fi

∂ak

](0) [
∂fi

∂ap

](0)

bp =
n∑

i=0

(
y − f

(0)
i

)[ ∂fi

∂ap

](0)

, p, k = 0, 1, ...m

Solving for 	a we can then determine new values for the coefficients from

a(1) = a(0) + 	a

Because we have discarded higher order terms in the Taylor series, a(1) is not the exact solution, but it is
a better solution than a(0). We therefore iterate until the norm of 	a is less than a prescribed tolerance.

The function nlls listed below implements the above method for fitting a given non-linear function
to a set of data.

function [a iter] = nlls(f,df,x,y,a0,err)
% Data given by vectors x and y are to be fitted to the function f(a)
% with an error of err. Function f(a) has n variables, a(1) ... a(n).
% a0 is a vector of n trial values for the unknown paramenters a.
% Function df is a column vector [df/da(1); df/da(2); .... df/da(n)].
iter = 0; n = length(a0); a = a0;
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FIGURE 7.9

Fitting y = a1e
a2x + a3e

a4x to data values indicated by ◦.

v = 10*err*ones(1,n);
while norm(v,2) > err

p = feval(df,x,a); q = y-feval(f,x,a);
A = p*p’; b = q*p’; v = A\b’;
a = a + v’; iter = iter+1;

end

The script e4s711.m fits the function y = a1e
a2x + a3e

a4x to 16 data points using the function nlls.

% e4s711.m
p = @(x,a) a(1)*exp(a(2)*x)+a(3)*exp(a(4)*x);
dp = @(x,a) [exp(a(2)*x); a(1)*x.*exp(a(2)*x);

exp(a(4)*x); a(3)*x.*exp(a(4)*x)];
x = [-10:2:0 1:1:10]; xn = length(x);
xp = -10:0.05:10;
y = [26.56 21.60 18.14 17.00 14.46 17.38 15.07 16.76 ...

16.90 17.32 18.61 20.79 21.65 25.22 26.16 27.84];
a = [7 -0.3 7 0.3];
[a iter] = nlls(p,dp,x,y,a,1e-5)
plot(x,y,’o’,xp,p(xp,a))
xlabel(’x’), ylabel(’y’)

Running script e4s711.m gives the following results:

a =
5.4824 -0.1424 10.0343 0.0991

iter =
7

together with Fig. 7.9.
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7.10 TRANSFORMING DATA
We now consider an alternative approach to the problem of fitting data to functions where the relation-
ship between the unknown coefficients is non-linear. This is to transform both the data and the function
so that an equivalent function provides a linear relationship between y and the unknown coefficients.
The only difficulty with this method is that no general rule can be given to provide a suitable transform;
indeed such a transform may not even be possible. Consider the problem of fitting data to the following
function:

ŷ = 1√
a0 + (

a1 − a2x2
)2

(7.15)

Letting Ŷ = 1/ŷ2 and X = x2 we have

Ŷ = 1/ŷ2 = a0 + (a1 − a2x
2)2 = (a0 + a2

1) − 2a1a2x
2 + a2

2x4

Ŷ = a0 + a2
1 − 2a1a2X + a2

2X2

Ŷ = b0 + b1X + b2X
2

(7.16)

Thus Ŷ is a quadratic in X. If the data values are transformed by letting Yi = 1
/
y2
i and Xi = x2

i ,
then the process of fitting Y = f (X) to these transformed data values will be a standard least squares
polynomial fit giving b0, b1, and b2. Hence estimates of a0, a1, and a2 can be easily determined.
Note, however, that the residual of the errors, ei = Yi − Ŷi , will not provide a good estimate of the
measurement errors, yi − ŷi because of the transformations.

We illustrate the above process by considering a sequence of data values generated by (7.15) to
which we have added normally distributed random errors having a zero mean value and a standard
deviation of 1% to the dependent data, yi . We can transform these data points using (7.15) and the
script e4s712.m generates the required data, transforms the data points and fits a polynomial to them.

% e4s712.m
x = 1:.05:3; xx = 1:.005:3;
y = [0.3319 0.3454 0.3614 0.3710 0.3857 0.4030 0.4372 ...

0.4605 0.4971 0.5232 0.5753 0.6363 0.6953 0.7782 ...
0.8793 1.0678 1.3024 1.6688 2.4233 4.2046 7.0961 ...
4.0581 2.3354 1.5663 1.1583 0.9278 0.7764 0.6480 ...
0.5741 0.4994 0.4441 0.4005 0.3616 0.3286 0.3051 ...
0.2841 0.2645 0.2407 0.2285 0.2104 0.2025];

Y = 1./y.^2; X = x.^2; XX = xx.^2;
p = polyfit(X,Y,2)
YY = polyval(p,XX);
for i = 1:length(xx)

if YY(i)<0
disp(’Transformation fails with this data set’);
return

end
end
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FIGURE 7.10

Fitting transformed data, denoted by “o” to a
quadratic function.

FIGURE 7.11

Fitting (7.15) to the given data denoted by o.

figure(1), plot(X,Y,’o’,XX,YY)
axis([1 9 0 25]), xlabel(’X’), ylabel(’Y’)
yy = 1./sqrt(YY);
figure(2), plot(x,y,’o’,xx,yy)
axis([1 3 -2 8]), xlabel(’x’), ylabel(’y’)

Running script e4s712.m gives the following results:

p =
0.9944 -7.9638 15.9688

together with the plots shown in Fig. 7.7, Fig. 7.10, and Fig. 7.11. From the output of the script we see
that the relationship between X and Ŷ is

Ŷ = 0.9944X2 − 7.9638X + 15.9688

We can deduce the values of the unknown coefficients by comparing the above equation with (7.15) to
give

a2
2 = 0.9944, hence a2 = ±0.9972. (Take the positive value as in (7.14).)

−2a1a2 = 7.9748, hence a1 = 3.9931.

Also a2
1 + a0 = 15.9688, hence a0 = 0.0149.

We use these values in the original function (7.15) and fit it to the given data. This is shown in Fig. 7.11.
This function provides a much better fit than the polynomials, shown earlier. However, even this fit does
not pass through the peak value. This is caused by the sensitivity of the process to small random errors
in the data. If the random errors are removed, the fit is exact. If the script e4s712.m is rerun with the
random errors, the fit may be worse, and if the size of the random errors is increased, the process may
fail. This is because in the region of x = 2, the value of y is essentially only dependent on a0. This has
a small value which may vary in sign.
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Table 7.2 Transformations from non-linear to linear equations

Original equ’n Substitution Transformed equ’n
y = axb Y = loge(y), X = loge(x), A = loge(a) Y = A + bX

y = aebx Y = loge(y), A = loge(a) Y = A + bx

y = axebx Y = loge(y/x), A = loge(a) Y = A + bx

y = 1/(a + bx) Y = 1/y Y = a + bx

y = 1/(a + bx)2 Y = 1/
√

y Y = a + bx

y = x/(a + bx) Y = 1/y, X = 1/x Y = aX + b

y = ax/(b + x) Y = 1/y, X = 1/x, A = 1/a, B = b/a Y = A + BX

Table 7.2 lists some functions with a non-linear relationship between ŷ and the coefficients of the
function and the corresponding transformations that linearize these relationships so they have the form
Ŷ = BX + C.

The script e4s713.m implements the first two relationships shown in Table 7.2. It also determines
the sum of the squares of the errors for the two original relationships and plots a graph of the data and
the two fitted functions.

% e4s713.m

x = 0.2:0.2:4;

y = 2*exp(0.5*x).*(1+0.2*rand(size(x)));

X = log(x); Y = log(y);

% Case 1: Fit y = a*x^b

v = polyfit(X,Y,1);

A1 = v(2); b1 = v(1); a1 = exp(A1);

e1 = y-a1*x.^b1; s1 = e1*e1’;

fprintf(’\n y = %8.4f*x^(%8.4f): SSE = %8.4f’,a1,b1,s1)

% case 2: Fit y = a*exp(b*x)

v = polyfit(x,Y,1);

A2 = v(2); b2 = v(1); a2 = exp(A2);

e2 = y-a2*exp(b2*x); s2 = e2*e2’;

fprintf(’\n y = %8.4f*exp(%8.4f*x): SSE = %8.4f \n’,a2,b2,s2)

% Plotting

n = length(x);

r = x(n)-x(1); inc = r/100;

xp = [x(1):inc:x(n)];

yp1 = a1*xp.^b1; yp2 = a2*exp(b2*xp);

plot(x,y,’ko’,xp,yp1,’k:’,xp,yp2,’k’)

xlabel(’x’), ylabel(’f(x)’)

Running script e4s713.m gives

y = 4.5129*x^( 0.6736): SSE = 78.3290

y = 2.2129*exp( 0.5021*x): SSE = 2.0649



362 CHAPTER 7 ANALYZING DATA

FIGURE 7.12

The graph shows the original data, denoted by o, and the fits obtained from y = beax shown by the full line and
y = axb shown by the dotted line.

Fig. 7.12 and the above output confirms that the best fit is, as one would expect, the exponential func-
tion. Clearly this is a warning to the user to use discrimination in selecting the function to fit. This
MATLAB function could be adapted to fit data to a wide range of mathematical functions.

7.11 THE KALMAN FILTER
The Kalman filter is an algorithm developed by Rudolf Kalman and described in Kalman (1960).
Richard Bucy also contributed to this work and the algorithm is often called the Kalman–Bucy Filter,
see Kalman and Bucy (1961).

The Kalman algorithm is used to analyze systems which are affected by statistical noise and other
inaccuracies. The method aims to produce estimates of the key variables which describe the system as
accurately as possible, thus separating the underlying signal from the noise. There are many applica-
tions of the Kalman filter, particular in navigation systems, and the everyday use of the Kalman filters
in mobile phones. The method was used in the Apollo missions navigation computer and other naviga-
tion system; there are also important applications in robotics and computer vision and other fields. The
Kalman filter analyzes the system variables over time and at each time step. An estimate of the system
is made based on the current and previous states of the dynamic system and is used recursively over
the whole time period. The system is assumed to be linear and the noise in the system is assumed to be
Gaussian. We can use the normal distribution with appropriate parameters to estimate the noise.

The method calculates optimally the Kalman gain matrix to minimize the mean square error using
the covariance matrix. The term filter indicates that the method is attempting to filter out the best results
from noisy data. Kalman acknowledges the early work of Wiener on this type of problem and Wiener’s
characterization of it as a solution of the Wiener–Hopf integral equation (Wiener, 1949).

Before describing the Kalman filter it is useful to remind the reader of the meaning of the term
expectation denoted by E. This may be formally defined for a single discrete random variable with
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discrete outcomes xi with probability distribution pi as:

E(x) =
k∑

i=1

xipi

Note that
k∑

i=1

pi = 1

Consequently, E(x) is the weighted average. For the continuous case the summation may be replaced
by the integral for the continuous set of values and a continuous probability distribution. This can be
extended from single variables to vectors directly.

A key measure of the accuracy of the results obtained from the Kalman filter for a given system
where multiple observations are involved is the mean squared error function (MSE), we can write:

Pk = E(ekeT
k )

where ek represents the error in the system and Pk is called the error covariance matrix and E stands
for the expectation of the value ekeT

k . The error vectors ek provide the differences between the correct
and estimated values for the system and Pk is the covariance matrix at time interval k. The errors which
are the differences between the correct and estimated values are given by:

ek = xk − x̂k

Consequently:

Pk = E
(
(xk − x̂k)(xk − x̂k)

T
)

The expectation function has a range of useful properties including linearity, but in general expec-
tations are not multiplicable. This description of expectation is useful since these properties are used
in the derivation of the Kalman algorithm.

The nature of multiplicity for the expectation function is illustrated by the result:

C(x,y) = E(xyT) − E(x)E(yT)

Here we introduce the concept of the covariance matrix denoted by C(x,y) and this provides the
covariance of the x and y variables. In this case the covariance matrix gives a measure of the extent to
which expectation values are not multiplicable where

E(xyT) = C(x,y) + E(x)E(yT)

here the covariance matrix supplies a measure of how the variables x and y interact. However if x and
y are un-correlated, for example independent variables then the expectations are multiplicable.

To further clarify this concept of covariance, which will play a major role in our discussion of the
Kalman filter, we note that the term variance refers to the square of the standard deviation and arises
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in many probability distributions, for example the normal distribution. It is often written N(μ,σ 2)

where σ 2 is the variance, here the variance indicates the breadth of the spread of the distribution
values, μ gives the mean position of the variable of the normal curve for example if μ = 0 the curve is
symmetric about 0. Extending the concept of variance to more than one variable we can ask do changes
or errors in one variable affect the other. If not, then we can write the covariance matrix, C, for the two
variables as

C =
[

σ 2
x 0

0 σ 2
y

]

If, however, the errors in one variable affect the other then we must introduce cross terms reflecting
this in the covariance matrix, C, thus:

C =
[

σ 2
x σ 2

xy

σ 2
xy σ 2

y

]

This description clearly applies to two variables but is easily extended to many variables, just by
extending the size of the matrix, a ten-by-ten matrix provides the information for ten variables and
their various interactions. Having described these useful preliminaries we now return to the description
of the Kalman filter. The description we provide is for the discrete form of the Kalman filter. There
is a continuous form described in, Kalman and Bucy (1961) which is formulated as a system of first
order differential equations. We can formally represent the equations which govern the behavior of the
system used in the Kalman filter by the equation:

xk|k−1 = Fkxk−1|k−1 + Bkuk + wk k = 0, 1, 2, ... (7.17)

Here the notation xk|k−1 means the estimate of xk before the kth measurement has been taken into
account. Here we are estimating the new n component state vector of the system xk from the previous
state vector xk−1 and the p component control vector uk . The n × n component matrix Fk and the
n × p matrix Bk provide the model which arises out of the analysis of the specific dynamic system
being studied. This may, for example, be based on the dynamics or the electrical behavior of the system
over time and the specific form is dependent on the particular application. The matrix Bk providing the
control system values for the control vector uk such as the velocity and acceleration, and the matrix Fk

describing how the model transits from one state to another. The n component vector wk provides the
noise in the system, this is drawn from a normal distribution with mean zero and covariance Qk hence,

wk = N(0,Qk)

To complete the model we also make a measurement of the observed values at time interval k,
denoted by the s component vector zk of the key parameters of the model which we wish to observe
and these constitute the required output from the model. This is given by:

zk = Hkxk + vk (7.18)

where the s ×n matrix Hk is the model of the observed system and the s component vector vk the noise
in the system drawn from the normal distribution with mean zero and covariance Rk . The derivation
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of specific models or determining Hk , Fk , and Bk is based on the dynamical features of the specific
problem, for example, the motion of a rocket, the laws of dynamics and specific guidance features are
required to be formulated in the construction of the model. However, the determination of the noise
factors which are given by the covariance matrices Qk and Rk , and the vectors vk and wk , present
significant difficulties in formulating and must be estimated from the data we have for the particular
system. Least squares routines are available for example in MATLAB for such calculations.

We now describe how the Kalman filter is implemented. Essentially there are two phases in the
application of the Kalman filter:

1. The predict stage, which uses (7.17) without the error term to predict the state of the system:

xk|k−1 = Fkxk−1|k−1 + Bkuk (7.19)

Together with xk|k−1 we have an estimate of the current state covariance matrix given by

Pk|k−1 = FkPk−1|k−1FT
k + Qk (7.20)

This provides the error estimation, which can directly be derived from the definition of the covari-
ance matrix and the use of the properties of the expectation function. This is calculated from the
square of the difference between the unknown true value and the estimate of this value as we have
described above.

2. The update stage, where each of the elements of the model is updated and an important feature
related to the quality of the model called the Kalman gain is calculated. This is the stage at which the
bulk of the computation is performed and provides the practical implementation of the algorithm.
We can calculate a measurement of the residual: yk as

yk = zk − Hkxk|k−1 (7.21)

which we can see from (7.18) is the difference between the observation and the state variable xk|k−1.
We then calculate the innovation covariance matrix thus:

Sk = HkPk|k−1HT
k + Rk (7.22)

The value of this provides us with a measure of the reliability of the residual based on the noise Rk

and error matrix Pk|k−1.
Calculation of the Kalman gain Kk:

Kk = Pk|k−1HT
kS−1

k (7.23)

This is a key feature of the computational process, the expression given by (7.23) gives the optimal
gain for the feedback system and consequently the optimal gain filter. Kk is computed to provide
the minimum of the error covariance matrix. Note that we can obtain the expression for the matrix
Sk from (7.22). Now use the optimum Kalman gain to update the state variable estimates:

xk|k = xk|k−1 + Kkyk (7.24)
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Update the estimate of the system covariance matrix:

Pk|k = (I − KkHk)Pk|k−1 (7.25)

The Pk|k matrix should be symmetric and should be positive definite at each stage of the process.
However, this equation is only true for the optimal value of Kk .

Each of the steps can be derived formally but we will provide only the derivation of the expres-
sion for the Kalman gain matrix since this provides the key element in ensuring the efficiency of the
algorithm.

The important features of this derivation are that we can write a new estimate of the data by com-
bining the previous estimate with the measurement data residual from (7.21). This is in fact what (7.24)
implements, and uses the Kalman gain matrix. However, the important feature of this process is that
we wish to select the matrix K for optimum results. Thus, we wish to select K to minimize the sum of
squares of the errors for the process, i.e. the MSE. Now we can write the covariance matrix P in terms
of the error differences, which in turn will be dependent on K the Kalman gain and in particular the
trace terms of the covariance matrix will give the sum of squares of the errors terms. Thus the problem
resolves into finding the minimum of the trace of the covariance matrix P with respect to the K ma-
trix. This is achieved by differentiating the trace of the P matrix, which is the diagonal elements, with
respect to the matrix K and equating to zero. This then gives the required expression for the matrix K.
We can now derive this key result for the optimal Kalman filter matrix formally: We now state the
definition of the covariance matrix P given earlier:

Pk = E(ekeT
k ) = E(xk − x̂k)(xk − x̂k)

T (7.26)

However, we wish to select the estimate of using the Kalman gain (7.24) and substituting from
(7.21) leads to:

xk|k = xk|k−1 + Kkyk = xk|k−1 + Kk(zk − Hkxk|k−1) (7.27)

Now substituting for the difference between the x values which equals the current error gives:

ek = xk|k − xk|k−1 = Kk(zk − Hkxk|k−1) (7.28)

In addition, we note that from Eq. (7.18) we can substitute for zk thus giving:

ek = Kk(Hkxk + vk − Hkxk|k−1) (7.29)

We can now substitute this expression for the error into the expression for the covariance matrix P,
given by Eq. (7.26). Then we obtain an expression for the covariance matrix in terms of the Kalman
gain matrix K as follows after considerable algebraic manipulation:

Pk = (I − KkHk)E(xk − x̂k)(xk − x̂k)
T(I − KkHk) + KkE(vkvT

k )Kk (7.30)

Since the expression E(xk − x̂k)(xk − x̂k)
T represents the previous covariance matrix we have an

expression for the new covariance matrix as

Pk|k = (I − KkHk)Pk|k−1(I − KkHk) + KkE(vkvT
k )Kk (7.31)



7.11 THE KALMAN FILTER 367

Setting R = E(vkvT
k ) we obtain:

Pk|k = (I − KkHk)Pk|k−1(I − KkHk) + KkRKk (7.32)

Finally, we wish to minimize trace of this equation with respect to the Kalman matrix since the
diagonal elements give the sum of squares of the errors, thus we differentiate the trace of the covariance
matrix and equate it to zero, giving:

∂tr(Pk|k)
∂Kk

= −2(HkPk|k−1)
T + 2Kk(HkPk|k−1HT

k + R) = 0 (7.33)

where tr denotes the trace of a matrix. See Appendix A for an explanation of matrix differentiation.
Solving (7.33) gives the required expression for the Kalman gain:

Kk = (HkPk|k−1)
T(HkPk|k−1HT

k + R)−1 (7.34)

Using (7.22) this can be simplified to:

Kk = (HkPk|k−1)
TS−1

k (7.35)

This will be a minimum if the second derivative of the trace is positive definite, which implies that
the covariance matrix should be positive definite.

The set of Eqs. (7.19) to (7.25) are the steps in the process which define the Kalman filter algo-
rithm. Although the implementation of the algorithm would appear relatively straightforward there are
significant problems in its practical implementation particularly in assessing the estimation of noise in
a practical real world situation. The estimation of initial values for the covariance matrices may also
present problems.

We now consider a specific application of the Kalman filter: the motion of a projectile launched
with a specific velocity and at an angle α. The equations of motion are given in (7.36) and (7.37).

v = v0 + at

and

s = v0t + at2/2

These equations give the velocity v and the distance traveled by an object traveling linearly with
acceleration a and with initial velocity v0 at time t . We can use these equations to study the flight of a
projectile projected at an angle by identifying the components of the velocity in the x and y co-ordinate
directions and replacing the general acceleration by gravity, g. This leads to the well known results for
the velocity of the object and the distance traveled at time t , in component terms:

x = v0 cos(α)t

y = v0 sin(α)t − gt2/2 (7.36)

vy = v0 sin(α)t − gt
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Expressing these equations in discrete form for the time interval 	t and using the vector xk =
[x1

k , x2
k , x3

k ] to represent the component state variables [x, y, vy], each element denoted by a superscript
at time interval k this gives the equations in discrete form as:

x1
k+1 = x1

k + v0 cos(α)	t

x2
k+1 = x2

k + v0 sin(α)	t − g(	t)2/2 − gt	t (7.37)

x3
k+1 = x4

k + v0 sin(α)	t − g	t

This enables us to track the behavior of the projectile over time t . Now we reformulate these expres-
sions in the form of (7.17):

xk = Fkxk−1 + Bkuk + wk

This requires that we define the matrices Fk , Bk , and wk . The first two matrices arise from the basic
dynamics of the system, the matrix Bk whose elements relate to factors such as the imposed force in
this case gravity and the noise matrix can be generated from a suitable normal distribution. Rewriting
the dynamics equations in matrix form implies:

Fk =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (7.38)

Note that in this example Fk is a unit matrix.

Bk =
⎡
⎣ 0 0 0 0 	t 0 0 0

0 −(	t)2/2 0 −t	t 0 	t 0 0
0 0 0 0 −	t 0 0 1

⎤
⎦ (7.39)

Uk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g

0
g

v0 cos(α)

v0 sin(α)

v0 cos(α)

v0 sin(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.40)

In this example we can generate a noise vector in an arbitrary way using MATLAB as:
w_k=0.1*randn(4,1). We can also generate a noise vector for the observation shown in equation
using MATLAB for example as v_k=0.1*randn(4,1). Now using this information the problem has
been defined and we can use the Kalman algorithm to solve this specific problem, which is to examine
how effective the Kalman filter is in extracting the signal from the noise and reflecting the true under-
lying nature of the physical dynamics of the process. It is important to emphasize that initial values
have to be set for the covariance matrices and the noise vectors, this has been done arbitrarily in this
case but will need careful attention in a real world application.



7.11 THE KALMAN FILTER 369

We have defined the key matrices Fk , Bk , and Uk for this problem, the equations are given in (7.36)
and the matrices are given by (7.38), (7.39), and (7.40). These are used in the Kalman filter script
e4s714.m thus:

% e4s714.m
% Kalman filter for tracking a projectile
clear all
% Example projectile at angle
% Set up matrices F, B, U and constants
dt = 0.01; alpha = pi/3; v0 = 10; g = 9.81;
x = [0 0 0]’; timev = dt; n = 3;
% time of flight, maximum height, maximum horizontal distance
tf = 2*v0*sin(alpha)/g
ymax = (v0*sin(alpha))^2/(2*g)
xmax = tf*v0*cos(alpha)
F = eye(3); timeaxis = [ ];
xh = [0 0 0]’;
H = eye(3);
% The calculation for the velocity and position in the falling object example
xdset = [ ]; timev = dt
while timev<=tf

B = [0 0 0 0 dt 0 0 0;
1 -0.5*dt^2 0 -dt*timev 0 dt 0 0;
0 0 0 -dt 0 0 0 dt];

U = [0 g 0 g v0*cos(alpha) v0*sin(alpha) v0*cos(alpha) v0*sin(alpha)]’;
timev = timev+dt;
xd = F*x+B*U;
xdset = [xdset,xd];
timeaxis = [timeaxis,timev];
x = xd;

end
% The state covariance matrices are assigned initial approximations
P = 0.02^2*eye(3);
Q = 0.04^2*eye(3);
R = 0.40^2*eye(3);
plotxset = [ ]; plotzset = [ ]; xhset = [ ];
timeaxis = [ ]; timev = dt;
while timev <=tf

B = [0 0 0 0 dt 0 0 0;
0 -0.5*dt^2 0 -dt*timev 0 dt 0 0;
0 0 0 -dt 0 0 0 dt;];

U = [0 g 0 g v0*cos(alpha) v0*sin(alpha) v0*cos(alpha) v0*sin(alpha)]’;
timev = timev+dt;
timeaxis = [timeaxis, timev];
% The noise matrices w and v are sampled from the normal distribution
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w = 0.04*randn(3,1);
v = 0.1*randn(3,1);
% Kalman filter the current state:
x = F*x+B*U+w;
% calculate observed/measured values which include noise
z = H*x+v;
plotzset = [plotzset z];
% estimate state
xh = F*xh+B*U;
% Estimate covariance matrix P
P = F*P*F’+Q;
% Kalman filter the update stage: Caculate the residual
y = z-H*xh;
% Calculate the innovation covariance
S = H*P*H’+R;
% The optimum Kalman gain is, uses inverse of S using matlab /:
K = P*H’/S;
% calculate the estimate of the current state
xh = xh+K*y;
xhset = [xhset, xh];
% recalculate error convergence matrix
P = (eye(n)-K*H’)*P;
x = xh;

end
plot(timeaxis,xhset(2,:),’k-’)
hold on
plot(timeaxis,plotzset(2,:),’k*’)
plot(timeaxis,xdset(2,:),’k--’)
hold off
xlabel(’Time of flight’)
ylabel(’Height’)

Running script e4s714.m gives the results shown in Fig. 7.13 and Fig. 7.14 and the following data:

tf =
1.7656

ymax =
3.8226

xmax =
8.8280

timev =
0.0100
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FIGURE 7.13

Changes in the height of a projectile over the time of
fight. Graph shows the path of the projectile without
noise as the dashed line, the observed values
including noise as asterisks and the path generated
by the Kalman filter as the continuous line.

FIGURE 7.14

Considerably expanded graph of the height of
projectile over time of flight showing observations
subject to noise by asterisks, the dashed line of the
flight of the projectile subject only to laws of dynamics
and the output of the Kalman filter after processing
the noisy data.

Before completing our discussion of the Kalman filter we mention briefly two important considera-
tions. Firstly, the description of the Kalman filter we have provided here is applied to a linear dynamic
model. If the model is non-linear a modified version of the Kalman filter is used called the extended
Kalman filter (EKF). The EKF employs an iterative linearization of the original non-linear model. Sec-
ondly, an alternative method for the solution of noisy problems is to use a least squares method or one
of its modifications such as the recursive least squares method (RLS). Many studies have been per-
formed comparing the EKF and RLS methods for specific applications and the results may be viewed
as problem dependent. An interesting study performed on a theoretical basis is given in Leondes (1970)
which provides comparison of the Kalman filter method with least squares methods and Baysian ap-
proaches to the problem. The papers edited by Leondes, include a wide range of applications of the
Kalman filter including some details of the guidance of the Apollo mission vehicle.

7.12 PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) was developed at the beginning of the 20th century by
Karl Pearson and subsequently has been rediscovered several times. For example, Hotelling inde-
pendently rediscovered the method in the 1930s. Other, closely related methods include the discrete
Karhunen–Loève transform (KLT) used in signal processing and proper orthogonal decomposition
(POD) applied in mechanical engineering. Singular value decomposition (SVD) is a similar process
and is often used in the computation of PCA. PCA is used to analyze and visualize large data sets and
also used in data reduction. In this brief introduction to PCA we will concentrate on data reduction.

PCA is a dimensionality reduction technique used to transform high-dimensional data sets into
data sets with fewer dimensions consequently clarifying the structure of complex data sets. The set of
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resulting variables explains the maximum variance within the data sets which is difficult to visualize.
The PCA process ensures the there is a minimum loss of information. PCA can also be used to discover
important features of a large data set and often reveals relationships that were previously unsuspected.

We now introduce the basis for a numerical procedure to undertake PCA. Let X be an array of data,
comprising n rows of observations, each observation consisting of m data values. Thus X is an n × m

array.
The first step is to make the mean value of each column of the data zero. This is achieved by

subtracting the mean value of the samples for each variable from these samples. Thus the mean value
of each column of X is zero. The covariance matrix, C, corresponding to X, is then computed thus:

C = 1
n−1 XTX (7.41)

The covariance matrix will be an m × m symmetrical matrix.
If we wish, we can also standardize the data by dividing each element of a column of X by the

standard deviation of the column. Thus every column of data has a standard deviation of one. This
process creates the correlation matrix, which we also denote by C.

When scales of variables are similar, the covariance matrix is always preferred to the correlation
matrix, as the correlation matrix will lose information when standardizing the variance. However, when
the variance of the variables are very different, PCA applied to un-normalized variables could lead to
large loadings for variables with high variance. In turn, this will lead to dependence of a principal
component on the variable with high variance which is misleading.

We can now perform eigenvalue decomposition to determine the eigenvalues and eigenvectors of C
so that

C = VDVT (7.42)

This is a restatement of (2.68). Here D is a diagonal matrix of eigenvalues and V is a matrix of the
corresponding eigenvectors.

Alternatively, we can obtain the same result using the more efficient and robust singular value
decomposition. Let

X = USVT (7.43)

This is a restatement of (2.23). Here S is a diagonal matrix of singular values, U is an orthogonal matrix
such that UTU = I. Now

C = 1
n−1 XTX = 1

n−1

(
VSTUT

)(
USVT

)
= 1

n−1 VSTSVT ≡ VDVT (7.44)

Note that because C is a square, m × m matrix, so also are U, V, and S. Clearly V is identical in both
transforms. Let S0 be the m × m diagonal array of the non-zero singular values of S. Then

1
n−1 STS = 1

n−1 S2
0 = D

As will become apparent, we are more concerned with the ranking, and relative values of D or S2
0

rather than their actual values.
The matrix U is a set of orthogonal linearly uncorrelated vectors called the principal components.

The first principal component is the one corresponding to the largest eigenvalue, the second principal
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component corresponds to the second largest eigenvalue and so on. The first principal component has
the largest possible variance (that is, it accounts for as much of the variability in the data as possible).
Each element of a principal component corresponds to a variable. Since the eigenvalues are a measure
of amplitude, and hence the relative importance of each principal component, it is helpful to express the
eigenvalues as a percentage of the total; this shows the relative importance of the corresponding prin-
cipal component. Providing the cumulative sum of the eigenvalues is an alternative way of providing
the same information.

The array score, Sc, is given by Sc = XU. The array Sc is the data generated by transforming
the original data array into the space of the principal components. The values of the corresponding
eigenvalues are the variance of the columns of Sc.

We can regenerate the original data analyzed the PCA by using (7.43). However, if we wish to use
only the p most significant principal components, then, using the subscript red to indicate a reduced
model, we have

Xred = UredSredVT
red

where Ured is an n×p matrix, Sred is a p×p diagonal matrix and Vred is an m×p matrix, comprising
columns 1 to p of U and V respectively and Sred comprising only the first p rows and columns of S.
The resultant matrix, Xred , is, of course, still an m × n matrix.

If we carry out this process using the full set of principal components, then the data is regenerated
and is identical to the original data. However, if we choose to use only the p most significant principal
components, where p < m, then the regenerated data will not be exactly identical to the original data.

We can determine a matrix W, where

Wred = UredSred

Then the communality co consists of the diagonal elements of WredWT
red . Communality is the

total amount of variance an original variable shares with all the other variables in the analysis. When
p = m the communality is unity (or 100%) for every variable, meaning that the full set of principal
components explain 100% of each variable, as they must. When p < m the p principal components
used in the analysis explain less than 100% of each variable.

The function fprcomal carries out a principal component analysis of the data given in the array Z.
Options allow the principal components to be determined for the covariance matrix or the correlation
matrix. The number of principal components used to determine the communality and to regenerate
the data can be chosen. The function outputs a range of data, including the eigenvalues and principal
components.

function [aver, stan, C,eigenvalues,percent_eig,cuml_eig,princ_comp, score, ...
comm, Xrec] = fprcomal(Z,flag,p)

% Z = [1 2 3 4;
% 2 3 4 5] for example (variable x samples)
% flag == 1 ensures mean of data X is zero
% flag == 2 ensures mean of data X is zero and the variance is unity.
% p is number of principal components to be included in the analysis
% aver is average of each variable
% stan is the standard dev for each variable
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% C is covariance or correlation matrix of X
% eigenvalues, percent_eig are the actual and percentage of X.
% cuml_eig are the cumulative sum of the eigenvalues of X.
% princ_comp are the proncipal components of X
% score is X transformed into the space of the principal components.
% comm is the communality.
% Xrec is the reconstructed value of X using p coordinates
Z = Z’; Z1 = Z; % Z and z1 are (samples x variables)
if flag == 1, disp(’Using covariance matrix’), end
if flag == 2, disp(’Using correlation matrix’), end
[n,m] = size(Z); aver = mean(Z); stan = std(Z);
if flag == 1 | flag == 2; Z = Z-aver; end
if flag == 2; Z = Z./stan; end
C = (1/(n-1))*Z’*Z; % Coherence or correlation matrix
X1 = (1/sqrt(n-1))*Z’; % X1 (variable x samples)
[u,s,v] = svd(X1); %
sr = s(1:m,1:m); % singular values
eigenvalue = diag(sr.^2); eigenvalues = eigenvalue’;
percent_eig = 100*eigenvalues./sum(eigenvalues);
cuml_eig = (100*cumsum(eigenvalue)/sum(eigenvalues))’;
princ_comp = u;
score = Z*u; %Z1*u;
vp = 1:p;
X1rec = u(:,vp)*s(vp,vp)*v(:,vp)’; ZrecT = X1rec’*(sqrt(n-1));
Xrec = ZrecT’; XrecT = Xrec’;
if flag == 2, ZrecT = ZrecT.*stan; end
if flag == 1 | flag == 2, XrecT = ZrecT+aver; end, Xrec = XrecT;
W = u(:,vp)*s(vp,vp);
comm = 100*diag(W*W’)’;
if flag == 1, comm = comm./(stan.^2); end

Example 7.6. Undertake a principal component analysis on the follow data comprising 8 samples of
4 variables. Rows 1 to 4 of samples of variables 1 to 4.

X =[1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0;
0 1.0 1.6 2.0 2.3 2.6 2.8 3.0;

1.5 4.7 7.0 9.0 10.8 12.4 13.9 15.4;
1.9 1.0 1.1 2.6 0.3 1.9 2.2 1.2];

The script e4s715.m is as follows

% e4s715.m
[aver, stan, C,eigenvalues,percent_eig,cuml_eig,princ_comp, score,...

comm, Xrec] = fprcomal(X,2,4)
figure(1)
subplot(2,2,1), plot(Xrec(:,1),Xrec(:,2),’k*--’, X(1,:),X(2,:),’ko-’)
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xlabel(’x1’), ylabel(’x2’)
subplot(2,2,2), plot(Xrec(:,1),Xrec(:,3),’k*--’, X(1,:),X(3,:),’ko-’)
xlabel(’x1’), ylabel(’x3’)
subplot(2,2,3), plot(Xrec(:,1),Xrec(:,4),’k*--’, X(1,:),X(4,:),’ko-’)
xlabel(’x1’), ylabel(’x4’)
subplot(2,2,4), plot(Xrec(:,2),Xrec(:,3),’k*--’, X(2,:),X(3,:),’ko-’)
xlabel(’x2’), ylabel(’x3’)

Running e4s715.m with p set to 4 gives the following output:

Using correlation matrix

aver =
4.5000 1.9125 9.3375 1.5250

stan =
2.4495 1.0134 4.7449 0.7517

C =
1.0000 0.9582 0.9913 0.0466
0.9582 1.0000 0.9874 0.0033
0.9913 0.9874 1.0000 0.0237
0.0466 0.0033 0.0237 1.0000

eigenvalues =
2.9590 1.0001 0.0409 0.0001

percent_eig =
73.9740 25.0014 1.0234 0.0013

cuml_eig =
73.9740 98.9754 99.9987 100.0000

princ_comp =
-0.5757 0.0105 0.6829 0.4495
-0.5746 -0.0346 -0.7284 0.3714
-0.5813 -0.0135 0.0449 -0.8124
-0.0217 0.9993 -0.0318 -0.0029

score =
2.8564 0.5711 0.3089 -0.0029
1.6883 -0.6643 -0.0628 0.0027
0.8284 -0.5541 -0.1977 0.0120
0.0782 1.4249 -0.2509 -0.0060

-0.4811 -1.6437 -0.0735 -0.0119
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-1.1284 0.4728 -0.0628 0.0015

-1.6692 0.8648 0.0737 0.0004

-2.1726 -0.4714 0.2652 0.0042

comm =

100.0000 100.0000 100.0000 100.0000

Xrec =

1.0000 -0.0000 1.5000 1.9000

2.0000 1.0000 4.7000 1.0000

3.0000 1.6000 7.0000 1.1000

4.0000 2.0000 9.0000 2.6000

5.0000 2.3000 10.8000 0.3000

6.0000 2.6000 12.4000 1.9000

7.0000 2.8000 13.9000 2.2000

8.0000 3.0000 15.4000 1.2000

From this output, we can deduce that the first and second principal components provide 98% of the
variance in the data. The first principal component has high values corresponding to first three variables.
The second principal component has a high value corresponding to the fourth variable. Fig. 7.16 shows
that the original data can be well represented using only first two principal components.

If p is set to 1 the output from e4s715.m is unchanged except for the following part of the output:

comm =

98.0790 97.7077 99.9701 0.1392

Xrec =

0.4718 0.2491 1.4596 1.4784

2.1191 0.9294 4.6813 1.4975

3.3318 1.4301 7.0529 1.5115

4.3897 1.8669 9.1217 1.5237

5.1784 2.1926 10.6643 1.5328

6.0913 2.5696 12.4496 1.5434

6.8540 2.8846 13.9412 1.5522

7.5639 3.1777 15.3295 1.5604

Note that the first principal component gives a high communality for all except the fourth variable.
This is further illustrated in Fig. 7.15 where the correspondence between the original and regenerated
data for the fourth variable is very poor.

The data for this problem was generated as follows. Letting the four variables be x1, x2, x3, and
x4, then we have set x2 = log2(x1) and x3 = x1 + 2x2 + 0.5

√
x1. Thus, x1, x2, and x3 are closely

related. However, we have set x4 = 0.5
√

x1 together with a normally distributed random number with
a standard deviation of unity. Thus x4 is only weakly related to the other variables.
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FIGURE 7.15

Relationship between selected variables. Dashed line
is generated using only the first principal component.

FIGURE 7.16

Relationship between selected variables. Dashed line
is generated using only the first and second principal
component.

7.13 SUMMARY
Methods have been described for fitting functions to data for the purposes of interpolation. These have
included Aitken’s method and spline fits. Regression analysis discussed least squares approximations
to experimental data using polynomial and more general functions. We provide an explanation of the
widely used Kalman filter and conclude the chapter with an introduction to principal component anal-
ysis.

Note: For readers who a have particular interest in apply MATLAB to data analysis using curve
fitting and statistical methods, MATLAB provides a Curve Fitting Toolbox, a Statistical and Machine
Learning Toolbox and a Control System Toolbox.

7.14 PROBLEMS
7.1. The following tabulation gives values of the complete elliptic integral

E (α) =
∫ π/2

0

√
(1 − sin2 α sin2θ) dθ

α 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦
E(α) 1.57079 1.56780 1.55888 1.54415 1.52379 1.49811 1.46746

Determine E(α) for α = 2◦, 13◦, and 27◦ using the MATLAB function aitken.
7.2. Generate a table of values of f (x) = x1.4 − √

x + 1/x − 100 for x = 20 : 2 : 30. Find the value
of x corresponding to f (x) = 0 using the MATLAB function aitken. This is an example of
inverse interpolation since we are finding the value of x corresponding to a given value of f (x).
In particular, this gives an approximation to the root of the equation f (x) = 0. Compare your
solution with that of Problem 3.2 in Chapter 3.
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7.3. Given x = −1 : 0.2 : 1, calculate values of y from y = sin2(πx/2). Using these values of x:
a. Generate quadratic and quartic polynomials to fit this data using the least squares MATLAB

function polyfit. Display the data and the curve fitted. Hint: Example 7.2 in Section 7.6
gives some guidance.

b. Fit a cubic spline to the data using the MATLAB function spline. Display the data and the
fitted spline. Compare the quality of this spline fit with the two graphs from (a).

7.4. For the data of Problem 7.3, determine the values of y for x = 0.85 using the MATLAB function
interp1 for a linear, spline, and cubic interpolating function. Also use the MATLAB function
aitken.

7.5. Fit a cubic spline and a fifth-degree polynomial to the following data.

x −2 0 2 3 4 5
y 4 0 −4 −30 −40 −50

Plot the data points, the spline, and the polynomial on the same graph. Which curve appears
to give the more realistic representation of any underlying function from which the data might
have been taken?

7.6. For the data given by the vectors x = 0 : 0.25 : 3 and

y = [6.3806 7.1338 9.1662 11.5545 15.6414 22.7371 32.0696 ...

47.0756 73.1596 111.4684 175.9895 278.5550 446.4441]
fit the following functions:
a. f (x) = a + bex + ce2x using the MATLAB function mregg2.
b. f (x) = a + b/(1 + x) + c/(1 + x)2 using the MATLAB function mregg2.
c. f (x) = a + bx + cx2 + dx3 using the MATLAB functions polyfit or mregg2.
You should plot the three trial functions and the data. How well do these functions fit the data?
The data values were in fact generated from f (x) = 3 + 2ex + e2x with a small amount of
random noise added.

7.7. The following values of x and corresponding values of yu and yl define an airfoil section:

x = [0 0.005 0.0075 0.0125 0.025 0.05 0.1 0.2 0.3 0.4 ...

0.5 0.6 0.7 0.8 0.9 1]
yu = [0 0.0102 0.0134 0.0170 0.0250 0.0376 0.0563 0.0812 ...

0.0962 0.1035 0.1033 0.0950 0.0802 0.0597 0.0340 0]
yl = [0 −0.0052 −0.0064 −0.0063 −0.0064 −0.0060 −0.0045 ...

−0.0016 0.0010 0.0036 0.0070 0.0121 0.0170 0.0199 0.0178 0]
The (x, yu) coordinates define the upper surface and (x, yl) coordinates define the lower surface.
Use the MATLAB function spline to fit separate splines to the upper and lower surfaces and plot
the results as a single figure.

7.8. Consider the approximation

∏
p<P

(
1 + 1

p

)
≈ C1 + C2 loge P
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where the product is taken of all the prime numbers p less than a prime number P . Write a
script to generate these products from the list of prime numbers provided and fit the function
C1 +C2 loge P to the points given by the primes P and the corresponding values of the products
using the MATLAB function polyfit. Generate a list of prime numbers using the MATLAB

function primes(103).
7.9. The gamma function may be approximated by a fifth-degree polynomial as


 (x + 1) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5

Use the MATLAB function gamma to generate values of 
(x + 1) for x = 0 : 0.1 : 1. Then,
using the MATLAB function polyfit, fit a fifth-degree polynomial to this data. Compare your
answers with the approximation for the 
 function given by Abramowitz and Stegun (1965),
which gives a0 = 1, a1 = −0.5748666, a2 = 0.9512363, a3 = −0.6998588, a4 = 0.4245549,
a5 = −0.1010678. These coefficients give an accuracy for the 
 function in the range 0 ≤ x ≤ 1
of less than or equal to 5 × 10−5.

7.10. Generate a table of values of z from the function

z (x, y) = 0.5
(
x4 − 16x2 + 5x

)
+ 0.5

(
y4 − 16y2 + 5y

)

in the range x = −4 : 0.2 : 4 and y = −4 : 0.2 : 4. Use this data and the MATLAB function
interp2 to interpolate a value for z at x = y = −2.9035. Use both linear and cubic interpola-
tion and check your answer by direct substitution in the function. This point gives the global
minimum of this function.

7.11. The difference between the mean Sun and the real Sun is called the equation of time. Thus the
value of the equation of time

E = (mean Sun time − real Sun time)

The following table gives E in minutes at 20 equispaced intervals during the year, beginning
January 1.

E = [−3.5 −10.5 −14.0 −14.25 −9.0 −4.0 1.0 3.5 3.0 ...

−0.25 −3.5 −6.25 −5.5 −1.75 4.0 10.5 15.0 16.25 12.75 6.5]
Plot a graph of the data values E against time of year. Then use the function interpft to
interpolate 300 points and plot E over a period of one year. (Use the MATLAB help function
to obtain information on the MATLAB interpft.) Finally, use the command [x,y]=ginput(4)
to read from the graph the values of the two minimum and two maximum values of E. At what
times do these maxima and minima occur?

7.12. The cost of producing an electronic component varied over a four year period as follows:

Year 0 1 2 3
Cost $30.2 $25.8 $22.2 $20.2

Assuming the equation relating production cost and time is (a) a cubic and (b) a quadratic
polynomial, estimate the cost of production in year 6. A small error was discovered in the data.
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The cost of production in year 2 should have been $22.5 and in year 3, $20.5. Recompute the
estimated production cost in year 6 using a cubic and a quadratic equation as before. What
conclusions can you draw from the results?

7.13. From the table of the Gamma function given, use inverse interpolation to find the value of x in
the range x = 2 to x = 3 which makes 
(x) = 1.3. Use the MATLAB function interp1 with the
cubic option selected; also use the function aiken.

x 2 2.2 2.4 2.6 2.8 3

(x) 1.0000 1.1018 1.2422 1.4296 1.6765 2.0000

7.14. The following table gives the value of the integral

I =
π/2∫
0

dϕ√
1 − sin2 α sin2 ϕ

for various values of α. (This integral is the complete elliptical integral of the first kind.)

α 0◦ 5◦ 10◦ 15◦ 20◦ 25◦
I 1.57080 1.57379 1.58284 1.59814 1.62003 1.64900

Using polynomial interpolation, find I when α = 2◦. Then use inverse interpolation to find the
value of α such that I = 1.58. In both cases, use the MATLAB function interp1 with the cubic
option selected; also use the function aiken.

7.15. It is required to find a formula to calculate the number of nodes in one corner of a cube. If n is
the number of equally spaced nodes on an edge of the cube and fn is the number of nodes on
three half-faces, including nodes on the face diagonals, then the following table shows values of
fn for given values of n.

n 1 2 3 4
fn 1 4 10 20

By fitting a cubic function to this data (using polyfit), find a general formula for the relation-
ship between fn and n and verify that when n = 5, fn = 35.

7.16. It is required to fit a regression model of the form z = f (x, y) to the following data:

x 0.5 1.0 1.0 2.0 2.5 2.0 3.0 3.5 4.0
y 2.0 4.0 5.0 2.0 4.0 5.0 2.0 4.0 5.0
z −0.19 −0.32 −1.00 3.71 4.49 2.48 6.31 7.71 8.51

a. Use the function mregg2 to generate a model of the form z = a + bx + cy and also z =
a + bx + cy + dxy. Which model do you consider the best fit to the data? It is important
to consider the differences in the error variance.

b. By analysis of the residuals (particularly the Cook distance), decide whether any data point
could be considered to be an outlier?

7.17. One of the data values given in Problem 7.16 has been found to be in error. The value of z

corresponding to x = 4, y = 5 should have been recorded as 9.51, not 8.51, a common human
error. Use the function mregg2 to generate models of the form z = a + bx + cy and also z =
a + bx + cy + dxy. Again, assess the quality of the models.
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7.18. Using following the table, obtain the pressure across a shock wave when the upstream Mach
Number is 4.4 by:
a. linear interpolation
b. Aitken’s method
c. spline interpolation

Mach number 1.00 2.00 3.00 4.00 5.00
p2/p1 1.00 4.50 10.33 18.50 29.00



8
CHAPTER

ANALYZING DATA USING DISCRETE
TRANSFORMS

Abstract

In this chapter we consider a variety of transformations for the analysis of data. A description of Fourier
analysis for discrete data is provided along with data analysis using the Hilbert and Walsh transforms,
concluding with a short introduction to wavelet analysis.

8.1 INTRODUCTION
In this chapter, we restrict the analysis to problems in one dimension. In one dimension, the trans-
forms are frequently but not exclusively in terms of the time domain. Thus, we will frequently use the
variable t , which clearly can represent time but might be applied to other domains.

The discrete Fourier transform (DFT) is an example of fitting a set of orthogonal harmonic functions
exactly to data. If the data has an underlying harmonic content, the DFT will reveal it and help the
engineer or scientist to identify the causes of the harmonic content of the data. Similarly the discrete
Walsh transform fits a set of orthogonal square wave functions exactly to the data and can reveal
underlying patterns in waveforms predominantly composed of abrupt steps.

The Fourier transform should be applied to stationary data, that is data in which its harmonic content
does no change with time. The Hilbert transform allow us to analyze the harmonic content of this non-
stationary data and examine how the harmonic content of the data changes with time. Non-stationary
data can be analyzed using wavelet transforms, either by discrete or continuous wavelets. In the last
25 years a great amount of research has been conducted on wavelet analysis, both for one-dimensional
time series analysis but also for two-dimensional image analysis. Here we give a brief introduction to
wavelet analysis applied to time series analysis.

An important ‘rule of thumb’ is that the best results are obtained when the transform or wavelet
shape is close to the underlying nature of the data. This explains the wide spread use of Fourier analysis,
since naturally occurring data is frequently generated from harmonic processes.

8.2 FOURIER ANALYSIS OF DISCRETE DATA
Fourier analysis, in its various forms, is an important tool for the scientist or engineer engaged in
the interpretation of data where a knowledge of the frequencies present in the data or function may
give some insight into the mechanism that has generated it. For continuous periodic functions, the
frequency content is determined from the coefficients of the terms in the well-known Fourier series;
for non-periodic functions, it is determined from the Fourier integral transform. The frequency content

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00017-8
Copyright © 2019 Elsevier Inc. All rights reserved.
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of a sequence of data can be determined by Fourier analysis, in this case from the discrete Fourier
transform (DFT). The harmonic functions fit the data exactly and allows the user to determine the
harmonic content of the data.

The data can come from many sources. For example, the radial forces acting at discrete points
around a cylinder constitute a sequence of data which must be periodic. The most frequently occurring
form of data is a time series in which the value of some quantity is given at equal intervals of time – for
example, data sampled from a signal from a transducer – and for this reason the analysis which follows
is developed in terms of the independent variable t which represents time. Note that in this chapter,
the term signal means a function of time, and thus signal and function are often used interchangeably.
It must be stressed, however, that the DFT can be applied to any data regardless of the domain from
which it originates. Determining the DFT for a sequence of data points is straightforward, although the
computation is tedious.

We begin by defining a periodic function. A function y(t) is periodic if it has the property that for
any value of time t , y(t) = y(t + T ) where T is the time period, typically measured in seconds. The
reciprocal of the period is equal to the frequency, denoted by f and it is measured in cycles/second. In
the SI system of units, 1 Hertz (Hz) is defined as 1 cycle/second. If we are concerned with a periodic
function z(x), where x is a spatial variable, then for any value of x, z(x) = z(x + X) where X is the
spatial period or wavelength, typically measured in meters. The frequency f = 1/X is then measured
in cycles/meter.

The Fourier series for a periodic function F(t) is given by

F(t) = a0/2 +
∞∑

n=1

{an cos(nt) + bn sin(nt)}

where

a0 = (1/π)

∫ π

−π

f (t)dt

an = (1/π)

∫ π

−π

f (t) cos(nt)dt

bn = (1/π)

∫ π

−π

f (t) sin(nt)dt

We now examine how to fit a finite set of trigonometric functions to n data points (tr , yr ) where
r = 0,1,2, ..., n − 1. We assume the data points are equispaced and the number of data points, n, is
even. Data values may be complex but in most practical situations they are real. The data points are
numbered as shown in Fig. 8.1. The point following the (n − 1)th is assumed to equal the value of the
zero point. Thus the DFT assumes the data is periodic with a period T equal to the range of the data.

Let the relationship between yr and tr be given by a finite set of sine and cosine functions thus:

yr = 1

n

[
A0 +

m−1∑
k=1

{Ak cos(2πktr/T ) + Bk sin(2πktr/T )} + Am cos(2πmtr/T )

]
(8.1)
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FIGURE 8.1

Numbering scheme for data points.

where r = 0,1,2, ..., n − 1, m = n/2 and the range of the data is 0 to T as shown in Fig. 8.1. The
n coefficients A0, Am, Ak , and Bk (where k = 1,2, . . . ,m − 1) must be determined. Since we have
n data values and n unknown coefficients, (8.1) can be made to fit the data exactly. The factor 1/n in
(8.1) is omitted by some authors, and omitting it has the effect of reducing the size of the coefficients
A0, Am, Ak , and Bk by the factor n. The reason for choosing m + 1 coefficients multiplied by a cosine
function, including cos 0 which equals one and multiplies A0, and m − 1 coefficients multiplied by a
sine function in (8.1) will become apparent.

Each sine or cosine term of (8.1) represents k complete cycles in the range of the data T . Thus, the
period of each sine term is T/k, where k = 1,2, . . . , (m − 1), and the period of each cosine term is
T/k, where k = 1,2, . . . ,m. The corresponding frequencies are given by k/T . Thus the frequencies
present in (8.1) are 1/T ,2/T , . . . ,m/T . Letting �f be the frequency increment between components
and fmax be the maximum frequency, then

�f = 1/T (8.2)

and

fmax = m�f = (n/2)�f = n/(2T ) (8.3)

The data values tr are equally spaced in the range T and may be expressed as

tr = rT /n, r = 0,1,2, ..., n − 1 (8.4)

Letting �t be the sampling interval (see Fig. 8.1), then

�t = T/n (8.5)

Let T0 be the period corresponding to fmax , the maximum frequency in (8.1). Then, from (8.3),

fmax = 1/T0 = n/(2T )

Thus T = T0n/2. Substituting this relationship in (8.5), we have �t = T0/2. This tells us that the
maximum frequency component in the DFT contains two samples of data per cycle. The maximum
frequency, fmax , is called the Nyquist frequency, and the corresponding sampling rate is called the
Nyquist sampling rate. In order to take at least two samples per cycle of the highest frequency, fmax ,
the sampling rate must be at equal to 2fmax .
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FIGURE 8.2

Graph shows the relationship between a signal frequency and its component in the DFT. Thus, for example,
a signal frequency of twice Nyquist frequency, 2fmax , will give a component of zero frequency in the DFT.

A harmonic with a frequency that is exactly equal to the Nyquist frequency cannot be properly
detected because at this frequency the DFT has a cosine term but no corresponding sine term. This
result has an important implication when data is sampled from a continuously varying function or
signal. It implies that there must be more than two data samples per cycle at the highest frequency
present in the function or signal. If there are frequencies in the signal higher than the Nyquist frequency
then, because of the periodic nature of the DFT itself, they appear as frequency components in the
DFT at a lower frequency. This phenomenon is called “aliasing”. For example, if data is sampled at
0.005 second intervals, that is, 200 samples per second, then the Nyquist frequency, fmax , is 100 Hz.
A frequency of 125 Hz in this signal would appear as a frequency component at 75 Hz. A frequency
of 225 Hz would appear as 25 Hz. The relationship between frequencies in a signal and the frequency
components in the DFT is shown in Fig. 8.2. Frequency aliasing should be avoided because it makes it
difficult or impossible to relate the frequency components in the DFT to their physical causes.

We now return to the task of determining the n coefficients A0, Am, Ak , and Bk in (8.1). Replacing
tr = rT /n in (8.1), we obtain

yr = 1

n

[
A0 +

m−1∑
k=1

{Ak cos(2πkr/n) + Bk sin(2πkr/n)} + Am cos(πr)

]
(8.6)

where r = 0,1,2, ..., n − 1. It was previously noted that the coefficients B0 and Bm are absent from
(8.1). It is now clear that had we introduced these coefficients they would be multiplied by sin(0) and
sin(πr), both of which are zero.

In (8.6) the n unknown coefficients are real. However, (8.6) can be expressed more concisely in
terms of complex exponentials with complex coefficients. Using the fact that

cos(2πkr/n) = {exp(ı2πkr/n) + exp(−ı2πkr/n)}/2

sin(2πkr/n) = {exp(ı2πkr/n) − exp(−ı2πkr/n)}/2ı

and

exp{ı2π(n − k)r/n} = exp(−ı2πkr/n)
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where k = 1,2, ...,m − 1 and ı = √−1, then it can be shown that (8.6) reduces to

yr = 1

n

n−1∑
k=0

Yk exp(ı2πkr/n), r = 0, 1 2, . . . , n − 1 (8.7)

In (8.7),

Y0 = A0 and Ym = Am, where m = n/2

Yk = (Ak − ıBk)/2 and Yn−k = (Ak + ıBk)/2, for k = 1,2, ...,m − 1

Note that if yr is real, then Ak and Bk are also real, so that Yn−k is the complex conjugate of Yk , for
k = 1,2, ..., (n/2 − 1). To find the values of the unknown complex coefficients of (8.7) we make use
of the following orthogonal property of exponential functions sampled at n equispaced points:

n−1∑
r=0

exp(ı2πrj/n) exp(ı2πrj/n) =
{

0 if |j − k| �= 0, n, 2n

n if |j − k| = 0, n, 2n
(8.8)

Multiplying (8.7) by exp(−ı2πrj/n) and summing over the n values of r , and then using (8.8), an
expression for the unknown coefficients can be found thus:

Yk =
n−1∑
r=0

yr exp(ı2πkr/n) k = 0, 1, 2, . . . , n − 1 (8.9)

If we let Wn = exp(−ı2π/n), where Wn is a complex constant, then (8.9) becomes

Yk =
n−1∑
r=0

yrW
kr
n k = 0, 1, 2, . . . , n − 1 (8.10)

Note that in (8.10) Wn is raised to the power of the product of k and r . Alternatively, we can write
(8.10) in matrix notation, giving

Y = Wy (8.11)

where y is the vector of samples, Wkr
n is the element in the (k + 1)th row and (r + 1)th column of W,

since k and r both start at zero. Note that W is an n×n array of complex coefficients. Thus, Y is a vector
of the complex Fourier coefficients and in this instance we are departing from our usual convention that
emboldened upper case letters represent arrays.

We can obtain the coefficients Yk from the equispaced data (tr , yr ) by using (8.9), or (8.10), or
(8.11). These equations are alternative statements of the DFT. Furthermore, by replacing k in (8.9)
by k + np, where p is any integer, it can be shown that Yk+np = Yk . Thus the DFT is periodic over
the range n. The inverse of the DFT is called the inverse discrete Fourier transform (IDFT) and is
implemented by (8.7). By replacing r in (8.7) by r +np, where p is an integer, it can be shown that the
IDFT is also periodic over the range n. Both yr and Yk may be complex, although, as previously stated,
the samples yr are usually real. These transforms constitute a pair: If the data values are transformed
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by the DFT to determine the coefficients Yk , then they can be recovered in their entirety by means of
the IDFT.

To evaluate the coefficients of the DFT it would appear convenient to use (8.11). Although us-
ing these equations is satisfactory for small sequences of data, calculating the DFT for n real data
points requires 2n2 multiplications. Thus, to transform a sequence of 4096 data points would require
approximately 33 million multiplications. In 1965 this situation was dramatically changed with the
publication of the fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965). The FFT algo-
rithm is extremely efficient, and approximately 2n log2 n multiplications are required to compute the
FFT for real data. With this development, together with the increase in computation speed due to the
improvements in computing hardware that have occurred in the past fifty years, it is now possible to
compute the FFT for a relatively large number of data points on a personal computer.

Many refinements have been made to the basic FFT algorithm since it was first formulated and
several variants have been developed. Here one of the simplest forms of the algorithm is outlined.

To develop the basic FFT algorithm one further restriction must be placed on the data. In addition
to the data being equispaced, the number of data points must be an integer power of 2. This allows
a sequence of data to be successively subdivided. For example, 16 data points can be divided into
two sequences of 8, four sequences of 4 and finally eight sequences of only 2 data points. A crucial
relationship on which the FFT algorithm is based is now developed from (8.9) as follows. Let yr be
the sequence of n data points for which we require the DFT. We can subdivide yr into two sequences
of n/2 data points ur and vr thus:

ur = y2r

vr = y2r+1

}
(8.12)

Note that alternate points in the original data sequence are placed in different subsets. We now deter-
mine the DFTs of the data sets ur and vr from (8.9), with n replaced by n/2, thus:

Uk =
n/2−1∑
r=0

ur exp{−ı2πkr/(n/2)}

Vk =
n/2−1∑
r=0

vr exp{−ı2πkr/(n/2)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

k = 0, 1, 2, . . . , n/2 − 1 (8.13)

The DFT, Yk , for the original data sequence yr is given by using (8.9) as follows:

Yk =
n−1∑
r=0

yr exp(−ı2πkr/n)

=
n/2−1∑
r=0

y2r exp{−ı2πk2r/n} +
n/2−1∑
r=0

y2r+1 exp{−ı2πk(2r + 1)/n}

where k = 0,1,2, ..., n. Substituting for y2r and y2r+1 from (8.12), we have

Yk =
n/2−1∑
r=0

ur exp{−ı2πkr/(n/2)} + exp(−ı2πk/n)

n/2−1∑
r=0

vr exp{−ı2πkr/(n/2)}
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Comparing this equation with (8.13), we see that

Yk = Uk + exp(−ı2πk/n)Vk = Uk + (Wk
n )Vk (8.14)

where Wk
n = exp(−ı2πk/n) and k = 0,1,2, ..., n/2 − 1.

Eq. (8.14) provides only half of the required DFT. However, using the fact that Uk and Vk are
periodic in k, it can be proved that

Yk+n/2 = Uk − exp(−ı2πk/n)Vk = Uk − (Wk
n )Vk (8.15)

We can use (8.14) and (8.15) to determine efficiently the DFT of the original data from the DFTs of
subsets composed of alternate points of the original data. Of course, we can determine the DFTs of each
subset of data by further subdividing these subsets until the final division leaves subsets consisting of a
single data point. For a sequence of data comprising a single data point, we see from (8.9) with n = 1
that the DFT is equal to the value of the single data point. This is essentially how the FFT algorithm
works.

In the preceding discussion we started from a sequence of data and continuously subdivided it
(with alternate points in different subsets) until the subdivisions produced single data points. What we
require is a method of starting from single data points and ordering them in such a way that successively
combining the DFTs of the subsets ultimately forms the required DFT of the original data. This can
be achieved by the “bit reversed algorithm”, and we illustrate it and the subsequent stages of the FFT
by assuming a sequence of eight data points, y0 to y7. To determine the correct order for combining
the data we express the subscript denoting the original position of each data point as a binary number
and reverse the order of the binary digits (or bits). This reversed-order binary number determines the
position of each data point in the reordered sequence and is shown for eight data points in Fig. 8.3. The
diagram also shows the stages of the FFT algorithm which repeatedly uses (8.14) and (8.15) thus:

Stage 1. Determine Y04 from Y0 and Y4, determine Y26 from Y2 and Y6, determine Y15 from Y1
and Y5, determine Y37 from Y3 and Y7.

Stage 2. Determine Y0246 from Y04 and Y26, determine Y1357 from Y15 and Y37.
Stage 3. Determine Y01234567 from Y0246 and Y1357.

Note that there are three stages in the above process. For an n point DFT, using the FFT algorithm, the
number of stages equals log2 n. In this small example, n = 8 and hence log2 8 = log2 23 = 3. Thus the
process requires three stages.

MATLAB provides both the function fft to determine the DFT of a sequence of data values using
the FFT algorithm, and the function ifft to determine the IDFT using a slight modification of the FFT
algorithm. Thus to determine the DFT of the data in y we use the fft function as the script e4s801.m
illustrates:

% e4s801.m
v = 0:15;
y = [2.8 -0.77 -2.2 -3.1 -4.9 -3.2 4.83 -2.5 3.2 ...

-3.6 -1.1 1.2 -3.2 3.3 -3.4 4.9];
s = sum(y), Y = fft(y);
[v’ Y.’]
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FIGURE 8.3

Stages in the FFT algorithm.

Running script e4s801.m gives the following results:

s =
-7.7400

ans =
0.0000 + 0.0000i -7.7400 + 0.0000i
1.0000 + 0.0000i 3.2959 + 8.3851i
2.0000 + 0.0000i 13.9798 +10.9313i
3.0000 + 0.0000i 8.0796 - 6.6525i
4.0000 + 0.0000i -0.2300 + 4.7700i
5.0000 + 0.0000i 4.3150 + 6.8308i
6.0000 + 0.0000i 14.2202 + 1.4713i
7.0000 + 0.0000i -17.2905 +15.0684i
8.0000 + 0.0000i -0.2000 + 0.0000i
9.0000 + 0.0000i -17.2905 -15.0684i

10.0000 + 0.0000i 14.2202 - 1.4713i
11.0000 + 0.0000i 4.3150 - 6.8308i
12.0000 + 0.0000i -0.2300 - 4.7700i
13.0000 + 0.0000i 8.0796 + 6.6525i
14.0000 + 0.0000i 13.9798 -10.9313i
15.0000 + 0.0000i 3.2959 - 8.3851i

We have already noted that for real data, Yn−k is the complex conjugate of Yk , for k = 1,2, ..., (n/2−1).
The above results illustrate this relationship and in this case Y15, Y14, ..., Y9 are the complex conjugates
of Y1, Y2, ..., Y7, respectively, and provide no extra information. It is also seen that Y0 is equal to the
sum of the original data values yr .

We now give examples of the use of the fft function to examine the frequency content of data
sequences sampled from continuous functions. Note that in each of the examples the DFT index is
related to frequency using (8.2) through (8.5).
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Example 8.1. Determine the DFT of a sequence of 64 equispaced data points, sampled at intervals of
0.05 s from the function y = 0.5+2 sin(2πf1t)+ cos(2πf2t), where f1 = 3.125 Hz and f2 = 6.25 Hz.
The script e4s802.m calls the fft function and displays the resulting DFT in various ways:

% e4s802.m
clf
nt = 64; dt = 0.05; T = dt*nt
df = 1/T, fmax = (nt/2)*df
t = 0:dt:(nt-1)*dt;
y = 0.5+2*sin(2*pi*3.125*t)+cos(2*pi*6.25*t);
f = 0:df:(nt-1)*df; Y = fft(y);
figure(1)
subplot(121), bar(real(Y),’r’)
axis([0 63 -100 100])
xlabel(’Index k’), ylabel(’real(DFT)’)
subplot(122), bar(imag(Y),’r’)
axis([0 63 -100 100])
xlabel(’index k’), ylabel(’imag(DFT)’)
fss = 0:df:(nt/2-1)*df;
Yss = zeros(1,nt/2); Yss(1:nt/2) = (2/nt)*Y(1:nt/2);
figure(2)
subplot(221), bar(fss,real(Yss),’r’)
axis([0 10 -3 3])
xlabel(’Frequency (Hz)’), ylabel(’real(DFT)’)
subplot(222), bar(fss,imag(Yss),’r’)
axis([0 10 -3 3])
xlabel(’Frequency (Hz)’), ylabel(’imag(DFT)’)
subplot(223), bar(fss,abs(Yss),’r’)
axis([0 10 -3 3])
xlabel(’Frequency (Hz)’), ylabel(’abs(DFT)’)

Running script e4s802.m gives

T =
3.2000

df =
0.3125

fmax =
10

together with Fig. 8.4 and Fig. 8.5. Note that in script e4s802.m we have used the bar rather than the
plot statement to emphasize the discrete nature of the DFT. Fig. 8.4 shows the amplitudes of the 64 real
and imaginary components of the DFT plotted against the index number k. Note that components 63 to



392 CHAPTER 8 ANALYZING DATA USING DISCRETE TRANSFORMS

FIGURE 8.4

Plots of the real and imaginary part of the DFT.

33 are the complex conjugates of components 1 to 31. Whilst these plots display the DFT, the amplitude
and frequency of the harmonic components in the original signal cannot easily be recognized. To
achieve this the DFT must be scaled and displayed as shown in Fig. 8.4. In the real part of the DFT there
are components at k = 0,20, and 44, each with an amplitude of 32, and in the imaginary part of the DFT
there are components at k = 10 and 54, with amplitudes of 64 and −64 respectively. Since they contain
no extra information, we ignore the components above k = 32 (that is, the component k = 44 and 54)
and consider only the components in the range k = 0,1, ...,31; in this case specifically k = 0,10,
and 20. We can convert the DFT index number to frequency by multiplying by �f (= 0.3125 Hz) to
give components at 0 Hz, 3.125 Hz, and 6.25 Hz, respectively. We now scale the DFT in the range
k = 1,2, ...,31 by dividing it by (n/2), in this case by 32. The plots of the 31 scaled DFT components
(most of which are zero) corresponding to frequencies in the range 0 to 9.6875 Hz are shown in Fig. 8.5.
We now see that the real component at 6.25 Hz has an amplitude of 1 and the imaginary component at
3.125 Hz has an amplitude of −2. These components correspond, respectively, to the cosine component
and the negative of the sine component in the original signal from which the data was sampled. If we
only wish to know the amplitude of the frequency components, then we can display the absolute values
of the scaled DFT. The component at f = 0 Hz is equal to twice the mean value of the data, in this case
we have 2 × 0.5 = 1. These plots are called frequency spectra or periodograms. If sampling is over
an integer number of cycles of the harmonics present in the signal, the amplitude of the components
in the scaled DFT equal the amplitude of the corresponding harmonics, as shown in this example. If
the sampling is not over an integer number of cycles of any harmonic present in the signal, then the
component in the DFT closest to the frequency of the harmonic is reduced in amplitude and spread into
other frequencies. This phenomenon is called “spectral leakage”, or “leakage” and is further discussed
in Problem 8.4.
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FIGURE 8.5

Frequency spectra.

Example 8.2. Determine the spectrum of a sequence of 512 data points sampled over a period of
2 seconds from the function

y = 0.2 cos(2πf1t) + 0.35 sin(2πf2t) + 0.3 sin(2πf3t) + random noise

where f1 = 20 Hz, f2 = 50 Hz, and f3 = 70 Hz. The random noise is normally distributed with a
standard deviation of 0.5 and a mean of zero. Script e4s803.m plots the time series and the DFT scaled
by the factor n/2.

% e4s803.m
clf
f1 = 20; f2 = 50; f3 = 70;
nt = 512; T = 2; dt = T/nt
t_final = (nt-1)*dt; df = 1/T
fmax = (nt/2)*df
t = 0:dt:t_final;
dt_plt = dt/25;
t_plt = 0:dt_plt:t_final;
y_plt = 0.2*cos(2*pi*f1*t_plt)+0.35*sin(2*pi*f2*t_plt) ...

+0.3*sin(2*pi*f3*t_plt);
y_plt = y_plt+0.5*randn(size(y_plt));
y = y_plt(1:25:(nt-1)*25+1); f = 0:df:(nt/2-1)*df;
figure(1)
subplot(211), plot(t_plt,y_plt)
axis([0 0.04 -3 3])
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FIGURE 8.6

The top graph shows the data in the time domain and the bottom graph shows the corresponding frequency
spectrum. Note frequency components at 20, 50, and 70 Hz.

xlabel(’Time (sec)’), ylabel(’y’)
yf = fft(y);
yp(1:nt/2) = (2/nt)*yf(1:nt/2);
subplot(212), plot(f,abs(yp))
axis([0 fmax 0 0.5])
xlabel(’Frequency (Hz)’), ylabel(’abs(DFT)’);

Running the script e4s803.m gives

dt =
0.0039

df =
0.5000

fmax =
128

together with Fig. 8.6. The lower plot of Fig. 8.6 shows that random noise in the signal does not
prevent the frequency components 20, 50, and 70 Hz from revealing themselves in the spectrum.
These components are not obviously visible in the original time series data shown in the upper plot
of Fig. 8.6.

We now repeat the discrete Fourier analysis for this example, but increase the sampling period T to
2.5 and reduce the number of samples to 256. Running the script then gives dt = 0.0098, df = 0.4000
and fmax = 51.2000 together with the plots shown in Fig. 8.7. The lower plot shows frequency compo-
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FIGURE 8.7

The top graph shows the data in the time domain and the bottom graph shows the corresponding frequency
spectrum. Note that due to aliasing, frequency components are at 20, approximately 32.4 and 50 Hz.

nents of 20, 32.4 and 50 Hz in the spectrum. Since we know the spectral composition of the input data
we know that this is not correct. The 20 and 50 Hz components are genuine but due to the fact that the
maximum frequency that can be detected is only 51.2 Hz, the 70 Hz component is aliased and appears
at 32.4 Hz. Note that this aliased frequency arises because 70 − 51.2 = 18.8 and 51.2 − 18.8 = 32.4.
Clearly, if we did not know the spectral composition of the input data a priori then we would be
mislead by this spectrum.

Example 8.3. Determine the spectrum of a triangular wave of amplitude ±1 and period 1 second,
sampled at intervals of 1/32 second over one cycle. The script e4s804.m outputs the DFT scaled by the
factor n/2.

% e4s804.m
nt = 32; T = 1, dt = T/nt
t = 0:dt:(nt-1)*dt;
df = 1/T, fmax = nt/(2*T)
f = 0:df:df*(nt/2-1);
y = 0.125*[8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 ...

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7];
Yss = zeros(1,nt/2); Y = fft(y);
Yss(1:nt/2) = (2/nt)*Y(1:nt/2);
[f’ abs(Yss)’]

Running script e4s804.m gives

T =
1

dt =
0.0313
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Table 8.1 Coefficients of aliased harmonics

f 3f 5f 7f 9f 11f 13f 15f

8/π2 8/(3π)2 8/(5π)2 8/(7π)2 8/(9π)2 8/(11π)2 8/(13π)2 8/(15π)2

8/(31π)2 8/(29π)2 8/(27π)2 8/(25π)2 8/(23π)2 8/(21π)2 8/(19π)2 8/(17π)2

8/(33π)2 8/(35π)2 8/(37π)2 8/(39π)2 8/(41π)2 8/(43π)2 8/(45π)2 8/(47π)2

8/(63π)2 8/(61π)2 8/(59π)2 8/(57π)2 8/(55π)2 8/(53π)2 8/(51π)2 8/(49π)2

8/(65π)2 8/(67π)2 etc.

df =

1

fmax =

16

ans =

0 0

1.0000 0.8132

2.0000 0

3.0000 0.0927

4.0000 0

5.0000 0.0352

6.0000 0

7.0000 0.0194

8.0000 0

9.0000 0.0131

10.0000 0

11.0000 0.0100

12.0000 0

13.0000 0.0085

14.0000 0

15.0000 0.0079

The Fourier series for the triangular wave of this example is

f (t) = 8

π2

(
cos(2πt) + 1

32
cos(6πt) + 1

52
cos(10πt) + 1

72
cos(14πt) + ...

)

The first eight frequency components in the scaled DFT at frequencies 1, 3, 5 Hz, and so on, are
not equal to values we expect; that it 8/π2, 8/(3π)2, 8/(5π)2 (i.e., 0.8106, 0.0901, 0.0324), and so
on, because of the effect of aliasing. A triangular wave contains an infinite number of harmonics and
because of aliasing these appear as components in the DFT as shown in Table 8.1. Thus the size
of the 3 Hz component in the DFT is (8/π2)(1/32 + 1/292 + 1/352 + 1/612 + ...). By summing a



8.2 FOURIER ANALYSIS OF DISCRETE DATA 397

large number of terms down the columns of Table 8.1, the terms in the DFT are obtained. The DFT
as shown above is correct, and the inverse DFT recovers the original data. However, when using it to
provide information about the contribution of frequency components in the original data, the DFT must
interpreted with care.

Example 8.4. Determine the DFT of a sequence of 128 data points sampled from a signal at intervals
of 0.0625 seconds. The signal has a constant amplitude of 1 unit which, after 10 samples, is switched
to zero.

The script e4s805 determines the DFT for the data.

% e4s805.m

clf

nt = 128; nb = 10;

y = [ones(1,nb) zeros(1,nt-nb)];

dt = 0.0625; T = dt*nt

df = 1/T, fmax = (nt/2)*df;

f = 0:df:(nt/2-1)*df;

yf = fft(y);

yp = (2/nt)*yf(1:nt/2);

figure(1), bar(f,abs(yp),’w’)

axis([0 fmax 0 0.2])

xlabel(’Frequency (Hz)’), ylabel(’abs(DFT)’)

Running script e4s805.m gives

T =

8

df =

0.1250

together with the graphical output shown in Fig. 8.8. The plot shows that the frequency spectrum is
continuous and the largest components are clustered near the zero frequency. This is in contrast to the
spectrum of Examples 8.1 and 8.2 which show sharp peaks due to the presence of periodic components
in the original data. Note that because the original signal is a step and not periodic, the amplitude of its
DFT is dependent on the sampling period.

In this section we have provided examples of how the DFT (computed using the FFT) can be used
to study the distribution of frequency components in data. There are other applications of the DFT. It
is sometimes used for interpolation, as is any procedure that fits mathematical functions to a sequence
of data. MATLAB provides the function interpft to allow interpolation using the DFT.

The advances in computer hardware have extended the range of problems to which the DFT can
usefully be applied, and this in turn has encouraged the development of new and powerful variants of
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FIGURE 8.8

Spectrum of a sequence of data.

the FFT algorithm. A detailed description of the FFT algorithm is given by Brigham (1974), and a
straightforward introduction which emphasizes the practical problems in using this type of analysis is
given by Ramirez (1985).

8.3 THE HILBERT TRANSFORM
Data is sometimes sampled from signals of short duration that may change substantially over their
duration. For example, musical instruments and earthquakes do not produce infinite duration harmonics
and cannot be analyzed successfully using the FFT. One approach is to use the short-time Fourier
transform (STFT). This is a basic form of time–frequency analysis which has limitations and which we
do not describe. The Hilbert transform, and its extension, the Hilbert–Huang transform (HHT) can be
utilized to solve this type of problem and a description of the transform and its application is given.

The Hilbert transform of a real valued continuous function or signal x(t) is defined as

H{x(t)} = x̃(t) = 1

π

∫ ∞

−∞
x(τ)

(t − τ)
dτ (8.16)

Here H{•} indicates the Hilbert transform, and x̃(t) is the Hilbert transform of x(t). It can be seen
that the integrand of (8.16) has a singularity at t = τ and care must be exercised in evaluating this
integral. In contrast to the Fourier transform, the Hilbert transform maps a function in one domain into
a different function in the same domain. For example, consider the Hilbert transform of cos(2πf t),
then

H{cos(2πf t)} = 1

π

∫ ∞

−∞
cos(2πf τ)

(t − τ)
dτ (8.17)

Letting p = t − τ then dp = −dτ and when τ = ∞, p = −∞, and when τ = −∞, p = ∞. Thus we
have

H{cos(2πf t)} = 1

π

∫ −∞

∞
cos(2πf (t − p))

p
(−dp) (8.18)
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Noting that

cos(2πf (t − p)) = cos(2πf t − 2πfp) = cos(2πf t) cos(2πfp) + sin(2πf t) sin(2πfp)

H{cos(2πf t)} = 1

π

[
cos(2πf t)

∫ ∞

−∞
cos(2πfp)

p
dp + sin(2πf t)

∫ ∞

−∞
sin(2πfp)

p
dp

]
(8.19)

Now cos(2πfp)
p

is an odd function, that is cos(−2πfp)
p

= − cos(2πfp)
p

, and consequently, over the range

±∞, it integrates to zero. It can be shown that the integral of sin(2πfp)
p

over the range ±∞ is π . Thus

H{cos(2πf t)} = sin(2πf t) (8.20)

Thus, the Hilbert transform has shifted the phase of the cosine function by −90◦. In fact, we will show
that the effect of the Hilbert transform is to rotate all the frequency components of the signal by −90◦.

A more efficient method of determining the Hilbert transform, and at the same time illustrating that
all frequency components in the data are rotated by −90◦, is to take the Fourier transform of (8.16).

The convolution integral is defined by

(f ⊗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ) dτ =

∫ ∞

−∞
f (t − τ)g(τ ) dτ (8.21)

Note that the symbol ⊗ indicates that f (t) is convolved with g(t). Comparing (8.16) with (8.21)
we see that the Hilbert transform is a convolution integral of x(t) and (πt)−1. Thus we may write

x̃(t) = x(t) ⊗ (πt)−1 (8.22)

Now it can be proved that a convolution integral in one domain becomes a product in the corre-
sponding Fourier domain. Thus

F {x̃(t)} =F
{
x(t) ⊗ (πt)−1

}
= F {x(t)}F

{
(πt)−1

}
(8.23)

Now F
{
(πt)−1

}= −jsign(f ). Writing F {x(t)} = X(f ), we have

F {x̃(t)} = −jX(f )sign(f ) (8.24)

Taking the inverse transform of this equation gives the following expression for x̃(t):

x̃(t) =F−1 {−jX(f )sign(f )} (8.25)

Thus the simplest way of describing the Hilbert transform is that it gives all the positive fre-
quency components in the data, a phase shift of −j (that is −π/2 or −90◦) and all negative frequency
components, a phase shift of +j or π/2. Then data is generated in the domain of x(t) from these
phase shifted frequency components using the inverse Fourier transform. We have already shown that
H{cos(2πf t)} = sin(2πf t). Knowing that all positive frequency components in the data have a phase
shift of −π/2, it can be deduced that H{sin(2πf t)} = − cos(2πf t).
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From the original data, x(t), and the Hilbert transform of the data, x̃(t) we can generate the so-called
“analytic” signal thus

¯̄x(t) = x(t) + j x̃(t) (8.26)

The analytical signal (8.26) can be expressed in the form

¯̄x(t) = | ¯̄x(t)| exp(jθ(t)) (8.27)

where | ¯̄x(t)| = √
x(t)2 + x̃(t)2. The term | ¯̄x(t)| is the amplitude of the signal or function at t . The

instantaneous phase at t is

θ(t) = tan−1
(

x̃(t)

x(t)

)
(8.28)

We have seen that if x(t) = cos(2πf t) then x̃(t) = sin(2πf t). Thus ¯̄x(t) = cos(2πf t) +
j sin(2πf t) = exp(j2πf t). We can consider (8.27), and hence (8.26), as generalizations of this re-
lationship for any function.

The instantaneous frequency of the data can be obtained from the derivative of (8.28) and hence

ω(t) = dθ(t)

dt
(8.29)

For example, if x(t) = cos(αt2) then x̃(t) = sin(αt2) and so

θ(t) = tan−1(sin(αt2)/ cos(αt2)) = αt2 (8.30)

Thus

ω(t) = d(αt2)

dt
= 2αt (8.31)

Hence, the instantaneous frequency at time t is 2αt .
So far we have defined the Hilbert transform for continuous functions or signals. We can apply the

discrete Hilbert transform to discrete (sampled) data. In this case, (8.25) becomes

H{x} = x̃ =F−1 {Xm
}

(8.32)

where H{•} is the discrete Hilbert transform (DHT), F−1{•} is the inverse DFT, and Xm is a vector of
modified values of X and is defined by

Xm
i = −jXisign(fi) i = 0, 1, ..., n − 1 (8.33)

where Xi , for i = 0, 1, ..., n − 1, is the DFT of xj (j = 0, 1, ..., n − 1) and fi is the positive or
negative frequency component at i.

The amplitude and phase angle of the analytical signal are given by (8.34) and (8.35) respectively,
as follows:

| ¯̄xi | =
√

x2
i + x̃2

i i = 0, 1, ..., n − 1 (8.34)
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and

θi = tan−1(x̃i/xi) i = 0, 1, ..., n − 1 (8.35)

The rate of change of phase is the instantaneous frequency. Thus

ωi = dθi

dt
(8.36)

If we take the DFT of (8.26), we have

¯̄X = X + j X̃

Let X(f +) denote the vector of values selected from X with positive frequency components and zero
elsewhere, and let X(f −) denote the vector selected from X with negative frequency components and
zero elsewhere. Thus we have

¯̄X = [X(f +) + X(f −)
]+ j

[−jX(f +) + jX(f −)
]= 2X(f +)

The negative frequency components of X cancel, while the positive frequency components double.
This occurs because the Hilbert transform provides a 90◦ phase shift at all negative frequencies, and a
−90◦ phase shift at all positive frequencies. The discrete analytic signal is determined directly for the
DFT using the following algorithm, due to Marple (1999).

¯̄Xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi, if i = 0

2Xi, if 1 ≤ i ≤ n/2 − 1

Xi, if i = n/2

0, if n/2 + 1 ≤ i ≤ n − 1

(8.37)

and hence ¯̄x =F−1( ¯̄X).
The MATLAB function fhilb generates the analytical data corresponding to the input data.

function xdbar = fhilb(x)
% xdbar is the analytic signal for x
% x must be row a vector. dbar is also row a vector
n = length(x);
X = fft(x);
sft = [1 2*ones(1,n/2-1) 1 zeros(1,n/2-1)];
xdbar = ifft(sft.*X);

Script e4s806.m illustrates that the function fhilb.m generates the analytical data, thus:

% e4s806.m
clear all
x = [1 3 5 3 -4 -3 0 3];
y = fhilb(x);
xdbar = y.’
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Running script e4s806.m gives

xdbar =
1.0000 - 0.6213i
3.0000 - 2.0000i
5.0000 + 0.6213i
3.0000 + 5.5355i

-4.0000 + 3.6213i
-3.0000 - 2.0000i
0.0000 - 3.6213i
3.0000 - 1.5355i

Here we see that the real part of xdbar is the original data, the imaginary part is the Hilbert trans-
form.

Consider the function y = (0.5 + 0.6e−0.10t ) cos(7t + 6 log(cosh((t − 10)/2))). Clearly the ampli-
tude and frequency of this function varies with time. The MATLAB script e4s807 generates a vector of
data from this function over 24 seconds at intervals of 0.01 s and uses the Hilbert transform to deter-
mine the variation of frequency and amplitude with time. Running e4s807 generates Figs. 8.9, 8.10,
8.11, and 8.12.

% e4s807.m
close all, clear all
dt = 0.01;
t = dt:dt:24; n = length(t);
omega0 = 7+3*tanh((t-10)/2);
theta = 7*t+6*log(cosh((t-10)/2));
A0 = 0.5+0.6*exp(-0.10*t);
y = A0.*cos(theta);
ya = fhilb(y);
ye = abs(ya);
figure(1), plot(t,y,’k’,t,ye,’k--’)
xlabel(’Time, s’), ylabel(’y’)
axis([0 24 -1.5 1.5])
figure(2), plot3(t(1:end-15),real(ya(1:end-15)),imag(ya(1:end-15)),’k’)
xlabel(’Time, s’), ylabel(’real(ya)’), zlabel(’imag(ya)’)
axis([0 24 -1.5 1.5 -1.5 1.5])
grid
d_theta = zeros(size(t));
thetas = angle(ya);
theta = unwrap(thetas);
d_theta(1) = (theta(2)-theta(1))/dt;
d_theta(n) = (theta(n-1)-theta(n))/dt;
for k = 2:n-1

d_theta(k) = (theta(k+1)-theta(k-1))/(2*dt);
end
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figure(3), plot(t,omega0/2/pi,’k--’,t,d_theta/2/pi,’k’)
xlabel(’Time, s’), ylabel(’Frequency, Hz’)
axis([0 24 0 2.5])
nt = 2048; T = t(nt);
df = 1/T; f = df*(0:nt/2-1);
yf = fft(y(1:nt));
yp = (2/nt)*yf(1:nt/2);
figure(4)
plot(f, abs(yp),’k’)
axis([0 3 0 0.4])
ylabel(’y’)
xlabel(’Frequency, Hz’)

Fig. 8.9 shows a plot of y against time, t . The dashed line shows the envelope of the function,
derived from the amplitude of the analytic signal. Fig. 8.10 is a three-dimensional plot and shows that
when the real and imaginary parts of the analytic signal are plotted against time, a spiral is generated.
Fig. 8.11 shows the variation of frequency with time. The dashed line represents the exact frequency
and the full line is an estimate of the frequency, computed from the derivative of the phase of the
analytic signal. Note that except at the ends of the sample period the agreement is very good. Finally,
Fig. 8.12 shows the scaled Fourier transform of the data in the range zero to 20.48 s. The periodogram
shows the frequency spread between about 0.6 and 1.6 Hz. However, the Fourier transform tells us
nothing about how the frequency and amplitude varies with time.

We have seen how, using the Hilbert transform we can examine a single harmonic component in a
set of data as it changes in amplitude and frequency with time. This basic analysis does not allow us
to examine multiple harmonic components in a data set. In order to do this we must decompose the
data into its intrinsic mode functions (IMF). An IMF is defined as a function that satisfies the following
requirements:

1. In the whole data set, the number of extrema and the number of zero-crossings must either be equal
or differ by, at most, by one.

2. At any point, the mean value of the envelope defined by the local maxima and the envelope defined
by the local minima are zero.

This definition guarantees the Hilbert transform of an IMF is well-behaved.
The IMF represents a simple oscillatory mode and is equivalent in some respects to the simple

harmonic function, but it is much more general: instead of constant amplitude and frequency in a
simple harmonic function, an IMF can have variable amplitude and frequency along the time axis.
Intrinsic modes comprise only one harmonic component and the Hilbert transform can be applied to
each intrinsic mode separately. This definition guarantees a well-behaved Hilbert transform of the IMF.

To decompose the data into its intrinsic modes, we use Empirical Mode Decomposition (EMD). The
decomposition was first presented by Huang et al. (1998) and for that reason, EMD followed by the
application of the Hilbert transform to each intrinsic mode is often called the Hilbert–Huang transform.

In deconstructing signals or time series data into its various intrinsic modes, EMD can be com-
pared with other analysis methods such as the Fourier transform and the Wavelet transform. Using the
EMD method, any complicated data set can be decomposed into a finite and often small number of
components. These components form a complete and nearly orthogonal basis for the original signal.
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FIGURE 8.9

Plot of data y against time, in seconds. The dashed
line is the envelope derived from the absolute value of
the analytic data.

FIGURE 8.10

A three-dimensional plot of the real and imaginary
parts of the analytic data against time, in seconds,
showing an exponentially decaying spiral.

FIGURE 8.11

Plot of frequency, in Hz, derived from the Hilbert
transform, against time, in seconds. The dashed line
is the exact frequency.

FIGURE 8.12

Fourier transform of the data, showing a spectrum
between 0.5 Hz and 1.5 Hz, but the transform gives
no information about the variation of frequency with
time.

The first IMF usually carries the highest frequency component and it can be rejected to remove
high-frequency components such as example, random noise. The EMD based smoothing algorithms
have been widely used in seismic data processing.

The EMD algorithm is adaptive and highly efficient, see Huang et al. (1998). Since the decomposi-
tion is based on the local characteristic time scale of the data, it can be applied to both non-linear and
non-stationary processes.

The procedure of extracting an IMF is called sifting. The sifting process connects all the local
maxima by a cubic spline line which is the upper envelope. This procedure is then repeated for the
local minima to produce the lower envelope. The upper and lower envelopes should cover all the data
between them. The difference between the original data and the mean of these two envelopes is the
first estimate of the IMF. The process is repeated iteratively to obtain a satisfactory estimate of the
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first IMF. A stopping criterion determines the number of sifting steps to produce an estimate of the
IMF and currently researchers have developed four criteria. Once a stopping criterion is selected, the
first IMF, can be obtained. Overall, this IMF should contain the finest scale or the shortest period
component of the signal. Once the first IMF is obtained it is subtracted from the original data and the
IMF is determined from the remainder. This IMF is the second IMF of the original data. Then, using
the same process the third, fourth IMFs, etc., can be determined. The process finally stops when the
residue is a monotonic function from which no more IMFs can be extracted.

Thus, a decomposition of the data into empirical modes is achieved. The components of the EMD
are usually physically meaningful, for the characteristic scales are defined by the physical data.

Having obtained the intrinsic mode function components, the instantaneous frequency and ampli-
tude can be computed using the Hilbert transform applied to each IMF.

The significance of each IMF is determined by its correlation coefficient. This is defined by

γp =
∑n

i=1 Cpixi√∑n
i=1 C2

pi ×∑n
i=1 x2

i

p = 1, 2, ..., m (8.38)

or, equivalently,

γp = Cpx′√
CpC′

pxx′
p = 1, 2, ..., m (8.39)

where Cpi is the amplitude of the pth intrinsic mode for the ith data value, xi .
In summary, Hilbert spectral analysis (HSA) is a method for examining each of the IMF’s instan-

taneous frequencies as functions of time. The final result is a frequency–time distribution of signal
amplitude, called as the Hilbert spectrum, designated by H(t,ω), which permits the identification of
localized features.

Example 8.5. Consider data sampled from the function

x = 4 cos(22t + 0.5t2) + 3e−0.1t cos(14t − t2/10), t < 15 (8.40)

= 4 cos(22t + 0.5t2) + 3e−0.1t cos(14t − t2/10) + (t − 15) sin(18t) t ≥ 15 (8.41)

The function is sampled in the time range 0.01 to 20.48 s at intervals of 0.01 s, i.e. 2048 samples.
The frequency resolution is df = 1/T = 1/20.48 = 0.0488 Hz. The maximum recommended fre-
quency is approximately 1/(4 × 0.01) = 25 Hz. Applying the EMD algorithm we find that the signal
is decomposed into 10 IMFs (the last being the monotonic residual function). Computing the correla-
tion coefficients for the 10 IMFs using (8.38) gives 0.8989, 0.4688, 0.0657, 0.0146, 0.0097, 0.0054,
0.0061, 0.0040, 0.0062, and, for the monotonic residual, 0.0057. Clearly, in this example, only the first
two or possibly three intrinsic modes are significant. This is also illustrated by Fig. 8.13 that shows the
original data and the first 5 intrinsic modes. It is seen that the first two intrinsic modes are the most
significant. This can be further demonstrated by regenerating the original data, by combining only the
first two intrinsic modes, see Fig. 8.14. This recreates the original data almost exactly. We now take
the discrete Hilbert transform of each intrinsic mode. Since only one frequency component is present
in each IMF the discrete Hilbert transform will allow us to compute the amplitude and frequency of
this component. By applying the discrete Hilbert transform to all the IMFs we can determine all the



406 CHAPTER 8 ANALYZING DATA USING DISCRETE TRANSFORMS

FIGURE 8.13

Original data is shown in the first plot in the left
column. The remaining plots are of the first 5 intrinsic
mode functions derived from it.

FIGURE 8.14

Plot of the original data over the interval from
t = 14.5 s to 16.5 s and data points reconstructed
from the first and second intrinsic mode functions
indicated by ◦. Note the very close agreement.

FIGURE 8.15

Plot showing the variation with time of the frequency
components. The full lines are data from the intrinsic
mode functions. The dashed lines are the actual
frequency components.

FIGURE 8.16

Plot showing the variation with time of the amplitude
of the frequency components. The full lines are data
from the intrinsic mode functions The dashed lines
are the actual amplitudes of the frequency
components.

frequency components and their amplitudes, see Figs. 8.15 and 8.16. These two figures only show the
data from the first three intrinsic modes. In the frequency plot, Fig. 8.15, the first IMF is seen to track
the highest frequency component in the data and the second IMF is seen to tracks the lower frequency
component, but at approximately 15 s it jumps to track the frequency component that begins at 15 s.
The third IMF has a very low amplitude and frequency below t = 15 s but, at t = 15 s, its frequency
increases and it tracks the lowest frequency component in the data that only exists above 15 s. A similar
pattern can be discerned in the amplitude plot, Fig. 8.16. Note how the second IMF fails to give the
correct amplitude of the lower frequency below about 5 s, but then gives and accurate estimate of the
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FIGURE 8.17

Fourier transform of the data of Example 8.5. Note that this plot gives no information about the variation of
frequency with time.

amplitude of the lower frequency component, until at t = 15 s it switches to give the rapidly increasing
amplitude of the frequency component that begins at t = 15 s.

Fig. 8.17 shows the amplitude of Fourier transform. The frequency components in the data are,
approximately, a component varying between 1.6 Hz and 2.2 Hz, a component varying between 3.5 Hz
and 6.8 Hz, and a component of 2.8 Hz. These can be identified in the Fourier transform, but not that
the spectrum is changing with time.

The Hilbert and the Hilbert–Huang transforms have been widely applied to the analysis of the
behavior of non-stationary and non-linear systems, for example, Feldman (2011).

8.4 THE WALSH TRANSFORMS
The Walsh function is an orthogonal function and can be used as the basis for a continuous or discrete
transform.

Considering first the Walsh function: this function forms an ordered set of rectangular waveforms
that can take only two values, +1 and −1.

There are at least four methods of generating Walsh functions. Here we consider only the Hadamard
matrix approach. The 2 × 2 Hadamard matrix is

H2 =
[

1 1
1 −1

]

Higher-order matrices can be obtained using the recursive relationship

H2k =
[

H2k−1 H2k−1

H2k−1 −H2k−1

]
(8.42)
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FIGURE 8.18

Walsh functions in the range t = 0 to 1, in ascending sequency order from WAL(0, t), with no zero crossings to
WAL(7, t) with seven zero crossings.

Letting k = 2 we generate the following matrix.

H4 =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

row 0
row 1
row 2
row 3

The rows of H are the values of the Walsh function, but the order is not the required sequency
order. In this ordering, the functions are referenced in ascending order of zero crossings in the function
in the range 0 < t < 1. To convert H to the sequency order, the row number (beginning at zero) must
be converted to binary, then the binary code converted to Gray code, then the order of the binary digits
in the Gray code is reversed, and finally these binary digits are converted to decimal (that is they are
treated as binary numbers, not Gray code). The definition of Gray code is provided by Weisstein (2017).
The following shows the application of this procedure to the 4 × 4 Hadamard matrix.

row 0 1 2 3
binary 00 01 10 11
Gray 00 01 11 10
order reversed 00 10 11 01
decimal 0 2 3 1

The decimal value is the new position of the row. Hence

W =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦

row 0
row 2
row 3
row 1

(8.43)

The first 8 Walsh functions are shown in Fig. 8.18. It should be noted that the Walsh functions can
be logically ordered (and listed) in more than one way.

In Fig. 8.18 the functions are in sequency order. In this ordering, the functions are referenced in
ascending order of zero crossings in the function in the range 0 < t < 1 and for time signals, sequency
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is defined in terms of zero crossings per second or zps. This is similar to the ordering of Fourier com-
ponents in increasing harmonic number (that is half the number of zero crossings). Another ordering
is the natural or the Paley order. The functions are then called Paley functions, so that, for example, the
15th Walsh function and 8th Paley function are identical. Here we only consider sequency ordering.

There does not appear to be a standard notation for the Walsh function. Here we follow Beauchamp
(1975) and denote the nth Walsh function at time t by WAL(n, t) where n = 0, 1, 2, ....

It has been previously stated that the Walsh functions form an orthogonal set. Thus

∫ T

0
WAL(i, t)WAL(j, t) dt =

{
0 i �= j

T i = j
(8.44)

or, for a set of n point discrete Walsh functions,

n−1∑
k=0

WAL(i, k)WAL(j, k) =
{

0 i �= j

n i = j
(8.45)

It is easy to verify that continuous or discrete Walsh functions are orthogonal.
The discrete Walsh transform (DWT) is defined by

Xk =
n−1∑
j=0

xj WAL(k, j), k = 0, 1, 2, ..., n − 1 (8.46)

Defining Wij = WAL(i, j) then

X = Wx (8.47)

where X is the discrete Walsh transform of x and W is an n × n symmetrical matrix so that WT = W.
Since W is also an orthogonal matrix WT = nW−1.

From (8.47), we can obtain

x = W−1X = (1/n)WTX (8.48)

and thus the inverse discrete Walsh transform is

x = (1/n)WTX (8.49)

The position of the factor n is somewhat arbitrary because it may appear in the transpose or the
inverse transpose.

A Walsh transform of n real values has n real values in its transform. In contrast a Fourier transform
of n real values has 2 real values and n/2 − 1 pairs of complex conjugate values, as explained in
Section 8.2. Thus an n point Fourier transform has n discrete values, just as an n point Walsh transform
produces n discrete values. We also note that like the discrete Fourier transform, the DWT satisfies
Parseval’s Theorem, that is

n−1∑
i=0

x2
i = (1/n)

n−1∑
k=0

X2
k (8.50)
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A fast Walsh transform algorithm has been developed in a similar fashion to the fast Fourier trans-
form. Here we provide the less efficient function dwht which computes the DWT using (8.47), or the
inverse DWT based on (8.49)and as follows:

function X = dwht(x,flag)
% x is an n point row vector.
% flag = 1 for DWT, flag ~= 1 for inverse DWT.
% X is row vector of DWT or IDWT
n = length(x);
W = fwalsh(n);
if flag == 1

% Walsh transform
X = (W*x’)’;

else
% Inverse walsh transform
X = (1/n)*(W*x’)’;

end
end
%------------------------
function W = fwalsh(n)
m = log2(n);
H = hadamard(n);
w = zeros(1,n);
for n = 0:n-1

nb = dec2bin(n,m);
ng = bin2gray(nb);
gr = fliplr(ng);
w(n+1) = bin2dec(gr);

end
W = H(w+1,:);
end
%------------------------------------------
function g = bin2gray(b)
g(1) = b(1);
for k = 2:length(b);

x = xor(str2num(b(k-1)), str2num(b(k)));
g(k) = num2str(x);

end
end

The Walsh functions can be classified in terms of even CAL(k, t) and odd SAL(k, t) waveform
symmetry. The names CAL and SAL are those used by Beauchamp (1975) and the functions are defined
thus

CAL(k, t) = WAL(2k, t), k = 0, 1, ...

SAL(k, t) = WAL(2k − 1, t), k = 1, 2, ... (8.51)
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Thus, Fig. 8.18, by showing WAL(0, t) to WAL(7, t), also shows CAL(0, t) to CAL(3, t) and
SAL(1, t) to SAL(4, t). The CAL and SAL functions are analogous to the cosine and sine functions
of Fourier analysis. However, although the sine and cosine functions can be combined into a single,
complex, function exp(j2πkt), it is not possible to combine CAL(k, t) and SAL(k, t) in such a simple
and revealing relationship.

The power spectrum of the DWT can be determined as follows. In the DWT, consider the coeffi-
cients of WAL, CAL, and SAL functions, wi , ci , and si respectively. Then

P0 = c2
0 = w2

0

Pk = c2
k + s2

k = w2
2k + w2

2k−1 where 1 ≤ k ≤ n/2 − 1 (8.52)

The MATLAB function walshps extracts the CAL and SAL functions and also the power spectrum
from the DWT, as follows

function [Cal,Sal,Pow] = walshps(Wal)
% Computes CAL. SAL and Power from WAL
% Wal is a row vector of Walsh values
% Cal, Sal and Pow are row vectors of CAL, SAL and Power values
% Index of WAL is from 0 to n-1. Computer Wal(i), i = 1 to n
% Index of CAL is from 0 to n/2-1. Computer Cal(i), i = 1 to n/2
% Index of SAL is from 1 to n/2. Computer Sal(i), i = 2 to n/2+1.
% Index i of Wal, Sal and Cal must be i-1 for index of actual function
n = length(Wal);
Cal(1) = Wal(1); Pow(1) = Wal(1)^2; Sal(1) = 0;
for i = 2:n/2

Cal(i) = Wal(2*i-1);
Sal(i) = Wal(2*i-2);
Pow(i) = Cal(i)^2+Sal(i)^2;

end
Sal(n/2+1) = Wal(n); Pow(n/2+1) = Wal(n)^2;

The relationship between the WAL, CAL, and SAL indices, and sequency are similar to the relationship
between the discrete Fourier index and frequency. In Section 8.2 we show that the frequency increment
df is equal to 1/T where T is the time over which data is sampled. Since there are two zero crossings
per cycle of a periodic waveform, the sequency is equal to twice the frequency. Hence ds = 2df = 2/T .

Consider an n point Walsh transform. The transform outputs the amplitude of n WAL functions
denoted by WAL(k, t), where k = 0 to n − 1. We cannot easily relate the WAL index to sequency
because a single sequency relates to pairs of WAL function indices. However, separating the WAL
function amplitudes into the amplitudes of the CAL and SAL functions gives n/2 CAL functions
denoted by CAL(k, t), where k = 0 to n/2 − 1 and n/2 SAL functions denoted by SAL(k, t), where
k = 1 to n/2. The amplitude of the sequency power is related to the CAL and SAL functions as shown
in (8.52) and is denoted by Pk , where k = 0 to n/2 − 1. Note that in the function walshps, the indices
of the functions WAL, CAL, SAL, and P are increased by 1 since by definition the functions WAL,
CAL, and P start with an index of 0, which is not allowed in MATLAB. Although the function SAL
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starts with an index of 1, this index is increased by 1 for consistency with WAL, CAL, and P . Care
must be taken when using these functions to ensure that allowance is made for this adjustment.

The following script e4s808 calls the functions dwht and walshps to determine the coefficients of
the Walsh, SAL, CAL, and power sequency spectrum of the input data. The input data is based on the
weighted sum of WAL(63) and WAL(88) together with a random number selected from a normal or
Gaussian distribution with a mean of zero and a standard deviation 2. The details of this can be seen in
the script e4s808.m.

%e4s808.m
clear all, close all
clf

% WAL(63)=SAL(32) and WAL(88)=CAL(44)
P = [1 1 -1 -1]; P1 = [P P P P];

W63 = [P1 P1 P1 P1 P1 P1 P1 P1];
S = ones(1,1); L = ones(1,2);

R1 = [-S L -S S -L S -S L -S S -L L -L S -S L -S S -L S -S L -S];
W88 = [R1 R1 R1 R1];

y = 3*W63+4*W88+2*randn(size(W88));
n = length(y);

T = 4; dt = T/n; ds = 2/T;
t_rng = dt:dt:T;
dt_plt = dt/25;

t_plt = dt_plt:dt_plt:T;
s_cal = [0:(n/2-1)]*ds; s_pwr = s_cal;

s_sal = [0:(n/2)]*ds;
smax = n/T;

X = dwht(y,1);
[CC,CS,CP] = walshps(X);

figure(1), subplot(2,1,1), plot(t_rng,y,’k’)
xlabel(’time s’), ylabel(’x(t)’)

axis([0 T -15 15])
subplot(2,1,2), bar(s_pwr,CP,’k’)
xlabel(’Sequency z/s’), ylabel(’Power’)

axis([0 smax 0 3e5])
figure(2), subplot(2,1,1), bar(s_cal, CC,’k’)

xlabel(’Sequency z/s’), ylabel(’Coef of CAL’)
axis([0 smax -600 600])

subplot(2,1,2), bar(s_sal, CS,’k’)
xlabel(’Sequency z/s’), ylabel(’Coef of SAL’)

axis([0 smax -600 600])

Fig. 8.19 is generated by e4s808 and shows the data and the power spectrum plot. Since the ini-
tial data is generated from two Walsh functions, we are able, as might be expected, to identify these
components in the power spectrum. Fig. 8.20, also generated by e4s808 shows the DWT separated out
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FIGURE 8.19

Upper figure shows plot of time series. Lower figure
shows power sequency spectrum of the time series.

FIGURE 8.20

Plots show the coefficients of CAL and SAL sequency
spectrum for the time series shown in Fig. 8.19.

into the SAL and CAL components. It is seen that the SAL sequency spectrum has a significant com-
ponent of 16 z/s and the CAL sequency spectrum has a significant component of 22 z/s. The random
component in the data causes the small levels across the sequency spectra.

8.5 INTRODUCTION TO WAVELET ANALYSIS
When a signal arises from a non-linear or non-stationary system (meaning a system in which the
properties of the frequency components vary with time), the Fourier transform is not well suited as a
basis for analysis. This is because the Fourier transform and its variants such as the DFT are based on
the assumption that the spectrum of frequencies in the function or data to be analyzed remain constant
over the period of the analysis. If these properties are changing, then one option is to take a series of
DFT of the data over short time periods. For example, suppose we have 10 s of a sampled function
or signal. Then, if the frequency content is changing, it would seem better to take a sequence of ten
transforms, each of 1 s duration, rather than a single transform over the 10 s. However, Gabor (1946)
noted a limitation in the use of Fourier analysis. By reference to quantum mechanics, an analog of
the Heisenberg uncertainty principle may be developed, showing that resolution in time and frequency
cannot be arbitrarily small because

�t�f ≥ 1/(4π)

where �f is the frequency bandwidth and �t is sampling period or window.
From this inequality we can see that a good frequency resolution (that is a small frequency band-

width) may only be obtained if the sampling time period of the analysis is sufficiently long. In contrast,
if the analysis is over a short sampling time, then the time location is better, but the frequency band-
width will be greater and the frequency resolution poorer. This is a significant limitation on Fourier
analysis and it is this limitation that wavelet analysis can overcome. Wavelets have been used in many
fields where the signals are non-stationary; for example, in the analysis of earthquake, medical, atmo-
spheric, and oceanographic data.



414 CHAPTER 8 ANALYZING DATA USING DISCRETE TRANSFORMS

Both Fourier analysis and wavelet analysis use a combination of basic functions to represent the
data or functions to be analyzed. However, wavelets are oscillations of some form that begin and end
with zero and exist for a short period of time. Unlike Fourier analysis, there are many patterns of
oscillation that can be used as wavelets. The simplest is the Haar wavelet. However, the Daubechies
family of wavelets, the simplest of which is the Haar wavelet, are widely used. Other wavelets include
the Morlet, Shannon, difference of Gaussian (DOG), and the Ricker wavelets.

The early development of wavelets was based on the work of Haar in 1909, although the concept of
the wavelet did not exist at that time. The concept was proposed by the geophysicist Morlet in 1981 and
Morlet and Grossman invented the term wavelet in 1984. In the 1970s the work of Zweig produced the
continuous wavelet transformation. Important work on discrete wavelets was introduced by Stromberg
in 1983 and by Daubechies (1988) in relation to orthogonal wavelets.

A wavelet ψ(t) is chosen to make
∫ ∞

−∞
|ψ(t)|dt < ∞ and

∫ ∞

−∞
|ψ(t)|2 dt < ∞ (8.53)

This ensures that the wavelet can be formulated so that:
∫ ∞

−∞
ψ(t)dt = 0 and

∫ ∞

−∞
|ψ(t)|2 dt = 1 (8.54)

A wavelet ψa,b(t) can be expressed in terms of its mother wavelet ψ(t) as follows.

ψa,b(t) = 1√|a|ψ
(

t − b

a

)
a �= 0 (8.55)

where t is the variable representing time, b is a time shift and a is a dilation or scale factor. Thus for a
given scaling a the wavelet can be translated by b. The mother wavelet ψ(t) is the basic definition of a
particular wavelet and is the function with a = 1 and b = 0. When a �= 1 and b �= 0 the wavelet is often
referred to as a daughter wavelet.

The wavelet transform of x(t) is defined by

Wa,b =
∫ ∞

−∞
x(t)

1√|a|ψ
∗
(

t − b

a

)
dt (8.56)

where a and b are real and if ψ(t) is complex, then ψ∗(t) is its complex conjugate. Many wavelets
are real functions, so that ψ∗(t) = ψ(t). Note that the resulting wavelet transform is a function of two
variables. The factor (1/

√|a|) is a normalizing factor to ensure the energy is constant for all a and b.
Thus ∫ ∞

−∞
|ψa,b(x)|2d t =

∫ ∞

−∞
|ψ(x)|2 dt (8.57)

Wavelet transforms can take one of two basic forms, either discrete or continuous wavelet analysis,
respectively. When applied to sampled data, both the discrete and the continuous wavelets must be
sampled. The terms discrete or continuous refer to the dilation and shift parameters a and b. If these
parameters are allowed to take any values then the transform is a continuous wavelet transform (CWT)
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whereas if these parameters are restricted to a particular set of discrete values, then the transform is
a discrete wavelet transform (DWT). Note that abbreviation DWT is also used to denote the discrete
Walsh transform. The discrete Walsh transform is not a wavelet transform.

Discrete transforms are based on orthogonal wavelets such as those of Haar or Daubechies and the
transforms are non-redundant. Scales and shifts are imposed and consequently very fast algorithms
for the transform have been developed. Discrete wavelets are wide, but not exclusively, used in image
analysis and compression. Continuous transforms, such as those based on the Morlet or DOG wavelets
are widely used for data analysis because the scales and shifts can be freely chosen, but the transforms
are redundant and computationally expensive.

Initially we consider the discrete wavelet transform (DWT).

8.6 DISCRETE WAVELET TRANSFORMS
Consider (8.55). If we replace a by 2−j and b by 2−j k, where j = 0, 1, 2, ... and k = 0, 1, 2, ..., 2j −1
then (8.55) becomes

ψj,k(t) = 1

2−j/2
ψ

(
t − 2−j k

2−j

)
= 2j/2ψ(2j t − k)

Hence (8.56) becomes

Wj,k =
∫ ∞

−∞
x(t)2j/2ψ∗(2j t − k) dt

This is the discrete wavelet transform of x(t). If we assume that n equispaced samples, xi , of the
signal x(t) are taken of the signal over the period of interest, then

Wj,k =
n−1∑
i=0

xi2
j/2ψ∗(2j ti − k)

8.6.1 HAAR WAVELET
The Haar wavelet is the simplest example of a Discrete Wavelet. Haar wavelets are defined by

ψ(0, t) = 1 for 0 < t ≤ 1

ψ(1, t) =
{

1 for 0 ≤ t < 1
2

−1 for 1
2 ≤ t ≤ 1

ψ(2, t) =

⎧⎪⎪⎨
⎪⎪⎩

√
2 for 0 ≤ t < 1

4

−√
2 for 1

4 ≤ t < 1
2

0 for 1
2 ≤ t ≤ 1
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ψ(3, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ t < 1
2√

2 for 1
2 ≤ t < 3

4

−√
2 for 3

4 ≤ t ≤ 1

and, in general, for 2p + n ≥ 1,

ψ(2p + n, t) =

⎧⎪⎨
⎪⎩

√
2p for n/2p ≤ t < (n + 1

2 )/2p

−√
2p for (n + 1

2 )/2p ≤ t < (n + 1)/2p

0 elsewhere

(8.58)

for p = 0, 1, 2, ..., and n = 0, 1, 2, 4, ..., 2p − 1 and 0 ≤ t ≤ 1. Fig. 8.22 shows the first 8 Haar
wavelets.

An alternative notation for the Haar wavelet may be given in terms of ψj,k(t) thus

ψ(0, t) is a constant and is described as Level −1

ψ(1, t) = ψ0,0(t) ≡ Level 0

ψ(2, t) = ψ1,0(t) ≡ Level 1

ψ(3, t) = ψ1,1(t) ≡ Level 1

ψ(4, t) = ψ2,0(t) ≡ Level 2

ψ(5, t) = ψ2,1(t) ≡ Level 2

ψ(6, t) = ψ2,2(t) ≡ Level 2

ψ(7, t) = ψ2,3(t) ≡ Level 2

etc.

(8.59)

In addition to the values of the indices j and k, the Levels, as shown in Fig. 8.21, are given. The
constant term is designated Level −1 so that then the remaining levels are then equal to the index j .

The Haar wavelets form a complete set of orthogonal functions and it can be shown that

∫ T

0
ψ(i, t)ψ(j, t) dt =

{
0 for i �= j

T for i = j
(8.60)

or, for a set of n point discrete Haar wavelets,

n−1∑
k=0

ψ(i, k)ψ(j, k) =
{

0 i �= j

n i = j
(8.61)

The discrete Haar wavelet transform, Xk of xj is defined by

Xk =
n−1∑
j=0

xjψ(k, j), k = 0,1, ..., n − 1 (8.62)
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FIGURE 8.21

Diagram showing the partitioning of the time–frequency plane in the DWT.

FIGURE 8.22

The Haar wavelets in ascending order from ψ(0, t) to ψ(7, t) over the range 0 < t < 1.

In matrix notation this becomes

X = Hx (8.63)

In (8.63), H is an n × n orthogonal matrix, so that nH−1 = HT. Thus the inverse transform can be
derived from

x = (1/n)HTX (8.64)

The Haar wavelet also satisfies Parseval’s equation as follows

n−1∑
i=0

x2
i = (1/n)

n−1∑
k=0

X2
k (8.65)

Like the Fourier and Walsh transforms, a fast algorithm has been developed for the Haar trans-
form and the flow diagram for this algorithm is shown in Fig. 8.23. In fact, the fast Haar transform
is the fastest of all discrete transforms, requiring only 2(n − 1) additions or subtractions. All the
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FIGURE 8.23

Flow diagram for the fast Haar transform. Data carried by a dashed line entering a node is negated and added
to the data carried by the full line entering a node.

multiplications of the factors
√

2, 2, 2
√

2, etc., are delayed until the transform is complete, so only
n multiplications are required. Here we provide a MATLAB function fasthaar that determines the dis-
crete Haar wavelet transform, provided the number of data values is a power of 2. The function is based
on the fast transform algorithm but it is not optimized for maximum efficiency.

% z is the Haar transform of x
% x and z can be row or column vectors
function z = fasthaar(x)
n = length(x);
m = log2(n);
for k = 1:m

p = 2^(m-k);
y = x;
for j = 1:p

j2 = 2*j;
x(j) = y(j2-1)+y(j2);
x(p+j) = y(j2-1)-y(j2);

end
end
z = zeros(size(x));
z(1:2) = x(1:2);
cs = 2;
for k = 1:m-1

for j = 1:2^k
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cs = cs+1;
z(cs) = x(cs)*sqrt(2)^k;

end
end

Fig. 8.24 shows a signal x(t) decomposed into a constant value, Level −1, and 6 levels of Haar
wavelets, a total of 63 individual wavelets. For example, the plot of Level 2 comprises 4 individual
wavelets. When the separate levels are added together, as shown in Fig. 8.25, the original signal x(t) is
reconstructed. Thus the Haar wavelet transform, and other discrete wavelets, can decompose a sequence
of data and then, from the wavelet levels, the data can be reconstructed.

Because the wavelet transform is a function of both the indices j and k, it is helpful to plot a contour
plot showing the wavelet amplitude as a function of both time or shift and wavelet scale or level. This
is often called a scalogram. The MATLAB function waveletmap has been developed to generate a
scalogram from the Haar transform of a set of data.

function Cg = waveletmap(t_rng,X,option,cl,f1,f2)
% t_rng is a row vector of the time range,
% X is a row vector of Haar transform coefficients
% in sequency order
% option == 1 plots the log(magnitude) of the w’let coefficient
% option == 2 plots the magnitude of the wavelet coefficient
% option == 3 plots the magnitude^2 of the wavelet coefficient
% cl is the number of contours required in the contour plot
% f1 is the figure number given to the contour plot
% f2 is the figure number given to the surface plot
n = length(X);
Cg = zeros(log2(n)+1,n);
Cg(1,:) = X(1)*ones(1,n);
Cg(2,:) = X(2)*ones(1,n);
for m = 3:log2(n)+1

for k = 1:n/2^(log2(n)+2-m)
p = 2^(log2(n)+2-m);
Cg(m,1+p*(k-1):p*k) = X(2^(m-2)+k)*ones(1,p);

end
end
figure(f1)
if option == 1

contourf(t_rng, -1:log2(n)-1, log10(abs(Cg)),cl)
title([’Log(Magnitude) Scalogram. ’ num2str(cl) ’ Contours’])

elseif option == 2
contourf(t_rng, -1:log2(n)-1, (abs(Cg)),cl)
title([’Magnitude Scalogram. ’ num2str(cl) ’ Contours’])

else
contourf(t_rng, -1:log2(n)-1, Cg.^2,cl)
title([’Magnitude Squared Scalogram. ’ num2str(cl) ’ Contours’])
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FIGURE 8.24

Decomposition of x(t) into a constant term and 6
levels of Haar wavelets.

FIGURE 8.25

Reconstruction of x(t) from its Haar wavelet
components. Adding the constant term (Level −1)
and all the Haar wavelets from Level 0 to Level 5
together provides and exact reconstruction x(t).

end
colormap gray, colorbar
shading interp
ylabel(’Level’), xlabel(’Time’)
figure(f2)
if option == 1

surfl(t_rng, -1:log2(n)-1, log10(abs(Cg))), zlabel(’log(Amplitude)’)
elseif option == 2

surfl(t_rng, -1:log2(n)-1, (abs(Cg))), zlabel(’Amplitude’)
else

surfl(t_rng, -1:log2(n)-1, Cg.^2), zlabel(’Amplitude^2’)
end
ylabel(’Level’), xlabel(’time’)
shading interp
end

To illustrate the use of the Haar wavelet we examine three cases. In each case 2048 samples of
the signal are taken over the period T = 25.6 s. Level 0 comprises a single Haar wavelet and thus its
period is 25.6 s and the corresponding frequency of a harmonic wave is 1/25.6 = 0.0390625 Hz. At
Level 1 there are two Haar wavelets in 25.6 s and hence the period is halved to 25.6/2 = 12.8 s and
the frequency doubles to 0.07812 Hz. Thus at Level L the period is T/2L and the frequency is 2L/T .
Since the Haar wavelet require a minimum two data samples to define it, the minimum period is 2T/N

and thus the maximum frequency is N/(2T ) = 2048/(2 × 25.6) = 40 Hz. From this we can deduce
that the maximum Level is log2(N) − 1 = 10. Table 8.2 gives the periods and equivalent frequencies
for this analysis.
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Table 8.2 Period and frequency at
the DWT levels

Level Period, s Frequency, Hz
−1 Constant value
0 25.60 0.0390625
1 12.80 0.0781250
2 6.40 0.15625
3 3.20 0.3125
4 1.60 0.6250
5 0.80 1.25
6 0.40 2.5
7 0.20 5.00
8 0.10 10.00
9 0.05 20.00
10 0.025 40.00

Example 8.6. A signal defined by (8.66) comprises a square wave of period 0.8 s, together with two
further square wave components of periods 0.1 s and 3.2 s that only exist from 3 to 11.2 s and from
12.8 to 22.4 s respectively. Letting sqr(Tp, t) denote a unit amplitude square wave with a period of Tp

the signal is defined by (8.66) thus,

x1(t) = 20 sqr(0.1, t) where 3 <= t <= 11.2

x2(t) = 4 sqr(3.2, t) where 12.8 <= t <= 22.4

x3(t) = 10 sqr(0.80, t)

x(t) = x1(t) + x2(t) + x3(t)

(8.66)

Fig. 8.26 shows the scalogram for this signal. The three square wave components in the signal are
clearly seen. Of course, since the signal comprises three square waves, a Haar wavelet is an ideal base
for this transform. The scalogram clearly shows components at levels 3, 5, and 8 and the components
in the signal begin and end as expected. In fact, the periods of the components in the signal exactly
coincide with the periods given by the levels 3, 5, and 8 and the components in the signal begin and
end at the boundary between two wavelets.

Example 8.7. Eq. (8.67) defines a signal that comprises a sine wave of frequency 1.25 Hz, together
with two further sine wave components of frequencies of 10 Hz and 0.3125 Hz that only exist 3 to
11.2 s and 12.8 to 22.4 s respectively. Normally distributed random noise with a standard deviation of
2 is also added.

x1(t) = 20 sin(2π10t) where 3 <= t <= 11.2

x2(t) = 4 sin(2π0.3125t) where 12.8 <= t <= 22.4

x3(t) = 10 sin(2π1.25t)

x(t) = x1(t) + x2(t) + x3(t) + random noise

(8.67)
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FIGURE 8.26

Contour plot of DWT of signal defined by (8.66), a composition of square waves. Responses can be clearly
seen at levels 5, 3, and 8.

The script e4s809.m implements this equation and calls the fasthaar and waveletmap to generate
the scalogram for this problem.

% e4s809.m

clear all, close all

n = 2048; T = 25.6;

dt = T/n; nn = 1:n;

t_rng = dt:dt:T;

% Sine waves plus noise

k = 0;

for t = t_rng

k = k+1;

x1(k) = 20*sin(2*pi*10*t)*(t>=3. & t<=11.2);

x2(k) = 4*sin(2*pi*0.3125*t)*(t>=12.8 & t<=22.4);

x3(k) = 10*sin(2*pi*1.25*t);

end

x = x1+x2+x3 + 2*randn(size(x1));

X = fasthaar(x);

Cg = waveletmap(t_rng,X,1,30,1,2);

In Fig. 8.27 the three sine wave components in the signal can be seen at levels 3, 5, and 8. The frequen-
cies of the components exactly coincide with the level frequencies and the components begin and end
at the boundary between two wavelets. However, there is a lot of background noise, in contrast to the
uncluttered response in Fig. 8.26.
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FIGURE 8.27

Contour plot of DWT of signal defined by (8.67), a composition of sine waves. Responses can be observed at
levels 5, 3, and 8.

Example 8.8. A signal defined by (8.68) comprises five bursts of energy. Each burst occurs at different
instants of time, at a different frequency and at different exponential decay rates. The signal mean value
is zero.

x1(t) = 8 exp(−0.10(t − 3.2)) sin(2π1.25(t − 3.2)) where t >= 3.2

x2(t) = 14 exp(−0.18(t − 6.4)) sin(2π10(t − 6.4)) where t >= 6.4

x3(t) = 9 exp(−0.07(t − 11.2)) sin(2π5(t − 11.2)) where t >= 11.2

x4(t) = 20 exp(−0.07(t − 17.6)) sin(2π20(t − 17.6)) where t >= 17.6

x5(t) = 7 exp(−0.30(t − 19.2)) sin(2π0.3125(t − 19.2)) where t >= 19.2

x(t) = x1(t) + x2(t) + x3(t) + x4(t) + x5(t)

x(t) = x(t) − mean (x(t))

(8.68)

Fig. 8.28 shows the scalogram for this signal. The bursts of energy can be seen at level 5 beginning
at t = 3.2 s, at level 8 beginning at t = 6.4 s, at level 7 beginning at t = 11.2 s, at level 9 beginning
at t = 17.6 s and at level 3 beginning at t = 19.2 s. However, whilst these bursts of energy can be
recognized in the scalogram, there are other areas in the scalogram could give the user misleading
results. For example, there is a spurious high level of wavelet for T < 3 s from Level 2 to 10.

8.6.2 DAUBECHIES WAVELETS
The Haar wavelet is of limited effectiveness in a DWT. It obviously works well for signals comprising
predominantly square waves but, as we have seen, does not give clear information when processing
more general harmonic waves. Daubechies invented what are called compactly supported orthonormal
wavelets and their shape has made discrete wavelet analysis attractive and practicable. The Daubechies
wavelets cannot be expressed in a closed form. Essentially, a scaling function is derived by iterating
an equation with 2N coefficients, and from this scaling function the wavelet function can be derived,
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FIGURE 8.28

Contour plot of DWT of signal comprising bursts of exponentially decaying components, (8.68). Response at
levels 5 (at t = 3.2), 8 (at t = 6.4), 7 (at t = 11.2), 9 (at t = 17.6), and 3 (at t = 19.2) can be observed.

FIGURE 8.29

Plots of the wavelets db2, db4, db8, and db16.

again with 2N coefficients. The coefficients have been determined and tabulated for N = 1 to N = 45.
The names of the Daubechies family wavelets are written dbN, where N is the order of the wavelet.
The order is the number of vanishing moments for the particular Daubechies wavelet. A wavelet has
N vanishing moments if

∫ ∞

−∞
tkψ(t) dt = 0 for 0 ≤ k < N

The Daubechies wavelets are orthogonal, biorthogonal, but they are not symmetrical. The compact
support, that is the range over which they are non-zero is [0, 2N − 1]. Daubechies wavelet are widely
used in the DWT but also in the CWT. Fig. 8.29 shows the Daubechies wavelets db2, 4, 8, and 16.
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The Haar wavelet is, in fact, a member of the Daubechies family. The Haar wavelet is the 1st-order
Daubechies wavelet; that is db1. Since N = 1 the compact support is over the range [0, 1], and the
only moment equation satisfied is ∫ ∞

−∞
ψ(t) dt = 0

8.7 CONTINUOUS WAVELET TRANSFORMS
A wavelet is defined in (8.55) and is repeated here

ψa,b(t) = 1√|a|ψ
(

t − b

a

)
a �= 0

where t is the variable representing time, b is a time shift and a is a dilation or scale factor. Thus for a
given scaling a the wavelet can be translated by b.

The wavelet transform of x(t) is defined by

Wa,b =
∫ ∞

−∞
x(t)

1√|a|ψ
∗
(

t − b

a

)
dt

where ψ(t) is the analyzing (continuous) wavelet. In contrast to the discrete wavelet transform, the
continuous wavelet transform permits the shift, a, and the dilation, b, to be infinitely variable. Thus,
“continuous” refers to the variation of a and b, rather than the transform itself. When analyzing sampled
or discrete data, both the continuous and discrete transforms are discrete. In the continuous wavelet the
number of scales between each doubling of frequency, or octave, is referred to as the number of voices
per octave.

To develop a continuous wavelet transform a specific wavelet function must be chosen. Here we
consider a Morlet wavelet, a commonly used wavelet function. There is some flexibility in its definition
and here we give the version that is used by the functions in the MATLAB Wavelet toolbox.

ψ(t) = ej5t e−t2/2 (8.69)

Other definitions of this wavelet use a marginally different factor in the complex exponential term
and also scale the function by dividing by π1/4. This wavelet is complex and can be separated into its
real and imaginary components thus:

real(ψ(t)) = cos(5t)e−t2/2

imag(ψ(t)) = sin(5t)e−t2/2
(8.70)

This mother wavelet may be shifted by b and dilated by a to give

real(ψa,b(t)) = (1/
√

a) cos(5(t − b)/a)e−((t−b)/a)2/2

imag(ψa,b(t)) = (1/
√

a) sin(5(t − b)/a)e−((t−b)/a)2/2
(8.71)
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FIGURE 8.30

Plots of the real and imaginary parts of the Morlet wavelet. The mother wavelet in the middle of the plot with
a = 1 and b = 0, that is, the wavelet is neither dilated nor shifted. The wavelet at the right of the plot is the
wavelet shifted by b = 7 but it is not dilated. The wavelet at the left of the plot is both shifted by b = −7 and
dilated by a = 1/4.

The frequency of this wavelet appears to be 5/a rad/s or 5/(2πa) = 0.7958/a Hz. However, a sine
or cosine wave of this frequency only fits the Morlet wave over a short time span when t tends to b. An
approximate frequency fit over a wider range is when frequency is equal to 0.8125/a. This is called
the center frequency. The wavelet is not orthogonal, nor is it bi-orthogonal.

Three Morlet wavelets are shown in Fig. 8.30. In the center is the mother wavelet, neither dilated
nor shifted. The wavelet at the right of the plot is shifted by 7 time units but not dilated. The wavelet at
the left is shifted by −7 time units and also dilated by 1/4.

From Fig. 8.30 we notice the wavelet develops and then dies out roughly in the window given
approximately by the interval [−4 4]. This an important requirement of wavelet functions that their
nature is transient.

Beside the Morlet wavelet, there are many other wavelet functions which are used and here we pro-
vide a description of the Ricker or Mexican Hat wavelet. This wavelet is very similar to the difference
of Gaussian (DOG) wavelet function. The Ricker wavelet is a real function and the mother wavelet is
defined by

ψ(t) = 2

π1/4
√

3
(1 − t2) exp

(
− t2

2

)

This mother wavelet can be dilated and shifted thus

ψa,b(t) = 2

π1/4
√

3a

(
1 − (t − b)2

a2

)
exp

(
− (t − b)2

2a2

)

Fig. 8.31 shows the Ricker wavelet.
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FIGURE 8.31

Ricker wavelet.

We do not provide MATLAB scripts or functions to generate a CWT scalogram, but merely
provide examples. In the following CWT scalograms, the complex Morlet wavelet is used with
10 voices/octave. The frequencies are related to the levels by f = 2L where f is the frequency (Hz)
and L is the scalogram level.

We now consider two examples. In each case there are 2048 sample points, over a time period of
25.6 s.

Example 8.9. This problem is similar to Example 8.8 except that the frequencies of the bursts of
energy have been changes to 1, 16, 4, 32, and 0.25 Hz, corresponding to Levels 0, 4, 2, 5, and −2
respectively. These values have been chosen to make it easy to locate on scalogram the energy bursts.

x1(t) = 24 exp(−0.10(t − 3.2)) sin(2π1(t − 3.2)) where t >= 3.2

x2(t) = 14 exp(−0.18(t − 6.4)) sin(2π16(t − 6.4)) where t >= 6.4

x3(t) = 9 exp(−0.07(t − 11.2)) sin(2π4(t − 11.2)) where t >= 11.2

x4(t) = 20 exp(−0.07(t − 17.6)) sin(2π32(t − 17.6)) where t >= 17.6

x5(t) = 40 exp(−0.30(t − 19.2)) sin(2π0.25(t − 19.2)) where t >= 19.2

x(t) = x1(t) + x2(t) + x3(t) + x4(t) + x5(t)

x(t) = x(t) − mean (x(t))

(8.72)
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FIGURE 8.32

Contour plot of the CWT of the signal defined by
(8.72). Note that the frequency (Hz) = 2L where L is
the level. The burst of energy can be seen at
levels −2, 0, 2, 4, and 5, thus corresponding to
frequencies of 0.25, 1, 4, 16, and 32 Hz, respectively.

FIGURE 8.33

Contour plot of the CWT for Eq. (8.73). Note that the
frequency (Hz) = 2L where L is the level. It is seen
that one component of the signal clearly increases
smoothly over the sampling time.

Fig. 8.32 shows the scalogram for this problem. The energy bursts can easily be located in time and
level, and hence frequency. Also shown on this figure, and also on Fig. 8.33 is a dashed line which is
the cone of influence. Outside this line is the region of the wavelet scalogram in which edge effects
become important and the scalogram is less accurate.

Example 8.10. Eq. (8.73) defines a signal that comprises a sine wave that varies in frequency according
to f (t) = (25.5 + 22.5 tanh((t − 12.8)/4)))/(2π). Hence, when t = 0, f (0) = (25.5 − 22.5)/(2π) =
0.48 Hz. When t = 25.6, f (25.6) = (25.5 + 22.5)/(2π) = 7.64 Hz. These two frequencies equate to
Levels −1.07 and 2.93 respectively. Additionally the signal has two further sine wave components of
frequencies of 16 Hz and 1 Hz that only exist in the intervals 3 to 11.2 s and 12.8 to 22.4 s respectively.
Also added is normally distributed random noise with a standard deviation of 4.

x1(t) = 20 sin(2π16t) where 3 <= t <= 11.2

x2(t) = 10 sin(2πt) where 12.8 <= t <= 22.4

x3(t) = 10 sin
[
25.5t + 90 log(cosh(t/4 − 3.2))

] ;
x = x1 + x2 + x3 + random noise

(8.73)

Fig. 8.33 clearly shows that one component of x(t) varies smoothly from a lower to a higher frequency.

Wavelet analysis has found wide applications in many fields, including geophysics, medicine, and
engineering; see for example Yan et al. (2014), Unser and Aldroubi (1996), Addison (2005), and Kumar
and Foufoula-Georgiou (1997).
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8.8 SUMMARY
For periodic data, we have examined the use of fast Fourier transform and the Walsh transform. For
non-stationary systems, we have used the Hilbert transform and both discrete and continuous wavelet
transforms.

Note: For readers who a have particular interest in applying MATLAB to data analysis using discrete
transforms, MATLAB provides a Signal Processing Toolbox and a Wavelet Toolbox.

8.9 PROBLEMS
8.1. Determine the real and imaginary parts of the DFT, using the MATLAB function fft, for the

following periodic data where the 32 data points are sampled at intervals of 0.1 second. Examine
the amplitude and frequency of its components. What conclusions can you draw from these
results?

y = [2 −0.404 0.2346 2.6687 −1.4142 −1.0973 0.8478 −2.37 0
2.37 −0.8478 1.0973 1.4142 −2.6687 −0.2346 0.404 −2
1.8182 1.7654 −1.2545 1.4142 −0.3169 −2.8478 0.9558
0 −0.9558 2.8478 0.3169 −1.4142 1.2545 −1.7654 −1.8182]

8.2. Determine the DFT of y = 32 sin5(2πf t) where f = 30 Hz. Use 512 points sampled over 1 sec-
ond. From the imaginary part of the DFT estimate the coefficients a0, a1, a2 in the relationship

32 sin5(2πf t) = a0 sin[2πf t] + a1 sin[2π(3f )t] + a2 sin[2π(5f )t]
Repeat the process for y = 32 sin6(2πf t) where f = 30 Hz. Use 512 points sampled over 1 sec-
ond. From the real part of the DFT, estimate the coefficients b0, b1, b2, b3 in the relationship

32 sin6(2πf t) = b0 + b1 cos[2π(2f )t] + b2 cos[2π(4f )t] + b3 cos[2π(6f )t]
8.3. Determine the DFT of a set of 512 data points sampled over a 1 second period from

y = sin(2πf1t) + 2 sin(2πf2t)

where f1 = 30 Hz and f2 = 400 Hz. Explain why there is a large component in the spectrum at
112 Hz.

8.4. Determine the DFT of a set of 256 data points sampled over 1 second from y(t) = sin(2πf t)

for f = 25, 30.27, and 35.49 Hz. Plot the absolute value of the DFT against frequency for
all three values of f in the same figure. It will be noted that even though the amplitude of
the sine function from which the samples are taken is the same in each case, the frequency
components corresponding to f have different amplitudes. This is because, in the case of the
30.27 Hz and 35.49 Hz wave the sampling is not over an integer number of periods of y. This
phenomenon is known as “spectral leakage” and part of the pure sine wave seems to have leaked
into adjacent frequencies. Its effect may be reduced by applying a “window” to the data. The
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Hanning window is w(t) = 0.5{1 − cos(2πt/T )} where T is the sampling period. Multiply y(t)

by w(t) and determine the DFT of the resulting data. Plot the absolute value of this DFT against
frequency for all three values of f in the same figure. It will be seen that the amplitude variation
of the frequency components corresponding to f and the smearing into other frequencies has
been reduced significantly.

8.5. The following 32 data points are sampled over a period of 0.0625 second.

y = [0 0.9094 0.4251 −0.6030 −0.6567 0.2247 0.6840 0.1217 ...

−0.5462 −0.3626 0.3120 0.4655 −0.0575 −0.4373 −0.1537 ...

0.3137 0.2822 −0.1446 −0.3164 −0.0204 0.2694 0.1439 −0.1702 ...

−0.2065 0.0536 0.2071 0.0496 −0.1594 −0.1182 0.0853 ...

0.1441 −0.0078]
(a) Determine the DFT and estimate the frequency of the most significant component present in
the data. What is the frequency increment in the DFT?
(b) To the end of the existing data, add an additional 480 zero values, thus increasing the number
of data points to 512. This process is called “zero padding” and is used to improve the frequency
resolution in the DFT. Determine the DFT of the new data set and estimate the frequency of the
most significant component. What is the frequency increment in the DFT?

8.6. The following function is sampled at intervals of 0.01 second over a period of 10.24 seconds.

y(t) = 3 sin(2π4t) for t < 3 (8.74)

4 sin(2π7t) for 3 ≤ t ≤ 6 (8.75)

6 sin(2π5t) for t > 6 (8.76)

Use fhilb to determine the Hilbert transform for the data. Then, using (8.34), (8.35), and (8.36),
write some appropriate MATLAB code to determine the instantaneous frequencies. Plot these
frequencies against time.

8.7. Determine the 32 point Walsh transform, and the SAL, CAL, and power spectrum for the fol-
lowing data, generated from the MATLAB statements given. The data is sampled over a period
of 8 seconds. For each case determine the predominant sequency of the data. Is the data based
on an even (CAL) or odd (SAL) function?
a. Generate the data from

p = [1 1 -1 -1];
x = [ p p p p p p p p];

b. Generate the data from

p = [1 1 -1 -1];
x = [1 -1 -1 p p p p p p p 1];

8.8. Consider the function

y(t) = 0.2 cos(2πf 1t) + 0.35 sin(2πf 2t) + 0.3 sin(2πf 3t)

where f1 = 20 Hz, f2 = 50 Hz, and f3 = 70 Hz. 512 equispaced samples of the function are
taken over 2 seconds. Determine the Walsh power spectrum of the data. The function is closely
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related to the function of Example 8.2. How does the Walsh power spectrum compare with the
Fourier power spectrum, shown in Fig. 8.6?
Repeat the above analysis for the function:

y(t) = 0.2sign(cos(2πf 1t)) + 0.35sign(sin(2πf 2t)) + 0.3sign(sin(2πf 3t))

and again compare the Walsh and Fourier power spectra.
8.9. Determine the 64 point Haar transform for the following sets of data, using the function

fasthaar. Then, from the Haar transform data, generate a wavelet map, using the function
waveletmap. The data is sample over a period of 5.12 seconds.
a. Generate the data from

p = [1 1 1 1 -1 -1 -1 -1];
x = [p p p p p p p p];
x = x+0.5*ones(size(x))+0.01*randn(size(x));

b. Generate the data from

p = [1 1 1 1 -1 -1 -1 -1];
p1 = [1 1 -1 -1];
x = [p p p1 p1 p1 p1 p p p p];

c. Generate the data from

p = [1 1 1 1 1 -1 -1 -1 -1 -1];
x = [p p p p p p p p];

For each case, what components do you see in the data?
8.10. MATLAB has available test data sets including data collected for the sunspot activity. This may

be obtained using the MATLAB statement

load sunspot.dat

The set of data sunspot(:,1) gives the year of the observed sunspot activity and sunspot(:,2),
the Wolfer number which indicates the level of sunspot activity for that year. Let
wolfer = sunspot(:,2). Generate a simple plot of the wolfer number against the year. To
further analyze this data take the fast Fourier transform of the variable wolfer. Scaling this data
will help in its interpretation. Do this by using the transformations Power=abs(Y(1:N/2)).^2
and freq=(1:N/2)/N where N is the length of the vector Y. Plot freq against power.
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CHAPTER

OPTIMIZATION METHODS

Abstract

The purpose of this chapter is to bring together a selection of algorithms for optimizing linear and non-
linear functions which have applications in science and engineering. We describe methods to solve
constrained linear optimization problems and both constrained and unconstrained non-linear optimiza-
tion problems.

9.1 INTRODUCTION
The major types of optimization problems considered in this chapter are:

1. the solution of linear programming problems by both exterior and interior point methods;
2. the optimization of single-variable non-linear functions;
3. the solution of multi-variable non-linear optimization problems using conjugate gradient methods,

simulated annealing, and evolutionary algorithms;
4. solution of systems of linear equations using conjugate gradient methods;
5. the solution of constrained non-linear optimization problems using the Sequential Unconstrained

Minimization Technique (SUMT)

It is not our intention to describe fully the theoretical basis for these methods but to give some indication
of the ideas that lie behind them. We begin with a discussion of linear programming problems.

9.2 LINEAR PROGRAMMING PROBLEMS
Linear programming (LP) is normally considered to be an operational research (OR) method and has a
very wide range of applications. In this context the word programming has nothing to do with computer
programming. An early application of LP, in World War 2, was to military problems and programming
was a military term. The simplex method for solving linear programming problems was published by
Dantzig in 1947.

A detailed description of the problem and associated theory is beyond the scope of this text but this
information can be obtained from Dantzig (1963) and Sultan (1993). The problem may be expressed
in standard form as

Minimize f = cTx

subject to Ax = b (9.1)

and x ≥ 0

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00018-X
Copyright © 2019 Elsevier Inc. All rights reserved.
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where x is the column vector of n components that we wish to determine. The function to be minimized
is called the objective function and the remaining equations are the constraint equations. Note that each
element of x is constrained to be greater than or equal to zero. This is a common requirement in this
type of optimization because most practical optimization problems will require non-negative values
for x. For example, if each element of x is the numbers of workers with a particular skill set employed
by an organization, the number of workers in any group cannot be negative. The given constants of the
system are provided by an m component column vector b, an m × n matrix A, and an n component
column vector c. Clearly all the constraints and the function we wish to minimize are linear in form.

The optimization problem is sometimes of the form

Minimize f = cTx

subject to Ax ≥ b (9.2)

and x ≥ 0

If the problem, called the primal problem, is posed in the form of (9.2), then it has a dual problem
of the form

Maximize g = bTy

subject to ATy ≤ c (9.3)

and y ≥ 0

The problems described by (9.2) and (9.3) are a pair in the sense that whichever is the primal
problem, the other problem is its dual. It is also important to note that a minimization problem can
be converted to a maximization problem by multiplying the objective function by −1 and vice versa.
Also any constraint equation can be converted from a greater or equal relationship to a less than or
equal relationship by multiplying the equation by −1 and vice versa. The problems defined by (9.2)
can be converted to the standard form (9.1) by adding extra positive-valued variables, called surplus
variables, to the problem and subtracting them from the equations of constraint. Similarly, problem
(9.3) can be converted to the standard form by adding extra positive variables, called slack variables,
to the problem and adding them to the equations of constraint.

The importance of this type of problem lies in the fact that it corresponds to the general aim of
optimizing the use of scarce resources to meet a specific objective. Some practical examples where
linear programming has been applied are:

1. the hospital diet problem, requiring food costs to be minimized while dietary constraints are satis-
fied;

2. the problem of minimizing cutting pattern loss;
3. the problem of optimizing profit subject to constraints on the availability of specified materials;
4. the problem of optimizing the routing of telephone call.

An important numerical algorithm for solving this problem is called the simplex method; see Dantzig
(1963). This was applied to wartime problems of troop and material distribution. However, here we
consider more recent developments which have provided new algorithms which are theoretically better.
These are based on the work of Karmarkar (1984) who produced an algorithm which differed greatly in



9.2 LINEAR PROGRAMMING PROBLEMS 435

principle from the simplex method of Dantzig. While the theoretical complexity of Dantzig’s method
is exponential in the number of variables of the problem, some versions of Karmarkar’s algorithm have
a complexity which is of the order of the cube of the number of variables. It has been reported that for
some problems this leads to substantial saving of computational effort. Here we describe an algorithm
due to Barnes (1986) that provides an elegant modification of Karmarkar’s algorithm but preserves its
fundamental principles.

We do not describe the theoretical details of these complex algorithms but it is useful to compare,
in broad terms, the nature of the Karmarkar and Dantzig algorithms. The application of the simplex
method of Dantzig is best illustrated by considering a simple linear programming problem as follows.
In a factory producing electronic components, let x1 be the number of batches of resistors and x2 the
number of batches of capacitors produced. Each batch of resistors manufactured gains 7 units of profit
and each batch of capacitors gains 13 units of profit. Each is manufactured in a two-stage process.
Stage 1 is limited to 18 units of time per week and stage 2 is limited to 54 units of time per week.
A batch of resistors requires 1 unit of time in stage 1 and 5 units of time in stage 2. A batch of capac-
itors requires 3 units of time in the first stage and 6 in the second. The aim of the manufacturer is to
maximize profitability while meeting the time constraints; this leads to the following linear program-
ming problem.

Maximize z = 7x1 + 13x2 (where z is the profit)

subject to

x1 + 3x2 ≤ 18 (stage 1 process)

5x1 + 6x2 ≤ 54 (stage 2 process)

and x1, x2 ≥ 0

To see how the simplex algorithm works we give a geometric interpretation of this problem in Fig. 9.1.
In this figure the region lying under the shaded lines and confined by the x1- and x2-axes represents
the feasible region. This is the region in which all possible solutions to the problem lie. Clearly there
is an infinity of such points. Fortunately, it can be shown that the only true candidates for the optimum
solution are the points that lie at the vertices of the feasible region. In fact, we can find this optimum
using simple geometric principles. The objective function is represented in Fig. 9.1 by the dashed line
of constant slope and variable intercept proportional to the value of the objective function. If we move
this line parallel to itself until it just leaves the feasible region, it leaves at the vertex which gives the
maximum value of the objective function. Clearly, beyond this point the values of x1 and x2 no longer
satisfy the constraints. For this problem the optimum solution is given by x1 = 6, x2 = 4 so that the
profit z = 94.

Although this provides a solution for this simple two-variable problem, linear programming prob-
lems often involve thousands or hundreds of thousands of variables. For practical problems a well-
specified numerical algorithm is required. This is provided by Dantzig’s simplex algorithm. We do not
describe this in detail here but the general principle of its operation is to generate a sequence of points
which correspond mathematically to the vertices of the multidimensional feasible region. The algo-
rithm proceeds from one vertex to another, each time improving the value of the objective function,
until the optimum is found. These points are all on the surface of the feasible region and for larger
problems there may be a huge number of them.
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FIGURE 9.1

Graphical representation of an optimization problem. The dashed line represents the objective function and
the solid lines represent the constraints.

The algorithm proposed by Karmarkar deals with the linear programming problem in a different
way. The algorithm was developed at AT&T to solve very large linear programming problems con-
cerned with routing telephone calls in the Pacific Basin. This algorithm transforms the problem to a
more convenient form and then searches through the interior of the feasible region using a good di-
rection of search toward its surface. Because this type of algorithm uses interior points, it is often
described as an interior point method. Since its discovery, many improvements and modifications have
been made to this algorithm and here we describe a form which, although conceptually complex, leads
to a remarkably simple and elegant linear programming algorithm. This formulation was given by
Barnes (1986).

The Barnes algorithm may be applied to any linear programming problem once it is converted to
the form of (9.1). However, one important initial modification is required to ensure the algorithm starts
at an interior point x0 > 0. This modification is achieved by introducing an additional column, that
is a new last column, to the A matrix, the elements of which are the b vector minus the sum of the
columns of the A matrix. We associate an additional variable with this additional column and, to avoid
a superfluous variable in the solution, we introduce an extra element in the vector c. We make the value
of this element very large to ensure that the new variable is driven to zero when the optimum is reached.
Now we find that x0 = [1 1 1... 1]T satisfies this set of constraints and clearly x0 ≥ 0. We now describe
the Barnes algorithm:

• Step 0: Assuming n variables in the original problem,

Set a (i, n + 1) = b (i) −
∑
j

a (i, j) and c (n + 1) = 10,000.

x0 = [1 1 1 ... 1], k = 0.

• Step 1: Set Dk = diag(xk) and compute an improved point using the equation

xk+1 = xk − s(Dk)2(c − ATλk)

norm(Dk(c − ATλk))
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where the vector λk is given by

λk = (A(Dk)2AT)−1A(Dk)2c

The step s is chosen such that

s = min

⎧⎨
⎩

norm
((

Dk
)(

c − ATλk
))

xk
j

(
cj − AT

j λ
k
)

⎫⎬
⎭ − α

where Aj is the j th column of the matrix A and α is a small preset constant value. Here the minimum
is taken for the values (

cj − AT
j λ

k
)

> 0 only.

Note also that λk provides an approximation for the solution of the dual problem (see for example,
Problems 9.1 and 9.2).

• Step 2: Stop if the primal and dual values of the objective functions are approximately equal. Else
set k = k + 1 and repeat from step 1.

Note that in step 2 we use an important result in linear programming. This is that if a solution exists,
every primal problem (that is, the original problem) and its corresponding dual problem have equal
optimal values of their objective functions. There are several other termination criteria that could be
used and Barnes suggested a more complex but more reliable one.

The algorithm provides an iterative improvement starting from the initial point x0 by taking the
maximum step which ensures that xk > 0 in the normalized direction given by (Dk)2(c − ATλk). It
is this direction which is the crucial element of the algorithm. This direction is a projection of the
objective function coefficients into the constraint space. For a proof that this direction reduces the
objective function, while ensuring the constraints are satisfied, the reader is referred to Barnes (1986).

The reader should be warned that this algorithm is deceptively simple. In fact the computation of
the direction is very difficult for large problems. This is because the algorithm requires the solution of
an extremely ill-conditioned equation system. Many alternatives have been suggested for finding the
direction of search, including the use of a conjugate gradient method that is discussed in Section 9.6.
The MATLAB function barnes provided here solves the ill-conditioned equation system in a direct
manner using the MATLAB \ operator. The function barnes is easily modified to use the conjugate
gradient solver given in Section 9.6.

function [xsol,basic,objective] = barnes(A,b,c,tol)
% Barnes’ method for solving a linear programming problem.
% to minimize c’x subject to Ax = b.Assumes problem is non-degenerate.
% Example call: [xsol,basic]=barnes(A,b,c,tol)
% A is the matrix of coefficients of the constraints.
% b is the right side column vector and c is the row vector of
% cost coefficients. xsol is the solution vector, basic is the
% list of basic variables.
x2 = [ ]; x = [ ];
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[m n] = size(A);
% Set up initial problem
aplus1 = b-sum(A(1:m,:)’)’;
cplus1 = 1000000;
A = [A aplus1]; c = [c cplus1]; B = [ ];
n = n+1;
x0 = ones(1,n)’; x = x0;
alpha = .0001; lambda = zeros(1,m)’;
iter = 0;
% Main step
while abs(c*x-lambda’*b)>tol

x2 = x.*x;
D = diag(x); D2 = diag(x2); AD2 = A*D2;
lambda = (AD2*A’)\(AD2*c’);
dualres = c’-A’*lambda;
normres = norm(D*dualres);
for i = 1:n

if dualres(i)>0
ratio(i) = normres/(x(i)*(c(i)-A(:,i)’*lambda));

else
ratio(i)=inf;

end
end
R = min(ratio)-alpha;
x1 = x-R*D2*dualres/normres;
x = x1;
basiscount = 0;
B = [ ]; basic = [ ];
cb = [ ];
for k = 1:n

if x(k)>tol
basiscount = basiscount+1;
basic = [basic k];

end
end
% Only used if problem non-degenerate
if basiscount==m

for k = basic
B = [B A(:,k)]; cb = [cb c(k)];

end
primalsol = b’/B’;
xsol = primalsol;
break

end
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iter = iter+1;
end
objective = c*x;

We now solve the linear programming problem

Maximize z = 2x1 + x2 + 4x3

subject to

x1 + x2 + x3 ≤ 7

x1 + 2x2 + 3x3 ≤ 12

x1, x2, x3 ≥ 0

The requirement that x1, x2, x3 ≥ 0 are called the non-negativity constraints. This linear programming
problem can be easily transformed to the standard form by adding new positive-valued variables, called
slack variables, to the left sides of the inequalities and changing the signs of the coefficients in the
objective function so that it is converted to a minimization problem subject to equality constraints thus:

Minimize p = −z = −(2x1 + x2 + 4x3)

subject to

x1 + x2 + x3 + x4 = 7

x1 + 2x2 + 3x3 + x5 = 12

x1, x2, x3, x4, x5 ≥ 0

The variables x4 and x5 are the slack variables and they represent the difference between the available
resources and the resources used. Note that if the constraints were of the form greater than or equal to
zero, then we would subtract the surplus variables to produce equality. Thus, we have

c = [ −2 −1 −4 0 0
]

Note that c now has 5 elements. We use the script e4s901.m to solve this problem.

% e4s901.m
c = [-2 -1 -4 0 0];
A = [1 1 1 1 0;1 2 3 0 1 ]; b = [7 12]’;
[xsol,ind,object] = barnes(A,b,c,0.00005);
fprintf(’objective = %8.4f’, object)
i = 1;
fprintf(’\nSolution is:’);
for j = ind

fprintf(’\nx(%1.0f) =%8.4f’,j,xsol(i))
i = i+1;

end;
fprintf(’\nAll other variables are zero\n’)

Running script e4s901.m provides the result
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objective = -19.0000
Solution is:
x(1) = 4.5000
x(3) = 2.5000
All other variables are zero

Since the original problem was to maximize the objective function, its value is 19. This solution illus-
trates an important theorem of linear programming. The number of non-zero primal variables is at most
equal to the number of independent constraints (excluding non-negativity constraints). In this problem
there are only two main constraints. Thus, there are only two non-zero variables, x1 and x3. The slack
variables x4 and x5 are zero and so is x2.

The MATLAB function lsqnonneg, discussed in Section 2.12, provides a method for finding a solu-
tion to an equation system in which all components of the solution are non-negative. This corresponds
to a basic feasible solution for the system but it is generally non-optimal for a specific objective func-
tion.

Having examined the process for solving linear optimization problems we now consider methods
which are used to solve non-linear optimization problems.

9.3 OPTIMIZING SINGLE-VARIABLE FUNCTIONS
We sometimes need to determine the maximum or minimum value of a one-variable non-linear func-
tion. Throughout this discussion we assume we are seeking the minimum value of the function. If we
require the maximum value, then we merely have to change the sign of the original function.

The most obvious way of determining the minimum of a function is to differentiate it and find the
value of the independent variable that makes this derivative zero. However, there are situations in which
it is not practical to find the derivative directly; see for example (9.6). A method is now described which
provides an approximation to the minimum to any required accuracy.

Consider a function y = f (x) and let us assume that in the range [xa xb] there is a single minimum,
as shown in Fig. 9.2. Two additional points, x1 and x2, are chosen arbitrarily so that the range is divided
into three intervals. Assuming that xa < x1 < x2 < xb, then:

If f (x1) < f (x2) then the minimum value must lie in the range [xa x2].
If f (x1) > f (x2) then the minimum value must lie in the range [x1 xb].

Either of these ranges must provide a smaller interval than [xa xb] in which the minimum lies. This
interval reduction can be repeated continuously in successively smaller ranges until an acceptably small
interval is found for the minimum.

It might be assumed that the most efficient procedure is to select x1 and x2 so that the range [xa xb]
is subdivided into three equal intervals. In fact, this is not so and for a more efficient procedure we take

x1 = xa + r (1 − g) , x2 = xa + rg

where r = xb − xa and

g = 1

2

(
−1 + √

5
)

≈ 0.61803



9.3 OPTIMIZING SINGLE-VARIABLE FUNCTIONS 441

FIGURE 9.2

Graph of a function with a minimum in the range [xa xb].

The quantity g is called the golden ratio. This quantity has many interesting properties. For example,
it is one of the roots of the equation

x2 + x + 1 = 0

This golden ratio is also related to the famous Fibonacci series. This series is 1,1,2,3,5,8,13, ... and
it is generated from:

Nk+1 = Nk + Nk−1, k = 2,3,4, ...

where N2 = N1 = 1 and Nk is the kth term in the series. As k tends to infinity the ratio Nk/Nk+1 tends
to the golden ratio, g.

This search algorithm using the golden ratio is implemented in MATLAB thus:

function [f,a,iter] = golden(func,p,tol)
% Golden search for finding min of one variable non-linear function.
% Example call: [f,a] = golden(func,p,tol)
% func is the name of the user defined non-linear function.
% p is a 2 element vector giving the search range.
% tol is the tolerance. a is the optimum values of the function.
% f is the minimum of the function. Iter is the number of iterations
if p(1)<p(2)

a = p(1); b = p(2);
else

a = p(2); b = p(1);
end
g = (-1+sqrt(5))/2;
r = b-a; iter = 0;
while r>tol

x = [a+(1-g)*r a+g*r];
y = feval(func,x);
if y(1)<y(2)
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b = x(2);
else

a = x(1);
end
r = b-a; iter = iter+1;

end
f = feval(func,a);

We can use the function golden to search for the minimum value of the Bessel function of the second
kind of order 2. The function bessely(2,x) is provided by MATLAB. The following command provides
the output shown:

>> format long
>> [f,x,iter] = golden(@(x) bessely(2,x),[4 10],0.000001)

f =
-0.279275263440711

x =
8.350724427010965

iter =
33

Note that if we had divided the search interval into three equal sections, rather than using the golden
ratio, then 39 iterations would have been required.

The search algorithm has been developed assuming that there is only one minimum value of the
function in the search range. If there are several minima in the search range, then the procedure locates
one, but the one located is not necessarily the global minimum in the range. For example, a Bessel
function of the second kind of order 2 has 3 minima in the range 4 to 25, as shown in Fig. 9.3. If we
use the function golden and search in the ranges 4 to 24, 4 to 25, and 4 to 26, we obtain the results
given in Table 9.1. In this table we see that a different minimum has been found for each of the search
ranges, even though all three minima lie within each of the search ranges used. Ideally we require the
search to determine the global minimum of the function, something that the function golden has failed
to accomplish in two out of three tests. Obtaining a global solution is a major problem in minimization.

In this particular example we can verify the accuracy of these solutions by calculus. The derivative
of the Bessel function of the second kind of order n is given by

d

dx
{Yn (x)} = 1

2
{Yn−1 (x) − Yn+1 (x)}

where Yn(x) is the Bessel function of the second kind of order n. (Sometimes the notation Nn(x) is
used instead of Yn(x).)

The minimum (or maximum) value of a function occurs when the derivative of the function is zero.
Hence, with n = 2 we have a minimum (or maximum) occurring when

Y1(x) − Y3(x) = 0
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FIGURE 9.3

A plot of the Bessel function of the second kind showing three minima.

Table 9.1 Effect of different search ranges

Search range Value of f (x) at min Value of x at min
4 to 24 −0.20844576503764 14.76085144779431
4 to 25 −0.17404548213116 21.09284729991696
4 to 26 −0.27927526323841 8.35068549680869

We cannot escape from the need to use a numerical method because the only way to find the roots
of this equation is to use a numerical procedure such as that implemented by the MATLAB function
fzero. Thus, using fzero to determine a root near 8 we have

>> format long
>> fzero(@(x) bessely(1,x)-bessely(3,x),8)

ans =
8.350724701413078

We can also use fzero to find roots at 14.76090930620768 and 21.09289450441274. These results are
in good agreement with the minima found by the function golden.

9.4 THE CONJUGATE GRADIENT METHOD
Here we confine ourselves to solving the problem

Minimize f (x) for all x ∈ Rn

where f (x) is a non-linear function of x and x is an n component column vector. This is called a non-
linear unconstrained optimization problem. These problems arise in many applications – for example,
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in neural network problems where an important aim is to find weights in a network which minimize
the difference between the output of the network and the required output.

The standard approach for solving this problem is to assume an initial approximation x0 and then
to proceed to an improved approximation by using an iterative formula of the form

xk+1 = xk + sdk for k = 0, 1, 2, ... (9.4)

Clearly, to use this formula we must determine values for the scalar s and the vector dk . The vector dk

represents a direction of search and the scalar s determines how far we should step in this direction.
A vast literature has grown up which has examined the problem of choosing the best direction and the
best step size to solve this problem efficiently. For example, see Adby and Dempster (1974). A simple
choice for a direction of search is to take dk as the negative gradient vector at the point xk . For a
sufficiently small step value this can be shown to guarantee a reduction in the function value. This
leads to an algorithm of the form

xk+1 = xk − s∇f
(

xk
)

for k= 0, 1, 2, . . . (9.5)

where ∇f (x) = (∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn) and s is a small constant value. This is called the steep-
est descent algorithm. The minimum is reached when the gradient is zero, as in the ordinary calculus
approach. We also assume that there exists only one local minimum which we wish to find in the
range considered. The problem with this method is that although it reduces the function value, the step
may be very small and therefore the algorithm is very slow. An alternative approach is to choose the
step which gives the maximum reduction in the function value in the current direction. This may be
described formally as

For each k find the value of s that minimizes f (xk − s∇f (xk)) (9.6)

This procedure is known as a line-search. The reader will note that this is also a minimization problem.
However, since xk is known, it is a one-variable minimization problem in the step size s. Although it
is a difficult problem, numerical procedures are available to solve it, one of which is the search method
given in Section 9.3. Eqs. (9.5) and (9.6) provide a workable algorithm but it is still slow. One reason
for this poor performance lies in our choice of direction −∇f (xk).

Consider the function we wish to minimize in (9.6). Clearly the value of s which minimizes
f (xk − s∇f (xk)) is such that the derivative of f (xk − s∇f (xk)) with respect to s is zero. Now, differ-
entiating f (xk − s∇f (xk)) with respect to s gives

df
(
xk − s∇f

(
xk

))
ds

= −
(
∇f

(
xk+1

))T ∇f
(

xk
)

= 0 (9.7)

This shows that the successive directions of search are orthogonal. This is not the best way of getting
from our original approximation to the optimum value since the changes in direction are so large.



9.4 THE CONJUGATE GRADIENT METHOD 445

The conjugate gradient method provides a significant improvement in performance by taking a
combination of the previous direction and the new direction to approach the optimum more directly. It
uses the same step size choice procedure given by (9.6), so we must now consider how the direction
vector is chosen in the conjugate gradient method. Let gk+1 = ∇f (xk+1). Then the basic formula for
the conjugate gradient direction is

dk+1 = −gk+1 + βdk (9.8)

Thus, the current direction of search is a combination of the current negative gradient plus a scalar
β times the previous direction of search. The crucial question is: how is the value of β to be deter-
mined? The criterion used is that successive directions of search should be conjugate. This means that
(dk+1)TAdk = 0 for some specified matrix A.

This apparently obscure choice of requirement can be shown to lead to desirable convergence prop-
erties for the conjugate gradient method. In particular, it has the property that the optimum of a positive
definite quadratic function of n variables can be found in n or less steps. In the case of a quadratic, A is
the matrix of coefficients of the squared and cross product terms. It can be shown that the requirement
of conjugacy leads to a value for β given by

β =
(
gk+1

)T
gk+1

(
gk

)T gk
(9.9)

Now (9.4), (9.6), (9.8), and (9.9) lead to the conjugate gradient algorithm given by Fletcher and Reeves
(1964) which has the form:

• Step 0: Input value for x0 and accuracy ε. Set k = 0 and compute dk = −∇f (xk).
• Step 1: Determine sk which is the value of s that minimizes f (xk + sdk).

Calculate xk+1 where xk+1 = xk + skdk and compute gk+1 = ∇f (xk+1).
If norm(gk+1) < ε, then terminate with solution xk+1, else go to step 2.

• Step 2: Calculate new conjugate direction dk+1 where

dk+1 = −gk+1 + βdk and β = (gk+1)Tgk+1/{(gk)Tgk}
• Step 3: k = k + 1; go to step 1.

Note that in other forms of this algorithm the steps 1, 2, and 3 are repeated n times and then restarted
with a steepest descent step from step 0. The following is a MATLAB function for this method.

function [x1,df,noiter] = mincg(f,derf,ftau,x,tol)
% Finds local min of a multivariable non-linear function in n variables
% using conjugate gradient method.
% Example call: res = mincg(f,derf,ftau,x,tol)
% f is a user defined multi-variable function,
% derf a user defined function of n first order partial derivatives.
% ftau is the line search function.
% x is a col vector of n starting values, tol gives required accuracy.
% x1 is solution, df is the gradient
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% noiter is the number of iterations required.
% WARNING. Not guarenteed to work with all functions. For difficult
% problems the linear search accuracy may have to be adjusted.
global p1 d1
n = size(x); noiter = 0;
% Calculate initial gradient
df = feval(derf,x);
% main loop
while norm(df)>tol

noiter = noiter+1;
df = feval(derf,x);
d1 = -df;
%Inner loop
for inner = 1:n

p1 = x; tau = fminbnd(ftau,-10,10);
% calculate new x
x1 = x+tau*d1;
% Save previous gradient
dfp = df;
% Calculate new gradient
df = feval(derf,x1);
% Update x and d
d = d1; x = x1;
% Conjugate gradient method
beta = (df’*df)/(dfp’*dfp);
d1 = -df+beta*d;

end
end

Notice that the MATLAB function fminbnd is used in the function mincg to perform the single-variable
minimization to find the best step value. It is important to note that the function mincg requires three
input functions which must be supplied by the user. They are the function to be minimized, the partial
derivatives of this function, and the line-search function. As implemented the function mincg requires
the input functions to be user-defined functions, not anonymous functions. An example of the use of
mincg follows.

The function to be minimized, which is taken from Styblinski and Tang (1990), is

f (x1, x2) =
(
x4

1 − 16x2
1 + 5x1

)
/2 +

(
x4

2 − 16x2
2 + 5x2

)
/2 (9.10)

The function f01 and the derivative of this function, f01d are defined as follows:

function f = f01(x)
f = 0.5*(x(1)^4-16*x(1)^2+5*x(1)) + 0.5*(x(2)^4-16*x(2)^2+5*x(2));

function f = f01d(x)
f = [0.5*(4*x(1)^3-32*x(1)+5); 0.5*(4*x(2)^3-32*x(2)+5)];
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The MATLAB line-search function ftau2cg is defined as

function ftauv = ftau2cg(tau);
global p1 d1
q1 = p1+tau*d1;
ftauv = feval(’f01’,q1);

To test the mincg function we use the following simple MATLAB command:

>> [solution,gradient,iterations] = mincg(’f01’,’f01d’,’ftau2cg’,[1 -1]’,.000005)

The results of executing these statements are

solution =
-2.9035
-2.9035

gradient =
1.0e-006 *
0.0156

-0.2357

iterations =
3

Note that

>> f = f01(solution)

f =
-78.3323

This is also the minimum value of the function determined by using mincg. We provide both a three-
dimensional and a contour plot of the function in Figs. 9.4 and 9.5. The latter includes a plot of the
iterates and shows the path taken to reach the optimum solution from a particular starting point. The
script used to obtain these graphs is

% e4s902.m
clf
[x,y] = meshgrid(-4.0:0.2:4.0,-4.0:0.2:4.0);
z = 0.5*(x.^4-16*x.^2+5*x)+0.5*(y.^4-16*y.^2+5*y);
figure(1)
surfl(x,y,z)
axis([-4 4 -4 4 -80 20])
xlabel(’x1’), ylabel(’x2’), zlabel(’z’)
x1=[1 2.8121 -2.8167 -2.9047 -2.9035];
y1=[0.5 -2.0304 -2.0295 -2.9080 -2.9035];
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FIGURE 9.4

Three-dimensional plot of the Styblinski and Tang function.

FIGURE 9.5

Contour plot of the Styblinski and Tang function, showing the location of four local minima. The conjugate
gradient algorithm has found the one in the lower left corner. The search path taken by the algorithm is also
shown.

figure(2)
contour(-4.0:0.2:4.0,-4.0:0.2:4.0,z,15);
xlabel(’x1’), ylabel(’x2’)
hold on
plot(x1,y1,x1,y1,’o’)
xlabel(’x1’), ylabel(’x2’)
hold off

In script e4s902.m the vectors x1 and y1 contain the iterates for the conjugate gradient solution of
the given function. These values were obtained by running a modified version of the mincg function
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separately. The minimum we have obtained is in fact the smallest of the four local minima that exist
for this function, called the global minimum. However, this result was fortuitous; all that the conjugate
gradient method is able to do is to find one of the four local minima and even this is not guaranteed for
all problems. The conjugate gradient method, because of its small storage requirements, is one of the
key algorithms used in neural network problems as part of the back propagation algorithm, but it has
many other applications.

It should be noted that a MATLAB optimization toolbox is available and this provides a range of
optimization procedures.

9.5 MOLLER’S SCALED CONJUGATE GRADIENT METHOD
In 1993 Moller, when working on optimization methods for neural networks, introduced a much im-
proved version of the Fletcher’s conjugate gradient method. Fletcher’s conjugate gradient method uses
a line search procedure to solve a single-variable minimization problem which is then used to find the
optimum step to take in the chosen direction of search. The procedure used by Fletcher is a fragile,
iterative, and computationally intensive process. In addition, the line search depends on a number of
parameters which must be estimated by the user. Moller’s paper (Moller, 1993) introduced a method
which allowed the line search procedure to be replaced by a considerably simplified method for es-
timating an acceptable step size. However, using a simple estimation of the step size often fails and
leads to non-stationary points. Moller noted that a simple approach to the problem fails because it only
works for functions with positive definite matrices. Consequently, Moller suggested a method based on
a combination of the Levenberg–Marquardt algorithm and the conjugate gradient algorithm. An outline
of the algorithm is described in the following; for the details the reader is referred to Moller (1993).

Consider the n variable non-linear function f (x). Moller introduces a scalar parameter λk which is
adjusted at each iteration k after considering the sign of δk where

δk = pT
kHkpk

where pk for k = 1,2, ..., n are a set of conjugate directions and Hk is the Hessian matrix of the function
f (x). If δk ≥ 0 then Hk is positive definite. However, since only first-order derivative information is
known at each step of the conjugate gradient method, Moller suggests that the Hessian multiplied by
pk is approximated by:

sk = f ′(xk + σkpk) − f ′(xk)

σk

for 0 < σk < 1

In practice the value of σk should be kept as small as possible for a good approximation. This expression
in the limit tends to the true Hessian matrix multiplied by pk . The scalar λk is now introduced to regulate
the approximation to the Hessian so ensuring it is positive definite, specifically by using the equation:

sk = f ′(xk + σkpk) − f ′(xk)

σk

+ λkpk for 0 < σk < 1

Thus, the value of λk is adjusted, and then we check the value of δk defined earlier using the approxi-
mation to the Hessian; if this is negative then the Hessian is no longer positive definite and the value of
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λk is increased and sk is checked again. This is repeated until the current estimate of the Hessian is pos-
itive definite. The key question is how should λk be adjusted to ensure the Hessian estimate becomes
positive definite. Let the λk be increased to λ̄k; then

s̄k = sk + (λ̄k − λk)pk

Now at any iteration k a new δk which we can denote as δ̄k can be computed from

δ̄k = pT
k s̄k = pT

k (sk + (λ̄k − λk)pk) = pT
k sk + (λ̄k − λk)pT

kpk

But pT
k sk is the original value of δk before λk was increased. So we have:

δ̄k = δk + (λ̄k − λk)pT
kpk

Clearly we now require that new value of δ̄k be positive; hence, we require that

δk + (λ̄k − λk)pT
kpk > 0

This will be true if

λ̄k > λk − δk

pT
kpk

Moller suggests a reasonable choice of λ̄k is:

λ̄k = 2

(
λk − δk

pT
kpk

)

It is easily verified by back-substitution of this value for λ̄k in our expression for δ̄k that

δ̄k = −δk + λkpT
kpk

which, since δk was negative, λk is positive, and pT
kpk is a sum of squares, is clearly positive as required.

The step size estimate is based on a quadratic approximation to the function being optimized at the
current step and is calculated from:

αk = μk

δk

= μk

pT
k sk + λkpT

kpk

Here μk is the current negative gradient times the current direction of search pk . This gives the basis
of the algorithm. However, an important issue is still to be decided, is how can the value of λk be
safely and systematically varied. Moller provides a method based on a measure of how well the current
quadratic approximation defined as fq approximates the original function at the point considered. He
does this by using the following definition:

	k = f (xk) − f (xk + αkpk)

f (xk) − fq(αkpk)
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By virtue of the fact that fq(αk,pk) is a quadratic approximation at the current iteration, this can be
shown to be equivalent to:

	k = δ2
k (f (xk) − f (xk + αkpk))

μ2
k

Now if 	k is close to 1 then the quadratic approximation fq(αk,pk) must be close to f (xk +αkpk) and
hence, a good local approximation to the function. This leads to the following steps for the adjustment
of λk . Use the definition 	k described earlier as the quadratic approximation measure; more details
can be found in Moller (1993). Then adjust λk as follows:

If 	k > 0.75 then λk = λk/4

If 	k < 0.25 then λk = λk + δk(1 − 	k)

pT
kpk

These steps, together with any of the methods for generating conjugate gradient directions of search,
provide an algorithm with a simple line search process. The outline of the major steps in Moller’s
algorithm are now given:

1. Choose initial approximation x0 and initial values for σi < 10−4, λi < 10−4, and λ̄i = 0. These
values were suggested by Moller. Calculate initial negative gradient and assign it to r1, and assign
r1 to the initial direction of search p1. Set k = 1.

2. Calculate second-order information. Specifically, values for: σk , s̄k , and δk .
3. Scale δk using

δ̄k = δk + (λ̄k − λk)pT
kpk

4. If δk < 0 then make Hessian approximation positive definite using:

δ̄k = −δk + λkpT
kpk

Set

λ̄k = 2

(
λk − δk

pT
kpk

)

and

λ̄k = λk

5. Calculate step size from:

αk = μk

δk

6. Calculate factor to test goodness of quadratic fit 	k from

	k = δ2
k (f (xk) − f (xk + αkpk))

μ2
k
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7. If 	k ≥ 0 then function can be reduced toward the minimum, so use

xk+1 = xk + αkpk

Calculate new gradient

rk+1 = −∇f (xk+1)

Set λ̄k = 0. If k mod N = 0 then restart algorithm with

pk+1 = rk+1

else calculate a new conjugate gradient direction.
Use some method for calculating the set of conjugate directions, see Fletcher and Reeves (1964)
for example. A number of other methods are available.

If 	k ≥ 0.75 then λk = 0.25λk

else

λ̄k = λk

8. If 	k < 0.25 then increase scale parameter:

λk = λk + δk(1 − 	k)/
(

pT
kpk

)

9. If the gradient rk is still not sufficiently close to zero then set k = k + 1 and go to Step 2 otherwise
terminate and return optimum solution.

The following MATLAB function implements this method.

function [res, noiter] = minscg(f,derf,x,tol)
% Conjugate gradient optimization by Moller
% Finds local min of a multivariable non-linear function in n variables
% Example call: [res, noiter] = minscg(f,derf,x,tol)
% f is a user defined multi-variable function,
% derf a user defined function of n first order partial derivatives.
% x is a col vector of n starting values, tol gives required accuracy.
% res is solution, noiter is the number of iterations required.
lambda = 1e-8; lambdabar = 0; sigmac = 1e-5; sucess = 1;
deltastep = 0; [n m] = size(x);
% Calculate initial gradient
noiter = 0;
pv = -feval(derf,x); rv = pv;
while norm(rv)>tol

noiter = noiter+1;
if deltastep==0

df = feval(derf,x);
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else
df = -rv;

end
deltastep = 0;
if sucess==1

sigma = sigmac/norm(pv);
dfplus = feval(derf,x+sigma*pv);
stilda = (dfplus-df)/sigma;
delta = pv’*stilda;

end
% Scale
delta = delta+(lambda-lambdabar)*norm(pv)^2;
if delta<=0

lambdabar = 2*(lambda-delta/norm(pv)^2);
delta = -delta+lambda*norm(pv)^2;
lambda = lambdabar;

end
% Step size
mu = pv’*rv; alpha = mu/delta;
fv = feval(f,x);
fvplus = feval(f,x+alpha*pv);
delta1 = 2*delta*(fv-fvplus)/mu^2;
rvold = rv; pvold = pv;
if delta1>=0

deltastep = 1;
x1 = x+alpha*pv;
rv = -feval(derf,x1);
lambdabar = 0; sucess = 1;
if rem(noiter,n) == 0

pv = rv;
else

%Alternative conj grad direction generators may be used here
% beta = (rv’*rv)/(rvold’*rvold);
rdiff = rv-rvold;
beta = (rdiff’*rv)/(rvold’*rvold);
pv = rv+beta*pvold;

end
if delta1>=0.75

lambda = 0.25*lambda;
end

else
lambdabar = lambda;
sucess = 0;
x1 = x+alpha*pv;
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end

if delta1<0.25

lambda = lambda+delta*(1-delta1)/norm(pvold)^2;

end

x = x1;

end

res = x1;

We now apply the scaled conjugate gradient method to minimize two functions. The first function is
the Styblinski–Tang function, see (9.10).

Using minscg, and the user-defined functions f01 and f01d are given in Section 9.4, we have

>> [x, iterns] = minscg(’f01’,’f01d’,[1 -1]’,.000005)

x =

2.7468

-2.9035

iterns =

8

This is not the same solution as that determined by mincg. It is a local minimum value of the function
but not the global minimum. Other initial values will lead to the global minimum.

The second problem is finding a minimum of Rosenbrock’s function. This function is

f (x1, x2) = 100(x2 − x2
1)2 + (1 − x1)

2

The minimum of this function is at x1 = x2 = 1. We define the necessary anonymous functions, and
solve the problem as follows:

>> fr = @(x) 100*(x(2)-x(1).^2).^2+(1-x(1)).^2;

>> frd = @(x) [-400*x(1).*(x(2)-x(1).^2)-2*(1-x(1)); 200*(x(2)-x(1).^2)];

>> [x, iterns] = minscg(fr,frd,[-1.2 1]’,.0005)

x =

1.0000

1.0000

iterns =

135

Note that a large number of iterations were required to solve this difficult problem.
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9.6 CONJUGATE GRADIENT METHOD FOR SOLVING LINEAR SYSTEMS
We now apply the conjugate gradient algorithm to minimize a positive definite quadratic function
which has the standard form

f (x) =
(

xTAx
)

/2 + pTx + q (9.11)

Here x and p are n-component column vectors, A is an n×n positive definite symmetric matrix and q is
a scalar. The minimum value of f (x) is such that the gradient of f (x) is zero. However, the gradient is
easily found by direct differentiation as

∇f (x) = Ax + p = 0 (9.12)

Thus, finding the minimum is equivalent to solving this system of linear equations which becomes, on
letting b = −p,

Ax = b (9.13)

Since we can use the conjugate gradient method to find the minimum of (9.11), then we can use it
to solve the equivalent system of linear equations (9.13). The conjugate gradient method provides a
powerful method for solving linear equation systems with positive definite symmetric matrices, and it
follows quite closely the algorithm we have described for solving non-linear optimization problems.
However, the line-search is greatly simplified and the value of gradient can be computed within the
algorithm in this case. The algorithm takes the form:

1. Set k = 0: xk = 0, gk = b, μk = bTb, dk = −gk ,
2. While system (9.13) is not satisfied

qk = Adk , rk = (dk)Tqk , sk = μk/rk

xk+1 = xk + skdk , gk+1 = gk + skqk

tk = (gk+1)Tqk , βk = tk/rk

dk+1 = −gk+1 + βkdk , μk+1 = βkμk

k = k + 1, end

Notice that the values of the gradient g and the step s are calculated directly and no MATLAB function
or user-defined function is required.

The MATLAB function solvercg implements this algorithm and utilizes the stopping procedure
suggested by Karmarkar and Ramakrishnan (1991). See this paper and also Golub and Van Loan
(1989).

function xdash = solvercg(a,b,n,tol)
% Solves linear system ax = b using conjugate gradient method.
% Example call: xdash = solvercg(a,b,n,tol)
% a is an n x n positive definite matrix, b is a vector of n
% coefficients. tol is accuracy to which system is satisfied.
% WARNING Large, ill-cond. systems will lead to reduced accuracy.
xdash = [ ]; gdash = [ ];
ddash = [ ]; qdash = [ ];



456 CHAPTER 9 OPTIMIZATION METHODS

q=[ ];

mxitr = n*n;

xdash = zeros(n,1); gdash = -b;

ddash = -gdash; muinit = b’*b;

stop_criterion1 = 1;

k = 0;

mu = muinit;

% main stage

while stop_criterion1==1

qdash = a*ddash;

q = qdash; r = ddash’*q;

if r==0

error(’r=0, divide by 0!!!’)

end

s = mu/r;

xdash = xdash+s*ddash;

gdash = gdash+s*q;

t = gdash’*qdash; beta = t/r;

ddash = -gdash+beta*ddash;

mu = beta*mu; k = k+1;

val = a*xdash;

if ((1-val’*b/(norm(val)*norm(b)))<=tol) & (mu/muinit<=tol)

stop_criterion1 = 0;

end

if k>mxitr

stop_criterion1 = 0;

end

end

The script e4s903.m generates a system of 10 equations with randomly selected elements on which this
algorithm can be tested:

% e4s903.m

n = 10; tol = 1e-8;

A = 10*rand(n); b = 10*rand(n,1);

ada = A*A’;

% To ensure a symmetric positive definite matrix.

sol = solvercg(ada,b,n,tol);

disp(’Solution of system is:’)

disp(sol)

accuracy = norm(ada*sol-b);

fprintf(’Norm of residuals =%12.9f\n’,accuracy)

Running script e4s903.m gives the following results:
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Solution of system is:

0.2527

-0.2642

-0.1706

0.4284

0.0017

-0.1391

-0.0231

-0.0109

-0.2310

0.2928

Norm of residuals = 0.000000008

We note that the norm of the residuals is very small. For ill-conditioned matrices it is necessary to
use some kind of pre-conditioner which reduces the condition number of the matrix; otherwise the
method becomes too slow. Karmarkar and Ramakrishnan (1991) have used a pre-conditioned conjugate
gradient method as part of an interior point algorithm to solve linear programming problems with 5000
rows and 333,000 columns.

MATLAB provides a range of iterative procedures based on conjugate gradient methods for solving
Ax = b. These are the MATLAB functions pcg, bicg, and cgs.

9.7 METAHEURISTIC METHODS
We have seen how both calculus and gradient based methods often fail to find a global optimum. In
this situation metaheuristic technique can be applied successfully. A heuristic technique is a prob-
lem specific approach that employs a practical method that often provides sufficient accuracy for the
immediate goals. In the case of optimization, a heuristic method should find a good approximation
to the global optimum solution, in contrast to a classical method that sometimes finds a local, rather
than a global optimum solution. Metaheuristic methods are heuristic methods using a process that is
problem-independent so that the methodology can be applied to a wide range of problems. Metaheuris-
tic methods are usually stochastic in nature and are inspired by physical processes, such as gravity, or
biological processes, such as bird flocking, or evolutionary processes, such as genetics.

9.8 SIMULATED ANNEALING
Simulated annealing is inspired by the physical process of annealing metal by cooling it slowly.

Here we provide a brief introduction to the ideas on which optimization using simulated annealing
is based. The technique can be applied to large and difficult problems where we require the global
optima and other techniques are inadequate. Even for relatively simple problems the technique can be
slow.
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If a metal is allowed to cool sufficiently slowly (metallurgically called post-annealing), its metallur-
gical structure is naturally able to find a minimum energy state for the system. If, however, the metal is
cooled quickly, say by quenching in water, then this minimum energy state is not found. This concept
of the natural process of finding a minimum energy state can be utilized to find the global optima of
given non-linear functions. This optimization method is called simulated annealing.

The analogy is not perfect but the fast cooling process may be viewed as equivalent to finding a
local minimum of a given non-linear function corresponding to the energy level, while the slow cooling
corresponds to finding the ideal energy state or a global minimum of the function. This slow cooling
process may be implemented using the Boltzmann probability distribution of energy states which plays
a prominent part in thermodynamics and which has the form

P(E) = exp(−E/kT )

where P(E) is the probability of E, a particular energy state, k is Boltzmann’s constant, and T is
the temperature. This function is used to reflect the cooling process where a change in the energy
level, which may be initially unfavorable, ultimately leads to a final minimum global energy state. This
corresponds to the concept of moving out of the region of a local minimum of a non-linear function in
the search for a global solution for the problem. This may require a temporary increase in the value of
the objective function; that is, climbing out of the valley of a local minimum, although convergence to
the global optimum may still occur if the adjustment to the temperature is slow enough. These ideas
lead to an optimization algorithm used by Kirkpatrick et al. (1983) which has the following general
structure.

Let f (x) be the non-linear function to be minimized, where x is an n component vector. Then

Step 1. Set the iteration count k to zero, and set the temperature increment p count to zero. Chose an
initial, trial solution x(k) and an initial, arbitrary temperature Tp.

Step 2. Choose a second trial solution x(n) close to x(k).
Step 3. Compute 	f = f (x(n)) − f (x(k)) then:

If 	f < 0, then x(k+1) = x(n).
If 	f > 0 and exp(−	f/Tp) < r , where r is a random number in the range 0 to 1, then x(k+1) =
x(n). Otherwise x(k+1) = x(k); that is the initial trial value is unchanged.

Step 4. Set k = k + 1. Repeat from Step 2 until there is no significant change of function value.
Step 5. Lower the current temperature using an appropriate reduction process Tp+1 = g(Tp), set

p = p + 1 and repeat from Step 2 until there is no further significant change in the function
value from temperature reduction.

The key difficulties with this algorithm are choosing an initial temperature and a temperature reduction
regime. This has generated many research papers but the details are not discussed here.

The MATLAB function asaq is an improved implementation of the preceding algorithm. It is based
on a modified and simplified version of an algorithm described by Lester Ingber (1993). This uses
an exponential cooling regime with some quenching to accelerate the convergence of the algorithm.
The key parameters such as the values of qf, tinit, maxstep and the upper and lower bounds on the
variables can be adjusted and may lead to some improvements in the convergence rate. A major change
would be to use a different temperature adjustment regime and many alternatives have been suggested.
The reader should view these parameter variations as an opportunity to experiment with simulated
annealing.
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function [fnew,xnew] = asaq(func,x,maxstep,qf,lb,ub,tinit)
% Determines optimum of a function using simulated annealing.
% Example call: [fnew,xnew]=asaq(func,x,maxstep,qf,lb,ub,tinit)
% func is the function to be minimized, x the initial approx.
% given as a column vector, maxstep the maximum number of main
% iterations, qf the quenching factor in range 0 to 1,
% Note: small value gives slow convergence, value close to 1 gives
% fast convergence, but may not supply global optimum,
% lb and ub are lower and upper bounds for the variables,
% tinit is the intial temperature value
% Suggested values for maxstep = 200, tinit = 100, qf = 0.9
% Initialisation
xold = x;
fold = feval(func,x);
n = length(x);
lk = n*10;
% Quenching factor q
q = qf*n;
% c values estimated
nv = log(maxstep*ones(n,1));
mv = 2*ones(n,1);
c = mv.*exp(-nv/n);
% Set values for tk
t0 = tinit*ones(n,1);
tk = t0;
% upper and lower bounds on x variables
% variables assumed to lie between -100 and 100
a = lb*ones(n,1);
b = ub*ones(n,1);
k = 1;
% Main loop
for mloop = 1:maxstep

for tempkloop = 1:lk
% Choose xnew as random neighbour
fold = feval(func,xold);
u = rand(n,1);
y = sign(u-0.5).*tk.*((1+ones(n,1)./tk).^(abs((2*u-1))-1));
xnew = xold+y.*(b-a);
fnew = feval(func,xnew);
% Test for improvement
if fnew <= fold

xold = xnew;
elseif exp((fold-fnew)/norm(tk))>rand

xold = xnew;
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end

end

% Update tk values

tk = t0.*exp(-c.*k^(q/n));

k = k+1;

end

tf = tk;

The results of using this function to optimize the Styblinski–Tang function, (9.10), follow. This function
has been solved by the conjugate gradient method in Section 9.4.

>> fv = @(x) 0.5*(x(1)^4-16*x(1)^2+5*x(1)) +...

0.5*(x(2)^4-16*x(2)^2+5*x(2));

>> for c = 1:20, [fnew(c),xnew(:,c)] = asaq(fv,[0 0].’,200,0.9,-10,10,100); end

>> fmean = mean(fnew)

fmean =

-71.9708

>> [fmin,idx] = min(fnew)

fmin =

-78.3323

idx =

19

>> xnew(:,idx)

ans =

-2.9032

-2.9031

Note that each run provides a different result and is not guaranteed to provide a global optimum unless
the parameters are adjusted appropriately for the particular problem. The mean value of the 20 runs
is −71.97, which is a relatively poor result, although the best (minimum) result is −78.3323, which
compares well with the exact value of −78.3320. The corresponding values of x are −2.9031 and
−2.9032 which again compare well with the exact values −2.9035, −2.9035.

Fig. 9.6 provides a plot of the variation in the function value for the final 40 iterations. It illustrates
the behavior of the algorithm which allows both increases and decreases in the function value.

As a further illustration a contour plot showing only the final stages of the iteration, is given in
Fig. 9.7.
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FIGURE 9.6

Graph showing the Styblinski–Tang function value for
the final 40 iterations of the simulated annealing
algorithm.

FIGURE 9.7

Contour plot of the Styblinski–Tang function. The final
stages in the simulated annealing process are shown.
Note how these values are concentrated in the lower
left corner, close to the global minimum.

9.9 EVOLUTIONARY ALGORITHM
Most metaheuristic optimization methods use a population of agents to search for an optimum solution
a predefined region – the search-space. These agents carry information concerning their position in
the search space and, and in some cases, their velocities of exploration as well. They also interact
with each other in various ways and comb the search-space looking for the global optimum solution.
One class of metaheuristic algorithms are evolutionary algorithms. These algorithms provide a robust
search procedure for solving difficult problems. The striking feature of these algorithms is that they
are based on ideas derived from the science of genetics and the process of natural selection. This
cross-fertilization from one field of science to another has led to stimulating and fruitful applications
in many fields and particularly in computer science.

In this section we consider two evolutionary algorithms. The first is the genetic algorithm (GA) and
we introduce the ideas on which it is based and explain how this is implemented for an optimization
problem in one variable. The genetic algorithm comprises an initial population of agents, the size of
which is generally related to the complexity of the problem under consideration. This population of
agents is generated randomly and we can use the terminology of genetics to characterize it. Each mem-
ber of the population corresponds to a chromosome and each element of the chromosome corresponds
to a gene. Frequently the member of the population comprises a string of binary digits but it can be a
decimal number or other coding that has an equivalent numeric value. This information provides the
location of the member of the population in the search space and from that information the value of the
function can be computed. The description of the GA that follows is a binary coded GA where trial.

From the initial population a new population must be developed and to do this we implement the
analogue of specific genetic processes. These are:

1. selection based on fitness
2. recombination (implemented by crossover)
3. mutation
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A set of chromosomes is selected at the reproduction stage based on natural selection. Thus, members
of the population are chosen for reproduction on the basis of their fitness defined according to some
specified criteria. The fittest members of the population are given a greater probability of reproducing
in proportion to the value of their fitness.

The actual process of mating is implemented by using the simple idea of crossover. This means that
two members of the population exchange genes. There are many ways of implementing this crossover,
for example having a single crossover point or many crossover points. These crossover points are
selected randomly.

Applying this procedure to the original population, we produce a new population; the next gen-
eration. The final process is mutation. Here we randomly change a particular gene in a particular
chromosome. Thus, a 0 may be changed to a 1 or vice versa. The process of mutation in a genetic
algorithm usually set to occur very rarely and hence, the probability of a change in a string is kept very
low.

Having described the basic principles of a genetic algorithm, we now illustrate how it may be
applied by considering a simple optimization problem and in so doing fill in some of the details to
show how a genetic algorithm may be implemented. A manufacturer wishes to produce a container
which consists of a hemisphere surmounted by a cylinder of fixed height. The height of the cylinder
is fixed but the common radius of the cylinder and hemisphere may be varied between 2 and 4 units.
The manufacturer wishes to find the radius value which maximizes the volume of the container. This is
a simple problem and the optimum radius is obviously 4 units. However, it serves to illustrate how the
genetic algorithm may be applied.

We can formulate this as a one-dimensional maximization problem by taking r as the common
radius of the cylinder and hemisphere and h as the height of the cylinder. Taking h = 2 units leads to
the formula

Maximize v = 2πr3/3 + 2πr2 (9.14)

where 2 ≤ r ≤ 4.
To solve this optimization problem we generate an initial set of strings of binary digits or bits

to constitute the initial population of agents. The number of bits in each string – the string length –
limits the accuracy with which we can find the solution to the problem so it must be chosen with
care. In addition we must select the size of the initial population; again this must be chosen with
care since a large initial population increases the time taken to implement the steps of the algorithm.
A large population may be unnecessary since the algorithm automatically generates new members of
the population in the process of searching the region.

Suppose an initial population of five chromosomes is generated, each with six genes, giving
0, 1, ..., 26 − 1 possible values of the chromosome, as shown in Table 9.2. To aid the reader in the
following discussion, we have labeled the five members of the population #1 to #5. Since we are inter-
ested in values of r in the range 2 to 4, we must transform the values of these binary strings to values
in the range 2 to 4. In this example, the decimal equivalent, d , of the binary numbers, is in the range
0 to 63, and r is in the range 2 to 4, then the conversion from d to r is given by r = 2d/63 + 2. For
example, when d = 0, r = 2 and when d = 63, r = 4. Carrying out this conversion, the decimal val-
ues, r , are shown in Table 9.2. As required, these values are in the range 2 to 4 and provide the initial
population of values for r . However, these values tell us nothing about their fitness and to discover this
we must judge them against some fitness criteria. In this case, the choice is easy since our objective is
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Table 9.2 First generation of a GA

Population binary r v fitness %
Pop member #1 011100 2.8889 102.93 16.94
Pop member #2 111101 3.9365 225.12 37.04
Pop member #3 100100 3.1429 127.08 20.91
Pop member #4 000011 2.0952 46.85 7.71
Pop member #5 011101 2.9206 105.77 17.40

Total 607.75 100.00

Table 9.3 Generation of a new population

Population binary v Population binary v
Pop member #2 111101 225.12 Pop member #2 111101 225.12
Pop member #2 111101 225.12 From #2 and #1 111100 220.49
Pop member #1 011100 102.93 From #1 and #2 011101 105.77
Pop member #5 011101 105.77 Pop member #5 011101 105.77
Pop member #1 011100 102.93 Pop member #1 011100 102.93

Total 761.89 760.10

to maximize the value of the function (9.14). We simply determine the values of the fitness function
v for these values of r as shown in Table 9.2. Notice that at this stage that the total fitness is 607.75.
The fittest member of the population string is member #2 which has a value r = 3.9365, with a fitness
value v = 225.1246. Fortuitously, this is a very good result.

The next stage is reproduction, when the strings are selected according to their fitness so that there
is a higher probability of more of the fittest chromosomes in the mating pool. However, this process
of selection is more complex and is based on a process which simulates the use of a roulette wheel.
The percentage of the roulette wheel that is allocated to a particular string is directly proportional
to the fitness of the string. For each of the fitness values, the percentage fitness can be calculated
from 100vi/

∑
vi , as shown in Table 9.2. Thus, conceptually, we spin a roulette wheel on which the

population members #1 to #5 have the percentages of area 16.94%, 37.04%, 20.91%, 7.71%, and
17.40%, respectively, see Table 9.2. Thus, these chromosomes or strings have this biased chance of
being selected. After a biased random choice that simulates the biased roulette wheel, the population
members chosen for mating are shown in Table 9.3. Note that Population member #1 and Population
member #2 have been favored by the selection process and duplicated. Note that this mating population,
as we would expect, has a higher total fitness of 761.89, see Table 9.3.

We can now mate the members of this population but we mate only a proportion of them, in this
case we have chosen 60% or 0.6. In this example the population size is 5 and 0.6 × 5 = 3. This number
is rounded down to an even number, that is 2, since only an even number of members of the population
can mate. Thus, two members of the population are randomly selected for mating. We see that two
members of the original population, members #1 and #2, have mated by cross over to create two new
members of the population. Cross over has been randomly chosen to take place after the second digit.
In Table 9.3 the binary digits of #2 have been italicized to show the cross over more clearly. The new
population fitness is shown in Table 9.3 and we see that the total fitness is 760.10. Notice that the total
fitness has not improved and indeed, at this stage, we cannot expect improvements every time.
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Table 9.4 Mutation in new population

Population binary v binary v

Pop member #2 111101 225.12 110101 189.80
From #2 and #1 111100 220.49 111100 220.49
From #1 and #2 011101 105.77 011101 105.77
Pop member #5 011101 105.77 011101 105.77
Pop member #1 011100 102.93 011110 108.66

Total 760.10 730.49

FIGURE 9.8

Genetic algorithm. Each member of the population is represented by o. Successive generations of the
population concentrate toward the value 4 approximately.

Finally we perform mutation. The mutation rate is usually low and, in this case, we have chosen a
mutation rate of 5%. This is again done randomly. Each bit is given a 5% chance of being changed.
Thus we would expect, in 30 binary digits or bits, one or two bits to mutate. In this example two
mutations have occurred; the third element of the first chromosome has changed from 1 to 0, and the
fifth element of the last chromosome has changed from 0 to 1. In Table 9.4 the two mutated bits are
underlined. Sometimes no mutation will occur. Note also the overall fitness is further reduced, but this
is often the case. Part of the process is to encourage searching new areas. These areas may be areas of
high fitness, but they may be areas of low fitness which will lower the overall fitness. Until they are
searched this information is unknown. This completes the production of a new generation.

The process of selection based on fitness, reproduction, and mutation is now repeated using the new
generation and subsequently repeated for many generations. If we do this for 20 generations we obtain
r = 3.8980, and v = 219.5219. Since the exact solution is r = 4, this is a reasonable result. Fig. 9.8
gives a graphical representation of the progress of the genetic algorithm. It should be noted that each
run of the genetic algorithm can produce a different result because of the random nature of the process.
In addition the number of distinct values in the search space is limited by the chromosome length. In
this example the chromosome length is 6 bits giving 26 or 64 divisions. Thus the range of r from 2
to 4 is divided into 64 divisions, each equal to 0.031746. If the chromosome length had been 8, then
divisions in the range from 2 to 4 are equal to 0.007843.
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There are many variants of the basic genetic algorithms. For example, Grey code rather than binary
code can be used; selection can be implemented in many different ways; crossover can be changed
to multi-point crossover or other alternatives. It is often reported that a genetic algorithm is slow in
execution but it should be remembered that it is best applied to difficult problems where other meth-
ods fail, for example those which have multiple optima and where the global optimum is required.
Since standard algorithms often fail in these cases, the extra time taken by the genetic algorithm is
worthwhile.

In the description of the GA, we have applied the algorithm to a problem in one variable. Suppose
we have a problem in three variables, and for simplicity we will assume that the search range in each
variable is 0 to 10. We will also assume that each member of the population is represented by a string
of 24 bits which is divided into three, 8 bits sub-strings. Thus, for example, the 24 bit string

11001010|01110001|00100111

is divided into the three sub-strings 11001010, 01110001, and 00100111. The sub-strings have decimal
values of 202, 113, and 39. These convert to 7.9216, 4.4314, and 1.5294 and are the values of the three
variables of the problem. Using these values, we can then determine the fitness of the member of the
population and proceed as normal.

The genetic algorithm can be used to solve optimization problems for which the solutions are
constrained to be members of a set of discrete values, rather than being continuous over a defined range.
For example, suppose we wish to optimize the number of different classes of employees required for
some purpose, and suppose the number of employees in a class could be between zero and 63. If the
numbers of employees in a class is coded using 6 binary digits, the solution can only be an integer
number in the range zero to 63. Non-integer solutions cannot be generated. A second example is more
complicated. Suppose we wish to optimize the design of a steel framework that is required to carry
a specific load. The members of the framework are subjected to internal loads and these loads will
cause both internal stresses in the members and deflections of the framework, both of which must be
limited for safe working. To simplify the following discussion we will assume that the way the beam
reacts to loads can be consumed into a single measure of “performance”. In practice the situation is
more complicated and it is not possible to describe a beam’s ability to carry load by a single figure. We
optimize the framework by minimizing the weight of the steel required, thereby minimizing the cost.
However, steel sections (or beams) are rolled in a limited range of sizes, and it would be uneconomical
to have special sections rolled to suit the needs of an optimum design. Thus the framework must be
constructed from standard sections. Suppose that eight sizes of steel section are available from which
the framework will be designed. We will designate or reference the range of beam sizes 0 to 7 and in
the genetic algorithm each beam in the framework will require 3 binary digits to specify it. Further
suppose there are 10 beams in the framework so that 30 binary digits will be required for trial solution
or design. For a particular beam, its reference number can be used to access, from a table, its weight
and performance. Doing this for all the beams in the framework allows the framework weight and
performance to be evaluated. Provided the performance is within safe limits, the GA optimization will
proceed in the normal way seek the design with the lowest weight – the optimum design. This optimal
design will, of course, only be composed of beams that are selected from the eight standard sizes.

It is beyond the scope of this book to give a detailed account of this field of study and the reader
is referred to the excellent texts of Goldberg (1989) and Coley (1999). We now consider Differential
Evolution, a more recent optimization method based on evolution.
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9.10 DIFFERENTIAL EVOLUTION
The Differential Evolution (DE) algorithm is also an example of evolutionary programming. It was
developed by Storn and Price (1997) to solve difficult global optimization problems, particularly when
we seek the global optimum. The advantage of the DE algorithm is that it has a simple structure and is
fast and robust. The DE algorithm uses mutation as the search mechanism and selection to direct the
search towards a better solution. The principal difference between the DE algorithm and the GA is that
the GA principally relies on crossover to obtain better solutions, whilst DE principally uses mutation
as the primary search mechanism.

Consider a minimization problem in nvar dimensions. The search space is to be explored using npop

trial solutions which are generated in the search space. The DE algorithm requires column vectors of
nvar real elements, denoted by xi , where i = 1, 2, ..., npop. In the terminology of DE the vectors xi

are called target vectors. This initial population is uniformly randomly distributed within the lower and
upper bounds specified for each dimension. We now describe the major steps in this process:

Mutation: To find a new approximation to x(k+1)
i for the (k + 1)th generation we select from a uniform

random distribution three target vectors from the current, kth, generation x(k)
r1 , x(k)

r2 , and x(k)
r3 such that

r1 	= r2 	= r3 	= i. The vector v(k+1)
i is called the mutant vector and is defined as

v(k+1)
i = x(k)

r1
+ F(x(k)

r2
− x(k)

r3
), i = 1, 2, ..., npop (9.15)

where F is a user specified constant which controls the amplitude of the differential variation
(x(k)

r2 − x(k)
r3 ). The optimal range for this weighting or scaling factor F has been found to be in the

range 0.5 to 1.0 although it can be in the range 0 to 2.

Crossover: The vector u(k+1)
i , called the candidate vector, is then obtained from

u
(k+1)
j i =

⎧⎨
⎩

v
(k+1)
j i if rj ≤ cr or j = si

x
(k)
ji if rj > cr and j 	= si

(9.16)

where i = 1, 2, ..., npop, j = 1, 2, ..., nvar , rj is a random number chosen from a uniform distribution
in the range 0 to 1, the crossover rate, cr is a user supplied constant, also in the range 0 to 1, and si is
a randomly chosen index in the range 1 to nvar . Thus (9.16) ensures that the candidate u(k+1)

i will not

be an exact copy of the target x(k)
i and will get at least one parameter from the mutant vector v(k+1)

i .

Selection: The final step is to compute the next generation of trial values x(k+1)
i . This requires a selec-

tion process which, for the minimization of the objective function f (x), is

x(k+1)
i =

⎧⎨
⎩

u(k+1)
i if f (u(k+1)

i ) ≤ f (x(k)
i )

x(k)
i if f (u(k+1)

i ) > f (x(k)
i )

(9.17)

where i = 1, 2, ..., npop. Using this new generation of trial solutions, the mutation, crossover, and
selection process is repeated until convergence is achieved. Note that the user is only required to specify
three parameters, the number of trial solutions, npop, together with F and cr .
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It is possible that one or more of the new trial values might lie outside the search space in one
or more dimensions. If that is the case, then one option is to simply take the trial value back to the
boundary of the search space. Alternatively, we might move the trial value as far inside the boundary
as it is currently outside the boundary. Thus, for the j th variable in the ith trial solution, xji , we apply
the following adjustment.

if xji > xj(max), then xji = xj (max)

if xji < xj(min), then xji = xj (min)

where xj (max) and xj (min) are the maximum and minimum values of the search space in the j th dimen-
sion. An alternative procedure to contain the trial values in the search space is

if xji > xj(max), then xji = 2xj (max) − xji

if xji < xj(min), then xji = 2xj (min) − xji

The differential evolution procedure is now illustrated by a simple example. One of many functions
used to test optimization algorithms is the Alpine 2 function. This function is

f (x) =
nvar∏
i=1

√
xi sin(xi)

where nvar is the number of variables or dimensions in the problem. The maximum of this function is
f (x∗) = 2.808nvar where x∗ = [7.917, 7.917, ...,7.917]. The search space is usually limited for each
variable in the range 0 to 10. Thus, if the problem has two variables, then the optimum of the function
is given by f (x∗) = 2.8082 = 7.8849.

We now seek to maximize this function in three variables. Since DE seeks the minimum of a
function, we seek to minimum of the negative of the Alpine 2 function; that is the test function we
wish to minimize is f (x) = −√

x1x2x3 sin(x1) sin(x2) sin(x3), We have chosen to make cr = 0.5 and
F = 0.8. We begin by randomly generating six trial solutions in the range 0 to 10, as shown in Table 9.5.
The table also shows values of the test function for each trial solution. The process for generating the
next set of trial vectors (for x1 and x6 only) is now described.

Initially, generate the parameters r1, r2, and r3 from a uniform random distribution of integers in
the range 1 to npop. In this case when i = 1, r1 = 3, r2 = 2, and r3 = 4 were randomly chosen; when
i = 6, r1 = 4, r2 = 2, and r3 = 5 were randomly chosen. Thus, substituting in (9.15) gives

v(1)
1 = x(0)

3 + 0.8(x(0)
2 − x(0)

4 ), v(1)
6 = x(0)

4 + 0.8(x(0)
2 − x(0)

5 )

The calculations are shown in Table 9.6. We now compare v and x, as shown in (9.16). In Table 9.7
a zero in the r > cr column indicates that the random number is less than cr , a one in the r > cr

column indicates the random number was greater than cr . It is seen that due to the numbers being
chosen randomly, the second element u1 is derived from x1, similarly the second and third elements of
u6 is taken from x6.

Having determined u1 and u6, we can compare f (x(0)
1 ) with f (u(0)

1 ), and f (x(0)
6 ) with f (u(0)

6 ).

From Table 9.7 we see that f (u(0)
1 ) < f (x(0)

1 ) and so from (9.17) we have x(1)
1 = u(0)

1 . Also from

Table 9.7 we see that f (x(0)
6 ) < f (u(0)

6 ) and hence, from (9.17), we have x(1)
6 = x(0)

6 .
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Table 9.5 Differential Evolution: randomly generated
trial solutions

x1 x2 x3 x4 x5 x6
8.1472 9.1338 2.7850 9.6489 9.5717 1.4189
9.0579 6.3236 5.4688 1.5761 4.8538 4.2176
1.2699 0.9754 9.5751 9.7059 8.0028 9.1574

f (x) 3.1749 0.0720 0.4592 0.7491 2.7637 −1.7015

Table 9.6 Showing v(1)
1 = x(0)

3 + 0.8(x(0)
2 − x(0)

4 ), v(1)
6 =

x(0)
4 + 0.8(x(0)

2 − x(0)
5 )

x3 x2 x4 v1 x4 x2 x5 v6
2.7850 9.1338 9.6489 2.3729 9.6489 9.1338 9.5717 1.8077
5.4688 6.3236 1.5761 9.2668 1.5761 6.3236 4.8538 2.1309
9.5751 0.9754 9.7059 2.5907 9.7059 0.9754 8.0028 0.7385

Table 9.7 Crossover: generating u from x or v

x1 v1 r1 > cr u1 x6 v6 r6 > cr u6
8.1472 2.3729 0 2.3729 1.4189 9.2986 0 9.2986
9.0579 9.2668 1 9.0579 4.2176 2.7519 1 4.2176
1.2699 2.5907 0 2.5907 9.1574 4.0840 1 9.1574

f (x) 3.1749 0.9740 −1.7015 −0.5546

Having described the DE algorithm, we provide a MATLAB implementation of it as follows:

function [min_res,min_x] = diffevo(funk, nvar, x0_min,x0_max, F, C, npop, ngen)
% Differential Evolution
% x0_min and x0_max are column vectors specifying the minimum and maximum
% values of each variable in the search space
% F is user defined mutation parameter 0.85 suggested
% C is user defined crossover parameter 0.5 suggested
% nvar is the numer of variables or dimensions
% npop is the size of the population
% ngen is the maximum number of generations for the search
x_rng = x0_max-x0_min;
% Generate initial locations for population
x = zeros(nvar,npop);
x_max = zeros(nvar,npop); x_min = zeros(nvar,npop);
xold = zeros(nvar,npop); v = zeros(nvar,npop); u = zeros(nvar,npop);
r = zeros(nvar,npop); ri = zeros(nvar,npop);
for i = 1:npop

x(:,i) = x0_min+x_rng.*rand(nvar,1);
x_max(:,i) = x0_max;
x_min(:,i) = x0_min;

end
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xold = x;
for gen = 1:ngen

% Mutation
for i = 1:npop

flg = 0;
while flg == 0

r = randi(npop);
if r~=i

r1 = r; flg = 1;
end

end
flg = 0;
while flg == 0

r = randi(npop);
if r~=i & r~=r1

r2 = r; flg = 1;
end

end
flg = 0;
while flg == 0

r = randi(npop);
if r~=i & r~=r1 & r~=r2

r3 = r; flg = 1;
end

end
v(:,i) = x(:,r1)+F*(x(:,r2)-x(:,r3));

end % End populations loop
r = rand(nvar,npop);
ri = randi(nvar,npop,1);
% Crossover and selection
for j = 1:npop

% Mutation
for i = 1:nvar

u(i,j) = v(i,j)*(r(i,j)<=C | j==ri(i,1))+x(i,j)*(r(i,j)>C & j~=ri(i,1));
end
% Selection
if feval(funk,u(:,j))<feval(funk,x(:,j))

x(1:nvar,j) = u(1:nvar,j);
end

end % End populations loop
% Limit x to search area.
for i = 1:nvar

for j = 1:npop
if x(i,j) > x_max(i)
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x(i,j) = x_max(i)-0.5*(x_max(i)-xold(i,j));
end
if x(i,j) < x_min(i)

x(i,j) = x_min(i)+0.5*(xold(i,j)-x_min(i));
end

end
end

end % End generations loop
for i = 1:npop

res(i) = feval(funk,x(:,i));
end
[min_res, idx] = min(res);
min_x = x(:,idx);

The script e4s904.m determines the maximum value of the Alpine 2 function by determining the
minimum of the negative of the function in 4 variables, we have:

%e4s904.m
clear all
format long
nvar = 4;
x0_min = zeros(nvar,1);
x0_max = 10*ones(nvar,1);
opt_f = -(2.808^nvar)
npop = 30;
ngen = 200;
min_x = zeros(nvar,1);
[min_res,min_x] = diffevo(’alpine2’, nvar, x0_min, x0_max, 0.8, 0.5, npop, ngen)
return
%--------------------------------------------------------
function f = alpine2(x)
nvar = length(x);
f = 1;
for i = 1:nvar

f = f*sqrt(x(i))*sin(x(i));
end
f = -f;
end

Running script e4s904.m, we have

>> e4s904

opt_f =
-62.171080298495987
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FIGURE 9.9

Contour plot of the Alpine 2 function showing the rapid convergence to the global maximum using Differential
Evolution. The bottom right contour plot is greatly expanded.

min_res =

-62.182698724243522

min_x =

7.917085939985708

7.917077617615944

7.917060106742505

7.917053640428087

Clearly, an accurate result is obtained after only 200 generations.
The ability of Differential Evolution to converge rapidly to a global minimum is illustrated in

Fig. 9.9. This shows the search for the global minimum of the negative of the Alpine 2 function. The
randomly generated initial population of 30 members rapidly converges to the global minimum. After
60 generations it is clear that the population has converged to the global minimum. More generations
are required to obtain the value of the global minimum accurately.

Fig. 9.10 shows convergence to the minimum value of the negative of the Alpine 2 function with 4
variables, using the DE algorithm with a population of 30. The three plots show the maximum (worst),
the mean, and the minimum (best) of the population. Convergence is to the exact value of the minimum,
−(2.808nvar ) = −62.1711.

The power of the DE algorithm is illustrated in Table 9.8. The data is derived by using 20 runs of
the MATLAB function diffevo. An optimization problem in 12 variables is demanding since there are
approximately 4000 local minima. The DE algorithm provides a good result for this problem. With
2000 generations the mean value obtained for the optimum is of the right order. Increasing the number
of generations to 4000 gives a much improved result.
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FIGURE 9.10

Graph showing the minimization of the negative of the Alpine 2 function in 4 variables. The plots show the
maximum, mean, and minimum values of the population for 200 generations of the DE algorithm. The
continuous line denotes the mean values and the dashed lines denote the maximum and minimum values.
Convergence is to the exact solution, shown by the horizontal line.

Table 9.8 Optimization of Alpine 2 function

var pop gen exact mean min
4 30 500 −6.217 × 10 −6.218 × 10 −6.218 × 10

8 30 1000 −3.865 × 103 −3.867 × 103 −3.867 × 103

12 30 2000 −2.403 × 105 −1.960 × 105 −2.404 × 105

12 30 4000 −2.403 × 105 −2.304 × 105 −2.404 × 105

The DE algorithm presented here is not the only form of differential evolution which has been
shown to be of value. Storn and Price (1997) have described and classified some of the alternative
forms. For example, one alternative is to replace (9.15) by

v(k+1)
i = x(k)

r1
+ F1(x(k)

r2
− x(k)

r3
) + F2(x(k)

r4
− x(k)

r5
) (9.18)

Here r1 	= r2 	= r3 	= r4 	= r5 	= i, and, usually, F1 = F2 = F and F is chosen to be in the range 0.5 ≤
F ≤ 1.

9.11 CONSTRAINED NON-LINEAR OPTIMIZATION
In this section we consider the problem of optimizing a non-linear function, subject to one or more
non-linear constraints. This problem can be expressed mathematically as follows:

Minimize f = f (x) where xT = [x1 x2 ... xn] (9.19)

subject to the constraints

hi(x) = 0 where i = 1, ..., p (9.20)
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Sometimes the minimization problem may have additional or alternative constraints that are of the
form

gj (x) ≥ bj where j = 1, ..., q (9.21)

To solve this problem we can use the Lagrange Multiplier Method. This method is not a purely
numerical method, it requires the user to apply calculus, and the resulting equations are solved numeri-
cally. For large problems this is too onerous for the user, and for this reason it is not a practical method
for solving this type of problem. However, it is theoretically important in the development of other,
more practical, methods.

If constraints of the form of (9.21) are present, they must be converted to the form of (9.20) as
follows. Let θ2

j = gj (x) − bj . If the constraint gj (x) ≥ bj is violated, then θ2
j is negative and θj is

imaginary. Thus, we have a requirement that for the constraints to be satisfied θj must be real. Thus
the constraint equation (9.21) becomes

θ2
j − gj (x) + bj = 0 where j = 1, ..., q (9.22)

This constraint equation is an equality constraint, as in (9.20).
To solve (9.19) we begin by forming the expression

L(x, θ ,λ) = f (x) +
p∑

i=1

λihi(x) +
q∑

j=1

λp+j [θ2
j − gj (x) + bj ] = 0 (9.23)

The function L is called the Lagrange function and the scalar quantities λi are called the Lagrange mul-
tipliers. We now minimize this function using calculus: hence we take the following partial derivatives
and set them to zero.

∂L/∂xk = 0, k = 1, ..., n

∂L/∂λr = 0, r = 1, ..., p + q

∂L/∂θs = 0, s = 1, ..., q

We will find that when we set the differentials with respect to λr to zero, we force both hi(x)

(i = 1,2, ..., n) and θ2
j − gj (x) + bj (j = 1,2, ..., q) to be zero. Thus the constraints are satisfied. If

these terms are zero then minimizing (9.23) is equivalent to minimizing (9.19) subject to (9.20) and
(9.21). If we are dealing with a quadratic function with linear constraints then the resulting equations
are all linear and relatively easy to solve.

Example 9.1. Consider the solution of a problem with a cubic function and quadratic constraints.

Minimize f = 2x + 3y − x3 − 2y2

subject to

x + 3y − x2/2 ≤ 5.5

5x + 2y + x2/10 ≤ 10

x, y ≥ 0
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To use the Lagrange method we change the form of the constraints to be equality constraints, thus:

Minimize f = 2x + 3y − x3 − 2y2

subject to

θ2
1 + x + 3y − x2/2 − 5.5 = 0

θ2
2 + 5x + 2y + x2/10 − 10 = 0

x, y ≥ 0

Hence, forming L we have

L = 2x + 3y − x3 − 2y2 + λ1(θ
2
1 + x + 3y − x2/2 − 5.5) + λ2(θ

2
2 + 5x + 2y + x2/10 − 10)

Taking partial derivatives of L and setting them to zero gives

∂L/∂x = 2 − 3x2 + λ1(1 − x) + λ2(5 + x/5) = 0 (9.24)

∂L/∂y = 3 − 4y + 3λ1 + 2λ2 = 0 (9.25)

∂L/∂λ1 = θ2
1 + x + 3y − x2/2 − 5.5 = 0 (9.26)

∂L/∂λ2 = θ2
2 + 5x + 2y + x2/10 − 10 = 0 (9.27)

∂L/∂θ1 = 2λ1θ1 = 0 (9.28)

∂L/∂θ2 = 2λ2θ2 = 0 (9.29)

If (9.28) and (9.29) are to be satisfied then there are four cases to consider as follows:

Case 1: θ2
1 = θ2

2 = 0. Then (9.12) through (9.27) become, with some rearrangement,

2 − 3x2 + λ1(1 − x) + λ2(5 + x/5) = 0

3 − 4y + 3λ1 + 2λ2 = 0

x + 3y − x2/2 − 5.5 = 0

5x + 2y + x2/10 − 10 = 0

Case 2: λ1 = θ2
2 = 0. Then (9.12) through (9.27) become, with some rearrangement,

2 − 3x2 + λ2(5 + x/5) = 0

3 − 4y + 2λ2 = 0

θ2
1 + x + 3y − x2/2 − 5.5 = 0

5x + 2y + x2/10 − 10 = 0

Case 3: θ2
1 = λ2 = 0. Then (9.12) through (9.27) become, with some rearrangement,

2 − 3x2 + λ1(1 − x) = 0

3 − 4y + 3λ1 = 0

x + 3y − x2/2 − 5.5 = 0

θ2
2 + 5x + 2y + x2/10 − 10 = 0
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Case 4: λ1 = λ2 = 0. Then (9.12) through (9.27) become, with some rearrangement,

2 − 3x2 = 0

3 − 4y = 0

θ2
1 + x + 3y − x2/2 − 5.5 = 0

θ2
2 + 5x + 2y + x2/10 − 10 = 0

The solution of these sets of non-linear equations requires some iterative procedure. The MATLAB

function fminsearch finds the minimum of a scalar function of several variables, given an initial esti-
mate. The application of this function to this problem is illustrated for Case 1 in the MATLAB script
e4s905. Since the right side of each equation is zero, when the solution is found, the function

[2 − 3x2 + λ1(1 − x) + λ2(5 + x/5)]2 + [3 − 4y + 3λ1 + 2λ2]2 + ...

[x + 3y − x2/2 − 5.5]2 + [5x + 2y + x2/10 − 10]2

should equal zero. The MATLAB function fminsearch will choose values of x, y, λ1, and λ2 to min-
imize this expression and bring it very close to zero. This is generally referred to as unconstrained
non-linear optimization. Thus we have converted a constrained optimization to an unconstrained one.

% e4s905.m
g = @(X) sqrt((2-3*X(1).^2+X(3).*(1-X(1))+X(4).*(5+X(1)/5)).^2 ...

+(3-4*X(2)+3*X(3)+2*X(4)).^2+(X(1)+3*X(2)-X(1).^2/2-5.5).^2 ...
+(5*X(1)+2*X(2)+X(1).^2/10-10).^2);

X = fminsearch(g, [1 1 1 1]);
x = X(1); y = X(2); f = 2*x+3*y-x^3-2*y^2;
lambda_1 = X(3); lambda_2 = X(4);
disp(’Case 1’)
disp([’x = ’ num2str(x) ’, y = ’ num2str(y) ’, f = ’ num2str(f)])
disp([’lambda_1 = ’ num2str(lambda_1) ...

’, lambda_2 = ’ num2str(lambda_2)])

Executing this script gives

Case 1
x = 1.2941, y = 1.6811, f = -0.18773
lambda_1 = 0.82718, lambda_2 = 0.62128

Cases 2, 3, and 4 can also be solved in a similar manner using the function fminsearch. However,
the details of the MATLAB scripts are not shown; only the results are provided in Table 9.9.

Comparing the values of f computed for each case and shown in Table 9.9, it is clear that Case 1
gives the minimum solution. Fig. 9.11 shows the function, the constraints, and the four possible solu-
tions. The optimal solution is not necessarily at the intersection of the constraint boundaries as it is in a
linear system. All solutions are feasible but only Case 1 is the global minimum. Case 2 and Case 3 are
local minima at the constraint boundary and Case 4 is a local maximum. It should be noted that often
one or more solutions will not be feasible; that is they will not satisfy the constraints.
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Table 9.9 Possible solutions of a minimization problem

Case θ2
1 θ2

1 λ1 λ2 x y f

1 0 0 0.8272 0.6213 1.2941 1.6811 −0.1877
2 1.5654 0 0 0.8674 1.4826 1.1837 0.4552
3 0 2.3236 1.2270 0 0.8526 1.6703 0.5166
4 2.7669 4.3508 0 0 0.8165 0.7500 2.2137

FIGURE 9.11

Graph showing the objective function and constraints for Example 9.1. The four solutions are also indicated.

9.12 THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE
We now give a brief introduction to a standard method for constrained optimization. The Sequen-
tial Unconstrained Minimization Technique (SUMT) method for constrained optimization converts the
solution of a constrained optimization problem to the solution of a sequence of unconstrained prob-
lems. This method was developed by Fiacco and McCormick and others in the 1960s. See Fiacco and
McCormick (1968, 1990).

Consider the optimization problem:

Minimize f (x) subject to

gi(x) ≥ 0 for i = 1,2, ..., p

hj (x) = 0 for j = 1,2, ..., s

where x is an n component vector. By using barrier and penalty functions, the requirements of the
constraints can be included with the function to be minimized so that the problem is converted to the
unconstrained problem:

Minimize f (x) − rk

p∑
i=1

loge(gi(x)) + 1

rk

s∑
j=1

hj (x)2
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FIGURE 9.12

Graph of loge(x).

Notice the effect of the added terms. The first term imposes a barrier at zero on the inequality
constraints in that as the gi(x) approaches zero the function approaches minus infinity, thus imposing
a substantial penalty. Fig. 9.12 illustrates this. The last term encourages the satisfaction of the equality
constraints hj (x) = 0 since the smallest amount is added when all the constraints are zero; otherwise
a substantial penalty is imposed. This means that this approach encourages the maintenance of the
feasibility of the solution assuming we start with an initial solution which is within the feasible region
of the inequality constraints. These methods are sometimes called interior point methods.

A sequence of problems are generated by starting with an arbitrarily large value for r0 and then
using rk+1 = rk/c where c > 1 and solving the resulting sequence of unconstrained optimization prob-
lems. The unconstrained minimization steps may of course present formidable difficulties for some
problems. A simple stopping criterion is to examine the difference between the value of f (x) between
successive unconstrained optimizations. If the difference is less than a specified tolerance then stop the
procedure.

There are various alternatives to this algorithm: for example, a reciprocal barrier function can be
used instead of the preceding logarithmic function. The barrier term can be replaced by a penalty
function term of the form

p∑
i=1

max(0, gi(x))2

This term will add a substantial penalty if gi(x) < 0; otherwise, no penalty is applied. This method
has the advantage that feasibility is not required and is called an exterior point method. However, the
resulting unconstrained problems may present additional problems for the unconstrained minimization
procedure. For more details on these methods see Lasdon et al. (1996).

Although purpose-built software is available for this method, a very simple illustration of its
operation is given. The program shows some steps of the method for solving a constrained mini-
mization problem notice that care must be taken in the choice of the initial r value and its reduc-
tion factor. To avoid the need for the derivative of the objective function, of the MATLAB function
fminsearch is used in the solution of the following unconstrained problem. We first use the interior
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point method.

Minimize f = x2
1 + 100x2

2

subject to

4x1 + x2 ≥ 6

x1 + x2 = 3

x1, x2 ≥ 0

% e4s906.m
r = 10; x0 = [5 5]
while r>0.01

fm = @(x) x(1).^2+100*x(2).^2-r*log(-6+4*x(1)+x(2)) ...
+1/r*(x(1)+x(2)-3).^2-r*log(x(1))-r*log(x(2));

x1 = fminsearch(fm,x0);
r = r/5;
x0 = x1

end
optval = x1(1).^2+100*x1(2).^2

Running script e4s906.m gives

x0 =
5 5

x0 =
3.6097 0.2261

x0 =
2.1946 0.1035

x0 =
2.2084 0.0553

x0 =
2.7463 0.0377

x0 =
2.9217 0.0317

optval =
8.6366

This shows convergence to the optimum solution (3,0) which satisfies the constraints. Using the
exterior point method to solve the same problem we have:
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% e4s907.m
r = 10; x0 = [5 5]
while r>0.01

fm = @(x) x(1).^2+100*x(2).^2+1/r*min(0,(-6+4*x(1)+x(2))).^2 ...
+1/r*(x(1)+x(2)-3).^2+1/r*min(0,x(1)).^2+1/r*min(0,x(2)).^2;

x1 = fminsearch(fm,x0);

r = r/5;
x0 = x1

end
optval = x1(1).^2+100*x1(2).^2

Script e4s907.m gives:

x0 =
5 5

x0 =
0.9993 0.0040

x0 =

1.4186 0.0094

x0 =
2.1276 0.0213

x0 =
2.7523 0.0275

x0 =
2.9239 0.0293

optval =
8.6350

Clearly the results are very similar.

9.13 SUMMARY
In this chapter we have introduced a number of more advanced areas of numerical analysis. The genetic
algorithm, differential evolution, and simulated annealing are still topics for active research and devel-
opment and are mainly used to tackle difficult optimization problems. The conjugate gradient method
is a well established and widely used for problems which present a range of difficulties. In this chap-
ter MATLAB functions are provided to allow the reader to experiment and explore the problems more
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deeply. However, it must be remembered that no optimization technique is guaranteed to solve all op-
timization problems. The structure of the algorithms is well reflected by the structure of the MATLAB

functions.
The MathWorks Optimization toolbox provides a useful range of optimization functions which may

be used in both education and research.
Note: For readers who a have particular interest in applying MATLAB to optimization problems,

MATLAB provides an Optimization Toolbox.

9.14 PROBLEMS
9.1. Use the function barnes to Minimize z = 5x1 + 7x2 + 10x3 subject to x1 + x2 + x3 ≥ 4,

x1 + 2x2 + 4x3 ≥ 5, and x1, x2, x3 ≥ 0.
9.2. Maximize p = 4y1 + 5y2 subject to y1 + y2 ≤ 5, y1 + 2y2 ≤ 7, y1 + 4y2 ≤ 10, and y1, y2 ≥ 0.

By introducing slack variables and subtracting one from each equality, write the constraints as
equalities. Hence apply the function barnes to solve this problem. Notice that the optimum
value of p for this problem is equal to the optimum value of z in Problem 9.1. Problem 9.2 is
the dual of Problem 9.1. Thus, the optima of the objective function of Problem 9.1 and its dual,
Problem 9.2, should be equal.

9.3. Maximize z = 2u1 − 4u2 + 4u3 subject to u1 + 2u2 +u3 ≤ 30, u1 +u2 = 10, u1 +u2 +u3 ≥ 8,
and u1, u2, u3 ≥ 0 using the function barnes.

Hint: Remember to use slack variables to ensure that the main constraints are equalities.
9.4. Use the function mincg, with tolerance 0.005, to minimize Rosenbrock’s function

f (x, y) = 100
(
x2 − y

)2 + (1 − x)2

starting with the initial approximation x = 0.5, y = 0.5 and using a line-search accuracy 10
times the machine precision in the MATLAB function fminsearch. To obtain an impression of
how this function varies, plot it, using MATLAB, in the range 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

9.5. Use the function mincg, with tolerance 0.00005, to minimize the five-variable function

z = 0.5(x4
1 − 16x2

1 + 5x1) + 0.5(x4
2 − 16x2

2 + 5x2) + . . .

+(x3 − 1)2 + (x4 − 1)2 + (x5 − 1)2

Use x1 = 1, x2 = 2, x3 = 0, x4 = 2, and x5 = 3 for the starting values in mincg. Experiment
further with other starting values.

9.6. Use the function solvercg to solve the matrix equation Ax = b where

A =

⎡
⎢⎢⎣

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤
⎥⎥⎦ b =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦

Check the accuracy of the solution by finding the value of norm(b-Ax).
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9.7. Maximize the function z(x, y) = 1/{(x − 1)2 + 2} + 1/{(y − 1)2 + 2} in the range x, y = 0 to
2 using the function diffevo. Use different initial population sizes, coefficients C and F , and
numbers of generations. Notice that this is not a simple exercise since for each set of conditions
it is necessary to solve the problem several times to take account of the random nature of the
process. Given that the optimum value of the function is 0.5, plot the error in the optimum
value of the function for each run under a particular set of parameters. Then change one of the
parameters and repeat the process. Differences in the error plots may or may not be discernible.

9.8. Plot the function z = x2 +y2 in the range −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. The differential evolution
function with appropriate parameters

9.9. Use the function golden, given in Section 9.3 to minimize the single-variable function: y =
e−x cos(3x) for x in the range 0 to 2. Use a tolerance of 0.00001. You should check your result
by using the MATLAB function fminsearch to minimize the same function in the same range.
As a further confirmation you might plot the function in the range 0 to 4 using the MATLAB

function fplot.
9.10. Use the simulated annealing function asaq (with the same values of parameters used in the call

of the function in Section 9.8) to minimize the two-variable function f , where

f = (x1 − 1)2 + 4(x2 + 3)2

Compare your result with the exact answer which is clearly, x1 = 1 and x2 = −3. This function
has only one minimum in the region considered. As a more demanding test, use the same call
as used for the preceding function to minimize the function f where

f = 0.5
(
x4

1 − 16x2
1 + 5x1

) + 0.5
(
x4

2 − 16x2
2 + 5x2

)−
10 cos {4 (x1 + 2.9035)} cos {4 (x2 + 2.9035)}

The global optimum for this problem is x1 = −2.9035 and x2 = −2.9035. Try several runs of
function asaq for this problem. All runs may not provide the global optimum since this problem
has many local optima.

9.11. A method for solving a system of non-linear equations is to re-express them as an optimization
problem. Consider the system of equations:

2x − sin((x + y)/2) = 0

2y − cos((x − y)/2) = 0

These can be rewritten as

Minimize z = (2x − sin((x + y)/2))2 + (2y − cos((x − y)/2))2

Use the MATLAB function minscg to minimize this function use the starting point x = 10 and
y = −10.

9.12. Write a MATLAB script that provides three-dimensional plots for the function z = f (x, y) de-
fined as follows:

z = f (x, y) = (1 − x)2e−p − pe−p − e(−(x+1)2−y2)
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where p is defined by

p = x2 + y2

for x and y in the range x = −4 : 0.1 : 4 and y = −4 : 0.1 : 4. The script should use the MATLAB

surf and contour functions to provide separate three-dimensional and contour plots. Use the
MATLAB function ginput to select and assign to an appropriate matrix three points which ap-
pear to be optimal on the contour plot. Use the function z = f (x, y) defined earlier to find the
values of z for these points. Then find the maximum and minimum of these z values using the
MATLAB functions max and min. Finally, approximate the global minimum and maximum of the
function.
An alternative method of finding the minimum is to use the MATLAB function fminsearch in
the form x = fminsearch(funxy,xv), where funxy is an anonymous function or user-defined
function given by the user and xv = [-4 4] is a vector of initial approximations to the location
of the minimum. Experiment with different initial approximations to see if your results vary.

9.13. Solve the minimization problem described in Problem 9.12 using differential evolution.
9.14. Write a MATLAB script to minimize f (x) = x4

1 + x2
2 + x1 subject to 4x3

1 + x2 ≥ 6, x1 + x2 = 3,
and x1, x2 ≥ 0. Use the sequential unconstrained minimization technique with a logarithmic
barrier function and an initial approximation vector of x = [5, 5]. Use an initial value for the
parameter r0 of 10, a reduction parameter c = 5 and rk+1 = rk/c. Continue iterations while rk
is greater than 0.0001.

9.15. Write a MATLAB script to solve the constrained optimization problem described in Prob-
lem 9.14. However, use the penalty function of the form [min(0, gi(x))]2 instead of the log-
arithmic barrier function where the gi(x) are the greater than or equal to the constraints. Use
the same initial starting point and values for r0 and c. Compare the solution you find with this
method to that which was achieved with Problem 9.14.

9.16. Solve the Rosenbrock’s two variable optimization problem:

Minimize f (x) = 100(x2 − x2
1)2 + (1 − x1)

2

Using the MATLAB function asaq with initial approximation [−1.2 1]. With quenching factor
0.9, the upper and lower bounds for the variables given by −10 and 10, respectively, initial
temperature value of 100 and the maximum number of main iterations equal to 800. The solution
to this problem is [1 1].

9.17. Using the MATLAB function given for the method of differential evolution, optimize the follow-
ing functions:
(a) Rastrigin’s function:

f (x) = An +
n∑

i=1

[x2
i − A cos(2πxi)]

where A = 10. The region in which the function is defined is for xi values in the range: −5.12 ≤
xi ≤ 5.12 for all i. The global optimum is given by f ((x)) = 0, where x = [0 0 0 ... 0]. Minimize
this function for n = 4, 6, and 8.
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(b) Easom’s function is the two variable problem:

f (x, y) = − cos(x) cos(y) exp
[
−

(
(x − π)2 + (y − π)2

)]

Determine the minimum of this function, searching in the range −50 ≤ x, y ≤ 50. The global
solution of this problem is given by f (π,π) = 1. Increase the search range to −60 ≤ x, y ≤ 60
and then −80 ≤ x, y ≤ 80 and finally −100 ≤ x, y ≤ 100. Does this increase the difficulty of
minimizing the function?
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CHAPTER

APPLICATIONS OF THE
SYMBOLIC TOOLBOX

Abstract

The Symbolic Toolbox provides an extensive list of functions for the symbolic manipulation of sym-
bolic expressions and equations. In this chapter, we illustrate by examples the use of a wide range
functions used for symbolic manipulation.

10.1 INTRODUCTION TO THE SYMBOLIC TOOLBOX
Originally, the MATLAB Symbolic Tool box used the Maplesoft symbolic software to carry out the
symbolic operations and pass the results to MATLAB. However, since late 2008 MATLAB has used
MuPAD for its symbolic engine. This change has caused minor changes in the way results are pre-
sented, but the results are generally equivalent. Also, from 2016, the MATLAB live editor can be used
with the symbolic toolbox.

Since we are also using the Symbolic Toolbox in the field of numerical analysis we begin by giving
some examples of the beneficial application of this toolbox. It provides:

1. the symbolic first derivative of a given single-variable non-linear function which, for example, is
required by Newton’s method for the solution of single-variable non-linear equation, see Chapter 3,

2. the Jacobian for a system of non-linear simultaneous equations, see Chapter 3,
3. the symbolic gradient vector of a given non-linear function which is required, or example, for the

conjugate gradient method for minimizing a non-linear function, see Chapter 9.

An important feature of the Symbolic Toolbox is that it allows an extra dimension of experimentation.
For example, a user can test a given numerical algorithm by solving a test problem symbolically,
providing it has a solution in the closed form, and compare this exact solution with a numerical solution.
In addition, the study of the accuracy of computations can be enhanced using the Symbolic Toolbox
variable-precision arithmetic feature. This feature allows the user to perform certain computations to
an unlimited precision.

In Sections 10.2 through 10.14 we provide an introduction to some of the Symbolic Toolbox fea-
tures but it is not our intention to provide details of all the features. In Section 10.15 we describe
applications of the Symbolic Toolbox to specific numerical algorithms.

Numerical Methods. https://doi.org/10.1016/B978-0-12-812256-3.00019-1
Copyright © 2019 Elsevier Inc. All rights reserved.
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10.2 SYMBOLIC VARIABLES AND EXPRESSIONS
The first key point to note is that symbolic variables and expressions are different from the standard
variables and expressions of MATLAB, and we must distinguish clearly between them. Symbolic vari-
ables and symbolic expressions are not required to have numerical values but rather define a structural
relationship between symbolic variables, i.e. an algebraic expression.

To define any variable as a symbolic variable the sym function must be used thus:

>> x = sym(’x’)

x =
x

>> d1 = sym(’d1’)

d1 =
d1

Alternatively, we can use the statement syms to define any number of symbolic variables. Thus, for
example

>> syms a b c d3

provides four symbolic variables a, b, c, and d3. Note that there is no output to the screen. The key
word syms is a useful short-cut for the definition of variables and we have used this approach in this
text. To check which variables have been declared as symbolic we can use the standard whos command.
Thus if we use this command after the syms declaration, above we obtain

>> whos
Name Size Bytes Class Attributes

a 1x1 8 sym
b 1x1 8 sym
c 1x1 8 sym
d1 1x1 8 sym
d3 1x1 8 sym
x 1x1 8 sym

Once variables have been defined as symbolic then expressions can be written using them directly in
MATLAB and they will be treated as symbolic expressions. For example, once x has been defined as a
symbolic variable, the statement

>> syms x
>> 1/(1+x)

produces the symbolic expression

ans =
1/(x + 1)
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To set up a symbolic matrix we first define any symbolic variables involved in the matrix. Then we
enter the statement which defines the matrix in terms of these symbolic variables in the usual manner.
On execution the matrix will be displayed as shown below.

>> syms x y
>> d = [x+1 x^2 x-y;1/x 3*y/x 1/(1+x);2-x x/4 3/2]

d =
[ x + 1, x^2, x - y]
[ 1/x, (3*y)/x, 1/(x + 1)]
[ 2 - x, x/4, 3/2]

Note that d is automatically made symbolic by the assignment of a symbolic expression. We can address
individual elements or specific rows and columns in the usual way, thus:

>> d(2,2)

ans =
(3*y)/x

>> c = d(2,:)

c =
[ 1/x, (3*y)/x, 1/(x + 1)]

We now consider the manipulation of a symbolic expression. First we set up a symbolic expression
thus:

>> e = (1+x)^4/(1+x^2)+4/(1+x^2)

e =
(x + 1)^4/(x^2 + 1) + 4/(x^2 + 1)

To see more clearly what this expression represents we can use the function pretty to get a more
conventional layout of the function thus:

>> pretty(e)

4
(x + 1) 4
-------- + ------
2 2

x + 1 x + 1

Not very pretty! We can simplify the symbolic expression e using the function simplify:

>> simplify(e)

ans =
x^2 + 4*x + 5
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We can expand expressions using expand thus:

>> syms x p; p = expand((1+x)^4)

p =
x^4 + 4*x^3 + 6*x^2 + 4*x + 1

Note the layout of this and other expressions may vary slightly from one computer platform to another.
The expression for p, in turn, can be rearranged into a nested form using the function horner thus:

>> horner(p)

ans =
x*(x*(x*(x + 4) + 6) + 4) + 1

We may factorize expressions using the function factor. Declaring a, b, and c as symbolic vari-
ables, then

>> syms a b c
>> factor(a^3+b^3+c^3-3*a*b*c)

ans =
[ a + b + c, a^2 - a*b - a*c + b^2 - b*c + c^2]

This has produced 2 factors.
The function simplify, as its name suggests, attempts to simplify expressions. Thus

>> syms a b
>> simplify(a^3+3*a^2*b+3*b^2*a+b^3)

ans =
(a + b)^3

>> simplify((1+a)/(1+a)^2)

ans =
1/(a + 1)

When manipulating algebraic, trigonometric, and other expressions, it is important to be able to
substitute an expression or constant for any given variable. For example,

>> syms u v w
>> fmv = pi*v*w/(u+v+w)

fmv =
(pi*v*w)/(u + v + w)

Now we substitute for various variables in this expression. The following statement substitutes the
symbolic expression 2*v for the variable u:
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>> subs(fmv,u,2*v)

ans =
(v*w*pi)/(3*v + w)

The following statement substitutes the symbolic constant 1 for the variable v in the previous result
held in ans:

>> subs(ans,v,1)

ans =
(pi*w)/(w + 3)

Finally, we substitute the symbolic constant 1 for w to give

>> subs(ans,w,1)

ans =
pi/4

As a further example of the use of the subs function, consider the statements:

>> syms y
>> f = 8019+20412*y+22842*y^2+14688*y^3+5940*y^4 ...

+1548*y^5+254*y^6+24*y^7+y^8;

Now to substitute x-3 for y we use:

>> subs(f,y,x-3)

ans =
20412*x + 22842*(x - 3)^2 + 14688*(x - 3)^3 + 5940*(x - 3)^4

+ 1548*(x - 3)^5 + 254*(x - 3)^6 + 24*(x - 3)^7 + (x - 3)^8 - 53217

Using the collect function to collect terms having the same power of x, we obtain a major simplifica-
tion as follows:

>> collect(ans)

ans =
x^8 + 2*x^6

The process of rearranging and simplifying algebraic and transcendental expressions is difficult and
the Symbolic Toolbox can be both powerful and frustrating. Powerful because, as we have shown, it is
capable of simplifying complex expressions; frustrating because it sometimes fails on relatively simple
problems.
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10.3 VARIABLE PRECISION ARITHMETIC IN SYMBOLIC CALCULATIONS
In symbolic calculations involving numerical values, the function vpa, standing for variable precision
arithmetic, may be used to obtain any number of decimal places. It should be noted that the result of
using this function is a symbolic constant, not a numerical value. Thus to provide

√
6 to 100 places

we write vpa(sqrt(6),100). Clearly the accuracy here is not restricted to 16 decimal places as in
ordinary arithmetic calculations. A nice illustration of this feature is given below where we provide
an implementation of the famous algorithm of the Borwein’s which amazingly quadruples the number
of accurate decimal places of π at each iteration!We include script e4sX01.m for illustration only;
MATLAB can give π to as many digits as required by writing, for example, vpa(pi,100).

% Script e4sX01.m Borwein iteration for pi
n = input(’Enter number of iterations’);
n = n-1;
y0 = sqrt(2)-1; a0 = 6-4*sqrt(2);
np = 4;
for k = 0:n

yv = (1-y0^4)^0.25; y1 = (1-yv)/(1+yv);
a1 = a0*(1+y1)^4-2.0^(2*k+3)*y1*(1+y1+y1^2);
rpval = a1; pval = vpa(1/rpval,np)
a0 = a1; y0 = y1; np = 4*np;

end

The results of four iterations are given below

enter n 3

n =
3

pval =
3.142

pval =
3.141592653589793

pval =
3.141592653589793238462643383279502884197169399375105820974944592

pval =
3.141592653589793238462643383279502884197169399375105820974944592
30781640628620899862803482534211706798214808651328230664709384460
95505822317253594081284811174502841027019385211055596446229489549
30381964428810975665933446128475648233786783165271201909145649

pval-vpa(pi,100)
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ans =
2.0908055377181642372760353024684e-108

A very small difference!
Theoretically, the function vpa can be utilized to give results to any number of decimal places. An
excellent introduction to the computation of π is given by Bailey (1988).

10.4 SERIES EXPANSION AND SUMMATION
In this section we consider both the development of series approximations for functions and the sum-
mation of series.

We begin by showing how a symbolic function can be expanded in the form of a Taylor series using
the MATLAB function taylor(f,n). This provides the (n − 1)th-degree polynomial approximation for
the symbolically defined function f. If the taylor function has only one parameter, then it provides the
fifth-degree polynomial approximation for that function. Consider the following examples:

>> syms x
>> taylor(cos(exp(x)),’Order’,4)

ans =
- (cos(1)*x^3)/2 + (- cos(1)/2 - sin(1)/2)*x^2 - sin(1)*x + cos(1)

This provides an expansion to x3.

>> s = taylor(exp(x),’Order’,8)

s =
x^7/5040 + x^6/720 + x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

The series expansion for the exponential function can be summed using the function symsum with
x = 0.1. To use this function we must know the form of the general term. In this case the series
definition is

e0.1 =
∞∑

r=1

0.1r−1

(r − 1)! or
∞∑

r=1

0.1r−1

� (r)

Thus, to sum the first eight terms, that is 1 to 8, we have

>> syms r
>> symsum((0.1)^(r-1)/gamma(r),1,8)

ans =
55700614271/50400000000

This can then be evaluated using the function double thus:



492 CHAPTER 10 APPLICATIONS OF THE SYMBOLIC TOOLBOX

>> double(ans)

ans =
1.1052

In this example, a simple alternative is to use the function subs to replace x by 0.1 in the symbolic
function represented by s, and then use double to evaluate it, as follows:

>> double(subs(s,x,0.1))

ans =
1.1052

This gives a good approximation since we can see that, as a non-symbolic process,

>> exp(0.1)

ans =
1.1052

The function symsum can be used to perform many different summations using different combina-
tions of parameters. The following examples illustrate the different cases. To sum the series

S = 1 + 22 + 32 + 42 + . . . + n2 (10.1)

for 1 to n we proceed as follows:

>> syms r n
>> symsum(r*r,1,n)

ans =
(n*(2*n + 1)*(n + 1))/6

Another example is to sum the series

S = 1 + 23 + 33 + 43 + . . . + n3 (10.2)

Here we use

>> symsum(r^3,1,n)

ans =
(n^2*(n + 1)^2)/4

Infinity can be used as an upper limit. As an example of this, consider the following infinite sum:

S = 1 + 1

22
+ 1

32
+ 1

42
+ . . .

1

r2
+ . . .

Summing an infinity of terms, we have
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>> symsum(1/r^2,1,inf)

ans =
pi^2/6

This is an interesting series and is a particular case of the Riemann Zeta function (implemented in
MATLAB by zeta(k)) which gives the sum of the following series

ζ(k) = 1 + 1

2k
+ 1

3k
+ 1

4k
+ . . . + 1

rk
+ . . . (10.3)

For example:

>> zeta(2)

ans =
1.6449

>> zeta(3)

ans =
1.2021

A further interesting example is a summation involving the gamma function written �(r), where
�(r) = 1 × 2 × 3 × ...× (r − 2)(r − 1) = (r − 1)! for integer values of r . This function is implemented
in MATLAB by gamma(r). For example, to sum the following series to infinity

S = 1 + 1

1
+ 1

2! + 1

3! + . . . + 1

r! + . . .

we use the MATLAB statement

>> symsum(1/gamma(r),1,inf)

ans =
exp(1)

>> vpa(ans,100)

ans =
2.71828182845904523536028747135266249775724709369995957496696762
7724076630353547594571382178525166427

Notice that the use of the vpa function leads to an interesting evaluation of e to a large number of
decimal places.

A further example of summation is given by

S = 1 + 1

1! + 1

(2!)2
+ 1

(3!)2
+ 1

(4!)2
+ . . .
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In MATLAB, this becomes

>> symsum(1/gamma(r)^2,1,inf)

ans =
hypergeom([], 1, 1)

>> vpa(hypergeom([], 1, 1),20)

ans =
2.279585302336066821

Gauss’s hypergeometric function is described by Abramowitz and Stegun (1965) or Olver et al. (2010).
It can be evaluated under certain conditions; use MATLAB help hypergeom for further information.

10.5 MANIPULATION OF SYMBOLIC MATRICES
Some of the MATLAB functions, such as eig, that can be applied to numerical matrices can also be
applied directly to symbolic matrices. However, these features must be used with care for two reasons.
Firstly, manipulating large symbolic matrices can be a very slow process. Secondly, the symbolic re-
sults derived from such operations can be of such algebraic complexity that it is difficult or almost
impossible to obtain insight into the meaning or structure of the matrix.

We will begin by finding the eigenvalues of a simple 4 × 4 matrix expressed in terms of two sym-
bolic variables.

>> syms a b
>> Sm = [a b 0 0;b a b 0;0 b a b;0 0 b a]

Sm =
[ a, b, 0, 0]
[ b, a, b, 0]
[ 0, b, a, b]
[ 0, 0, b, a]

>> eig(Sm)

ans =
a - b/2 - (5^(1/2)*b)/2
a - b/2 + (5^(1/2)*b)/2
a + b/2 - (5^(1/2)*b)/2
a + b/2 + (5^(1/2)*b)/2

In this problem the expressions for the eigenvalues are quite simple. In contrast, we will now consider
an example which appears to be equally simple in its original structure but develops into a problem
with eigenvalues that are much more complicated.
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>> syms A p
>> A = [1 2 3;4 5 6;5 7 9+p]

A =
[ 1, 2, 3]

[ 4, 5, 6]

[ 5, 7, p + 9]

Inspection of this matrix reveals that if p = 0, the matrix is singular. Evaluating the determinant of the
matrix, we have

>> det(A)

ans =
-3*p

From this simple result it can immediately be seen that as p tends to zero, the determinant of the matrix
tends to zero, indicating that the matrix is singular. Inverting the matrix A gives

>> B = inv(A)

B =

[ -(5*p + 3)/(3*p), (2*p - 3)/(3*p), 1/p]

[ (2*(2*p + 3))/(3*p), -(p - 6)/(3*p), -2/p]
[ -1/p, -1/p, 1/p]

This is much more difficult to interpret, although it can be seen that as p tend to zero, each element
of the inverse matrix tends to infinity; i.e., the inverse does not exist. Note that every element of this
inverse matrix is a function of p whereas only one element of the original matrix is a function of p.
Finally, we can compute the eigenvalues of the original matrix using the statement v = eig(A). The
value of the symbolic object v is not shown here because it is so long and complicated. We can find out
how many characters (including spaces) that are required to express the three eigenvalues symbolically
as follows:

>>n = length(char(v))

n =

1722

This output is very difficult to read, let alone understand. Using the pretty print facility (pretty) im-
proves the situation, but the output is still requires 106 character spaces per line – far more than can be
displayed on this page.

The following scripts compute the eigenvalues both symbolically and numerically. In each case the
parameter p is varied from 0 to 2 in steps of 0.1. However, only the eigenvalues which correspond to
p = 0.9 and 1.9 are displayed. The script e4sX02.m determines the eigenvalues symbolically, and then
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the values of p are substituted into the symbolic eigenvalue expressions using the function subs; then
the function double is used to provide the numerical results.

% e4sX02.m
disp(’Script 1; Symbolic - numerical solution’)
c = 1; v = zeros(3,21);
tic
syms a p u w
a = [1 2 3;4 5 6;5 7 9+p];
w = eig(a); u = [ ];
for s = 0:0.1:2

u = [u,subs(w,p,s)];
end
v = sort(real(double(u)));
toc
v(:,[10 20])

Running script e4sX02.m gives

Script 1; Symbolic - numerical solution
Elapsed time is 0.423691 seconds.

ans =
-0.4255 -0.4384
0.3984 0.7854

15.9270 16.5530

An alternative approach is to find the eigenvalues of the same matrix by substituting numerical values
of p into the numerical matrix and then computing the eigenvalues. The script e4sX03.m carries out
this process. Again, only the eigenvalues for p = 0.9 and 1.9 are displayed.

% e4sX03.m
disp(’Script 2: Numerical solution’)
c = 1; v = zeros(3,21);
tic
for p = 0:.1:2

a = [1 2 3;4 5 6;5 7 9+p];
v(:,c) = sort(eig(a));
c = c+1;

end
toc
v(:,[10 20])

Running script e4sX03.m gives

Script 2: Numerical solution
Elapsed time is 0.000415 seconds.
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ans =
-0.4255 -0.4384
0.3984 0.7854

15.9270 16.5530

As expected, the methods give identical results and show that the eigenvalues are real. Note that the
symbolic approach is much slower.

We conclude this section with an example which illustrates the advantage of the symbolic approach
for certain problems. We wish to find the eigenvalues of a matrix which can be generated using the
MATLAB statement gallery(5). We will begin by finding the eigenvalues of this matrix in a non-
symbolic way.

>> B = gallery(5)

B =
-9 11 -21 63 -252
70 -69 141 -421 1684

-575 575 -1149 3451 -13801
3891 -3891 7782 -23345 93365
1024 -1024 2048 -6144 24572

>> format long e
>> eig(B)

ans =
-3.472940132398842e-02 + 2.579009841174434e-02i
-3.472940132398842e-02 - 2.579009841174434e-02i
1.377760760018629e-02 + 4.011025813393478e-02i
1.377760760018629e-02 - 4.011025813393478e-02i
4.190358744843689e-02 + 0.000000000000000e+00i

The eigenvalues appear to be small. One eigenvalue is real and the remainder are complex conjugate
pairs. However, using the symbolic approach we have

>> A = sym(gallery(5))

A =
[ -9, 11, -21, 63, -252]
[ 70, -69, 141, -421, 1684]
[ -575, 575, -1149, 3451, -13801]
[ 3891, -3891, 7782, -23345, 93365]
[ 1024, -1024, 2048, -6144, 24572]

>> eig(A)
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ans =
0
0
0
0
0

How do we verify which of these two solutions is correct? If we rearrange the eigenvalue problem into
the form given by (2.41), that is,

(B − λI)x = 0

then the eigenvalues are the roots of |A − λI| = 0. We can find these roots symbolically in MATLAB

thus:

>> syms lambda
>> D = A-lambda*sym(eye(5));
>> det(D)

ans =
-lambda^5

We have shown that |A − λI| = −λ5 and hence the eigenvalues are the roots of −λ5 = 0, i.e., zero.
Here the Symbolic Toolbox has revealed the true solution.

10.6 SYMBOLIC METHODS FOR THE SOLUTION OF EQUATIONS
The function available in MATLAB to solve symbolic equations is solve. This function is most useful
for solving polynomials since it provides expressions for all roots. To use solve we must set up the
expression for the equation we wish to solve in terms of a symbolic variable. For example,

>> syms x
>> f = x^3-7/2*x^2-17/2*x+5

f =
x^3 - (7*x^2)/2 - (17*x)/2 + 5

>> solve(f)

ans =
-2
1/2
5

The following example illustrates the solution of a system of two simultaneous equations in two vari-
ables. In this example the two equations must be converted from string to symbolic form using the
function str2sym.
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>> syms x y
>> [x y] = solve(str2sym(’x^2+y^2=a’),str2sym(’x^2-y^2=b’))

This gives the four solutions:

x =
-(2^(1/2)*(a + b)^(1/2))/2
(2^(1/2)*(a + b)^(1/2))/2

-(2^(1/2)*(a + b)^(1/2))/2
(2^(1/2)*(a + b)^(1/2))/2

y =
-(2^(1/2)*(a - b)^(1/2))/2
-(2^(1/2)*(a - b)^(1/2))/2
(2^(1/2)*(a - b)^(1/2))/2
(2^(1/2)*(a - b)^(1/2))/2

A simple check of this solution may be obtained by inserting these solutions back in the original
equations thus:

>> x.^2+y.^2, x.^2-y.^2

ans =
a
a
a
a

ans =
b
b
b
b

Hence all four solutions satisfy the equations simultaneously.
In practice it is rarely possible to determine the symbolic solutions of general single-variable or

multi-variable non-linear equations and, where possible, a numeric approximation is provided. For
example:

>> f = sin(x^3+log(x));
>> solve(f)
Warning: Unable to solve symbolically. Returning a numeric approximation instead.
> In solve (line 304)

ans =
98.395389162103351442766673981852
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FIGURE 10.1

Plot of the Fresnel sine integral in the range x = 1 to x = 3.

10.7 SPECIAL FUNCTIONS
The MATLAB Symbolic Toolbox provides the user with access to a large number special functions and
polynomials. One of these functions is the Fresnel sine integral. This is defined by

S(x) =
∫ x

0
sin(t2) dt

To evaluate this integral for x = 4.2 we use the function fresnels as follows:

>> x = 4.2; y = fresnels(x)

y =
0.5632

Fig. 10.1 provides a plot of this function using the following commands:

>> x=1:.01:3; y = fresnels(x);
>> plot(x,y)
>> xlabel(’x’), ylabel(’Fresnel sine integral’)

Another interesting function is the logarithmic integral defined by

li(x) =
∫ x

0

dt

loge(t)

To evaluate the rounded value for this integral for x = 1000, 10,000 and 100,000 we use the logint
as follows:

>> y = round(logint([1000 10000 100000]))

y =
178 1246 9630
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The logarithmic integral can be used to estimate the number of primes below a particular value, and
the estimation becomes more accurate as the number of primes increases. To find the number of primes
below 1000, 10,000 and 100,000 we use the primes function to list the primes below 1000, 10,000 and
100,000 as follows:

>> p1 = length(primes(1000)); p2 = length(primes(10000));
>> p3 = length(primes(100000)); p = [p1 p2 p3]

p =
168 1229 9592

Taking the ratio between the values of the logarithmic integral y and the number of primes p, we have

>> p./y

ans =
0.9438 0.9864 0.9961

Notice that the ratio of the value of the logarithmic integral and the number of primes less than N tends
to 1 as N tends to infinity.

Two other important functions are the Dirac and Heaviside functions. Information about them can
be obtained using the command help in the usual way.

The Dirac delta, or impulse, function, δ(x), is defined as follows:

δ (x − x0) = 0 where x �= x0 (10.4)

∫ ∞

−∞
f (x) δ (x − x0) dx = f (x0) (10.5)

If f (x) = 1, then ∫ ∞

−∞
δ (x − x0) dx = 1 (10.6)

By (10.4), the delta function only exists at x = x0. Furthermore, from (10.6), the area under the delta
function is unity. This function is implemented in MATLAB by dirac(x).

The Heaviside, or unit step, function is defined as follows:

u(x − x0) =
⎧⎨
⎩

1, for x − x0 > 0
0.5, for x − x0 = 0
0, for x − x0 < 0

(10.7)

This function is implemented in MATLAB by heaviside(x). As an example, consider

>> heaviside(2)

ans =
1

In Sections 10.8, 10.10, and 10.14, we consider various aspects of symbolic manipulation and we
illustrate some of the properties of the Dirac and Heaviside functions.



502 CHAPTER 10 APPLICATIONS OF THE SYMBOLIC TOOLBOX

10.8 SYMBOLIC DIFFERENTIATION
Essentially any function can be differentiated symbolically but the process is not always easy. For
example, the following function given by Swift (1977) is tedious to differentiate by hand:

f (x) = sin−1
(

ex tanx√
x2 + 4

)

Differentiating this function symbolically using the MATLAB function diff gives

>> syms x
>> diff(asin(exp(x)*tan(x)/sqrt(x^2+4)))

ans =
((exp(x)*(tan(x)^2 + 1))/(x^2 + 4)^(1/2) +
(exp(x)*tan(x))/(x^2 + 4)^(1/2) -
(x*exp(x)*tan(x))/(x^2 + 4)^(3/2))/
(1 - (exp(2*x)*tan(x)^2)/(x^2 + 4))^(1/2)

>> pretty(ans)
/ 2 \
| exp(x) (tan(x) + 1) exp(x) tan(x) x exp(x) tan(x) |
| -------------------- + ------------- - --------------- |
| 2 2 2 3/2 |
\ sqrt(x + 4) sqrt(x + 4) (x + 4) /

/ 2 \
| exp(2 x) tan(x) |

/sqrt| 1 - ---------------- |
| 2 |
\ x + 4 /

We now explain specifically how this is achieved. Differentiation is performed on a specified func-
tion with respect to a specific variable. When using the Symbolic Toolbox, the variables or variable
of the expression must be defined as symbolic. Once this is done, the expression will be treated as
symbolic and differentiation may be performed. Consider the following example:

>> syms z k
>> f = k*cos(z^4);
>> diff(f,z)

ans =
-4*k*z^3*sin(z^4)

Note that the differentiation is performed with respect to z, the variable indicated in the second param-
eter. Differentiation may be performed with respect to k as follows:
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>> diff(f,k)

ans =
cos(z^4)

If the variable with respect to which the differentiation is being performed is not indicated, MATLAB

chooses the variable name alphabetically closest to x.
Higher-order differentiation can also be performed by including an additional integer parameter

which indicates the order of the differentiation (4 in this case) thus:

>> syms n
>> diff(k*z^n,4)

ans =
k*n*z^(n - 4)*(n - 1)*(n - 2)*(n - 3)

The following example illustrates how we can obtain a standard numerical value from our symbolic
differentiation:

>> syms x
>> f = x^2*cos(x);
>> df = diff(f)

df =
2*x*cos(x) - x^2*sin(x)

We can now substitute a numerical value for x thus:

>> subs(df,x,0.5)

ans =
cos(1/2) - sin(1/2)/4

Finally, we consider the symbolic differentiation of the Heaviside, or unit step, function, thus

diff(heaviside(x))

ans =
dirac(x)

This is as expected since the differentiation of the Heaviside function is zero for all x except when
x = 0. This is the definition of the Dirac function.

10.9 SYMBOLIC PARTIAL DIFFERENTIATION
Partial derivatives of any multi-variable function can be found by differentiating with respect to each
variable in turn. As an example, we set up a symbolic function of three variables, assigned to fmv, as
follows:
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>> syms u v w
>> fmv = u*v*w/(u+v+w)

fmv =
(u*v*w)/(u + v + w)

>> pretty(fmv)
u v w

---------
u + v + w

Now we differentiate with respect to u, v, and w in turn:

>> d = [diff(fmv,u) diff(fmv,v) diff(fmv,w)]

d =
[ (v*w)/(u + v + w) - (u*v*w)/(u + v + w)^2,

(u*w)/(u + v + w) - (u*v*w)/(u + v + w)^2,
(u*v)/(u + v + w) - (u*v*w)/(u + v + w)^2]

To obtain mixed partial derivatives, we simply differentiate with respect to the second variable the
answer obtained after differentiation with respect to the first. For example,

>> diff(d(3),u)

ans =
v/(u + v + w) - (u*v)/(u + v + w)^2

- (v*w)/(u + v + w)^2 + (2*u*v*w)/(u + v + w)^3

To clarify the structure of the above expression we use the function pretty thus:

>> pretty(ans)
v u v v w 2 u v w

--------- - ------------ - ------------ + ------------
u + v + w 2 2 3

(u + v + w) (u + v + w) (u + v + w)

This provides the mixed second-order partial derivative with respect to w and then u, since d3 is the
derivative of the function fmv with respect to w.

10.10 SYMBOLIC INTEGRATION
The integration process presents more difficulties than differentiation because not all functions can
be integrated to produce an algebraic expression. Even functions that can be integrated to produce an
algebraic expression often require considerable skill and experience such an expression.



10.10 SYMBOLIC INTEGRATION 505

To use the Symbolic Toolbox, we begin by defining the symbolic expression f. Then the function
int(f,a,b) performs symbolic integration where a and b are the lower and upper limits, respectively.
This results in a symbolic constant. If the upper and lower limits are omitted, the result is an expression
which is the formula for the indefinite integral. In either case, if the integral cannot be evaluated, which
frequently happens, the original function is returned. It must be stressed that many integrals can only
be evaluated numerically.

Consider the following indefinite integral:

I =
∫

u2 cosudu

In MATLAB this becomes

>> syms u
>> f = u^2*cos(u); int(f)

ans =
sin(u)*(u^2 - 2) + 2*u*cos(u)

We note that the result is a formula as expected and not a numerical value. However, if upper and lower
limits are specified, we obtain a symbolic constant. For example,

y =
∫ 2π

0
e−x/2 cos(100x)dx

Thus we have

>> syms x, res = int(exp(-x/2)*cos(100*x),0,2*pi)

res =
2/40001 - (2*exp(-pi))/40001

We can obtain a numerical value for this using the vpa function as follows:

>> vpa(res)

ans =
0.000047838108134108034810408852920091

This result confirms the numerical solution given in Section 4.11.
The following examples require infinite limits. Limits of this type are easily accommodated using

the symbol inf and -inf. Consider the following integrals:

y =
∫ ∞

0
loge

(
1 + e−x

)
dx and y =

∫ ∞

−∞
dx(

1 + x2
)2
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These can be evaluated as follows:

>> syms x, int(log(1+exp(-x)),0,inf)

ans =
pi^2/12

>> syms x, f = 1/(1+x^2)^2;
>> int(f,-inf,inf)

ans =
pi/2

These results confirm those given by the numerical integration in Section 4.8.
We now consider what happens when an integral cannot be evaluated by symbolic means. In this

case we must resort to numerical procedures to find an approximate numerical value for our integral.

>> p = sin(x^3);
>> int(p)

ans =
int(sin(x^3), x)

Note that the integral cannot be evaluated symbolically. If we now insert upper and lower limits for
this integral, we have

>> res = int(p,0,1)

res =
hypergeom([2/3], [3/2, 5/3], -1/4)/4

>> vpa(res)

ans =
0.23384524559381660956535064328083

Note that the solution is returned in terms of Gauss’s hypergeometric function; see Abramowitz and
Stegun (1965) or Olver et al. (2010). It can be evaluated under certain conditions; see MATLAB

help hypergeom.
We now consider two interesting examples which raise new issues in symbolic processing. Consider

the two integrals
∫ ∞

0
e−x loge (x) dx and

∫ ∞

0

sin4(mx)

x2
dx

We may evaluate the first integral as follows:
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>> syms x; int(exp(-x)*log(x),0,inf)

ans =
-eulergamma

>> y = vpa(-eulergamma,20)

y =
-0.57721566490153286061

In MATLAB, eulergamma is Euler’s constant and is defined by

C = lim
p→∞

[
− loge p + 1

2
+ 1

3
+ ... + 1

p

]
= 0.577215...

Thus, MATLAB shows how Euler’s constant arises and allows us to evaluate it to any specified number
of significant figures.

Now, considering the second integral,

>> syms m, int(sin(m*x)^4/x^2,0,inf)

ans =
piecewise(0 < m, (pi*m)/4, in(m, ’real’), (pi*abs(m))/4, ~in(m, ’real’),

int(sin(x*m)^4/x^2, x, 0, Inf))

This complicated MATLAB result attempts to provide, where possible, an evaluation of the integral for
various ranges m. Finally, we integrate the Dirac function from −∞ to ∞
>> int(dirac(x),-inf, inf)

ans =
1

This result accords with the definition of the Dirac or delta function, see (10.6).
We now consider the integral of the Heaviside function from −5 to 3.

>> int(heaviside(x),-5,3)

ans =
3

From the definition of the Heaviside function, (10.7), we see that this result is as expected.
Symbolic integration can be performed for a function of two variables by repeated application of

the int function. Consider the double integral defined by (4.49) and repeated here for convenience:

∫ x4

x2
dy

∫ 2

1
x2y dx

This can be evaluated symbolically thus:
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>> syms x y; f = x^2*y;
>> int(int(f,y,x^2,x^4),x,1,2)

ans =
6466/77

which confirms the numerical result given on Section 4.15.2.

10.11 SYMBOLIC SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
The Symbolic Toolbox can be used to solve, symbolically, first-order differential equations, systems of
first-order differential equations or higher-order differential equations, together with any initial condi-
tions provided. This symbolic solution of differential equations is implemented in MATLAB using the
function dsolve, and its use is illustrated by a range of examples.

It is important to note that this approach only provides a symbolic solution if one exists. If no
solution exists, then the user should apply one of the numerical techniques provided in MATLAB, such
as ode45.

The general form of a call of the function dsolve to solve a differential equation system is

sol = dsolve(’de1, de2, de3, ... , den, in1, in2, in3, ... , inn’);

The independent variable is assumed to be t unless given by an optional final parameter of dsolve.
The parameters de1, de2, de3 up to den stand for the individual differential equations. These must
be written in symbolic form using symbolic variables, standard MATLAB operators and the symbols
D, D2, D3, D4, ..., etc., which represent the first-, second-, third-, and higher-order differential operators
respectively. The parameters in1, in2, in3, in4, and so on, represent the initial conditions for the
differential equations, if these conditions are required. An example of how these initial conditions
should be written, assuming an dependent variable y, is

y(0) = 1, Dy(0) = 0, D2y(0) = 9.1

which means that the value of y is 1, dy/dt = 0 and d2y/dt2 = 9.1 when t = 0.
The solution is returned to sol as a MATLAB structure, and consequently the names of the depen-

dent variables must be used to indicate the individual components. For example, if g and y are two
dependent variables for the differential equation, sol.y gives the solution for the dependent variable y
and sol.g gives the solution for the dependent variable g.

To illustrate these points we consider some examples. Consider a first-order differential equation:

(
1 + t2

) dy

dt
+ 2ty = cos t

We may solve this without initial conditions using dsolve as follows:

>> s = dsolve(’(1+t^2)*Dy+2*t*y=cos(t)’)

s =
-(C4 - sin(t))/(t^2 + 1)



10.11 SYMBOLIC SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 509

Notice that the solution contains the arbitrary constant C4. If we now solve the same equation using an
initial condition, we proceed as follows:

>> s = dsolve(’(1+t^2)*Dy+2*t*y=cos(t),y(0)=0’)

s =
sin(t)/(t^2 + 1)

Note that in this case there is no arbitrary constant.
We now solve a second-order system

d2y

dx2
+ y = cos 2x

with the initial conditions y = 0 and dy/dx = 1 at x = 0. To solve this differential equation dsolve
has the form below, where x is the independent variable.

>> dsolve(’D2y+y=cos(2*x), Dy(0)=1, y(0)=0’,’x’)

ans =
(2*cos(x))/3 + sin(x) + sin(x)*(sin(3*x)/6 + sin(x)/2) -

(2*cos(x)*(6*tan(x/2)^2 - 3*tan(x/2)^4 + 1))/(3*(tan(x/2)^2 + 1)^3)

>> simplify(ans)

ans =
(5*cos(x))/3 + sin(x) - (8*cos(x/2)^4)/3 + 1

We now solve a fourth-order differential equation:

d4y

dt4
= y

with initial conditions

y = 1, dy/dt = 0, d2y/dt2 = −1, d3y/dt3 = 0 when t = π/2.

We again use dsolve. In this example D4 stands for the fourth derivative operator, with respect to t , and
so on.

>> dsolve(’D4y=y, y(pi/2)=1, Dy(pi/2)=0, D2y(pi/2)=-1, D3y(pi/2)=0’)

ans =
sin(t)

However, we note that if we try to solve the apparently simple problem

dy

dx
= e−x

x
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with the initial condition y = 1 when x = 1, difficulties arise. Applying dsolve, we have

>> dsolve(’Dy=exp(-x)/x, y(1)=1’, ’x’)

ans =
1 - expint(x) - ei(-1)

The function expint(z), where z is real or complex, is the exponential integral function defined by

E1(z) = −
∫ ∞

z

exp(−t)

t
dt z �= 0

E1(z) assumes its principal value. In fact E1(z) is a particular case of the more general En(z) function.
Details of this mathematical function can be found in Abramowitz and Stegun (1965) and Olver

et al. (2010). The function ei(z) is the one-argument exponential integral function and is defined, for
x > 0 by

Ei(x) = −
∫ ∞

−x

exp(−t)

t
dt =

∫ x

−∞
exp(t)

t
dt x > 0

The functions E1 and Ei are related. Thus

E1(x) =
∫ ∞

x

exp(−t)

t
dt = −Ei(−x) x > 0

and

E1(−x) = −Ei(x) − jπ

We can illustrate these relationships. For example, if x = 3,

>> x = 3;
>> [expint(x) -ei(-x)]

ans =
0.0130 0.0130

>> [expint(-x) -ei(x)-j*pi]

ans =
-9.9338 - 3.1416i -9.9338 - 3.1416i

Returning to the solution of the differential equation, we can evaluate the ei(-1) as follows:

>> ei(-1)

ans =
-0.2194
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Thus, for example, when x = 2

>> x = 2;
>> 1 - expint(x) - ei(-1)

ans =
1.1705

We will now attempt to solve the following apparently simple differential equation:

dy

dx
= cos(sinx)

Applying dsolve we have

>> dsolve(’Dy=cos(sin(x))’,’x’)

ans =
C14 + int(cos(sin(x)), x, ’IgnoreSpecialCases’, true,
’IgnoreAnalyticConstraints’, true)

In this case dsolve fails to solve the equation.
The differential equation may also contain constants represented as symbols. For example, if we

wish to solve the equation

d2x

dt2
+ a

b
sin t = 0

with initial conditions x = 1 and dx/dt = 0 when t = 0. Thus

>> syms x t a b
>> x = dsolve(’D2x+(a/b)*sin(t)=0,x(0)=1,Dx(0)=0’)

x =
(a*sin(t))/b - (a*t)/b + 1

Note how the variables a and b appear in the solution as expected.
As an example of solving two simultaneous differential equations, we note that this differential

equation may be rewritten as

du

dt
= −a

b
sin t

dx

dt
= u

Using the same initial conditions, dsolve may be applied to solve these equations by writing

>> syms u
>> [u x] = dsolve(’Du+(a/b)*sin(t)=0,Dx=u,x(0)=1,u(0)=0’)
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u =
(a*cos(t))/b - a/b

x =
(a*sin(t))/b - (a*t)/b + 1

The same solution as that obtained from dsolve applied directly to solve the second-order differential
equation.

The script e4sX04.m provides an interesting comparison between the symbolic and numerical ap-
proach. It consists of a script and the output from the script. The script compares the use of dsolve
for the symbolic solution of a differential equation, and the use of ode45 for the numerical solution of
the same differential equation. Note that the symbolic solution is obtained in two ways: by solving the
second-order equation directly and by separating it into two first-order simultaneous equations. Both
approaches provide the same solution.

% e4sX04.m Simultaneous first order differential equations
% dx/dt = y, Dy = 3*t-4*x.
% Using dsolve this becomes
syms y t x
x = dsolve(’D2x+4*x=3*t’,’x(0)=0’, ’Dx(0)=1’)
tt = 0:0.1:5; p = subs(x,t,tt); pp = double(p);
% Plot the symbolic solution to the differential equ’n
plot(tt,pp,’r’)
hold on
xlabel(’t’), ylabel(’x’)
sol = dsolve(’Dx=y’,’Dy=3*t-4*x’, ’x(0)=0’, ’y(0)=1’);
sol_x = sol.x, sol_y = sol.y
fv = @(t,x) [x(2); 3*t-4*x(1)];
options = odeset(’reltol’, 1e-5,’abstol’,1e-5);
tspan = [0 5]; initx = [0 1];
[t,x] = ode45(fv,tspan,initx,options);
plot(t,x(:,1),’k+’);
axis([0 5 0 4])

Executing script e4sX04.m gives the symbolic solution

x =
(3*t)/4 + sin(2*t)/8

sol_x =
(3*t)/4 + sin(2*t)/8

sol_y =
cos(2*t)/4 + 3/4

This script also provides the graph of the symbolic solution with alternate numerical solution values
also plotted, Fig. 10.2. Note how the numerical solution is consistent with the symbolic one.
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FIGURE 10.2

Symbolic solution and numerical solution indicated by +.

10.12 THE LAPLACE TRANSFORM
The Symbolic Toolbox allows the symbolic determination of the Laplace transforms of many functions.
The Laplace transform is used to transform a linear differential equation into an algebraic equation in
order to simplify the process of obtaining the solution. It can also be used to transform a system of
differential equations into a system of algebraic equations. The Laplace transform maps a continuous
function f (t) in the t domain, where f (t) = 0 if t < 0, into the function F(s) in the s domain. The
domain s is complex and s can be expresses as s = σ + jω where σ and ω are real numbers. The
Laplace transform is related to the Fourier transform, but whereas the Fourier transform of a function
is a complex function of a real variable (frequency), the Laplace transform of a function is a complex
function of a complex variable.

Let f (t) have a finite origin which can be assumed to be at t = 0. In this case we can write

F(s) =
∫ ∞

0
f (t)e−st dt (10.8)

where f (t) is a given function defined for all positive values of t and F(s) is the Laplace transform
of f (t). This transform is called the one-sided Laplace transform. The parameter s is restricted so that
the integral converges, and it should be noted that for many functions the Laplace transform does not
exist. In general, computation of inverse Laplace transforms is difficult and requires techniques from
complex analysis. The simplest inversion formula is given by the Bromwich integral as follows:

f (t) = 1

j2π

∫ σ0+j∞

σ0−j∞
F(s)est ds (10.9)

where j = √−1, σ0 is any real value, such that the contour σ0 − jω, for −∞ < ω < ∞ is in the region
of convergence of F(s). In practice (10.9) is not used to compute the inverse transform. The Laplace
transform of f (t) may be denoted by the operator L. Thus

F(s) = L[f (t)] and f (t) = L−1[F(s)]
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We now give examples of the use of the Symbolic Toolbox for finding Laplace transforms of certain
functions.

>> syms t
>> laplace(t^4)

ans =
24/s^5

We can use a variable other than t as the independent variable as follows:

>> syms x; laplace(heaviside(x))

ans =
1/s

In this brief introduction to the Laplace transform we will not discuss its properties but merely state
the following results:

L
[
df

dt

]
= sF (s) − f (0)

L
[
d2f

dt2

]
= s2F(s) − sf (0) − f (1)(0)

where f (0) and f (1)(0) are the values of f (t) and its first derivative when t = 0. This pattern is
continued for higher derivatives.

Suppose we wish to solve the following differential equation:

ÿ − 3ẏ + 2y = 4t + e3t , y(0) = 1, ẏ(0) = −1 (10.10)

where the dot notation denotes differentiation with respect to time. Taking the Laplace transform of
(10.10), we have

s2Y(s) − sy(0) − y(1)(0) − 3{sY (s) − y(0)} + 2Y(s) = L[4t + e3t ] (10.11)

Now, from the definition of the Laplace transform or from tables, we can determine L[4t + e3t ]. Here
we use the Symbolic Toolbox to determine the required transform thus:

>> syms s t
>> laplace(4*t+exp(3*t))

ans =
1/(s - 3) + 4/s^2

Substituting this result in (10.11) and rearranging gives

(s2 − 3s + 2)Y (s) = 4

s2
+ 1

s − 3
− 3y(0) + sy(0) + y(1)(0)
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Applying the initial conditions and further rearrangement, we have

Y(s) =
(

1

s2 − 3s + 2

)(
4

s2
+ 1

s − 3
− 4 + s

)

To obtain the solution y(t), we must determine the inverse transform of this equation. It has already
been stated that in practice (10.9) is not used to compute the inverse transform. The usual procedure is
to rearrange the transform into one that can be recognized in tables of Laplace transforms, and typically
the method of partial fractions is used for this purpose. However, the MATLAB Symbolic Toolbox
allows us to avoid this task and determine inverse transforms using the ilaplace statement thus:

>> ilaplace((4/s^2+1/(s-3)-4+s)/(s^2-3*s+2))

ans =
2*t - 2*exp(2*t) + exp(3*t)/2 - exp(t)/2 + 3

Thus y(t) = 2t + 3 + 0.5(e3t − et ) − 2e2t .

10.13 THE Z-TRANSFORM
In the solution of difference equations representing discrete systems, the Z-transform plays a similar
role to that of the Laplace transform in the solution of differential equations. The Z-transform is defined
by

F(z) =
∞∑

n=0

fnz
−n (10.12)

where fn is a sequence of data beginning at f0. The function F(z) is called the unilateral or single
sided Z-transform of fn and is denoted Z[fn]. Thus

F(z) =Z[fn]
The inverse transform is denoted by Z−1[F(z)]. Thus

fn =Z−1[F(z)]
Like the Laplace transform, the Z-transform has many important properties. These properties will not
be discussed here, but we do provide the following important results:

Z
[
fn+k

] = zkF (z) −
k−1∑
m=0

zk−mfm (10.13)

Z
[
fn−k

] = z−kF (z) +
k∑

m=1

z−(k−m)f(−m) (10.14)

These are the left, and right, shifting properties respectively.
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We can use the Z-transform to solve difference equations in much the same way as we use the
Laplace transform to solve differential equations. For example, consider the following difference equa-
tion:

6yn − 5yn−1 + yn−2 = 1

4n
, n ≥ 0 (10.15)

Here n is an integer and yn is a sequence of data values beginning at y0. However, when n = 0 in
(10.15), we require the values of y−1 and y−2 to be specified. These are initial conditions and play a
similar role to the initial conditions in a differential equation. Let the initial conditions be y−1 = 1 and
y−2 = 0. Taking k = 1 in (10.14), we have

Z
[
yn−1

] = z−1Y(z) + y−1

and taking k = 2 in (10.14), we have

Z
[
yn−2

] = z−2Y(z) + z−1y−1 + y−2

Taking the Z-transform of (10.15), and substituting for the transformed values of y−1 and y−2, we have

6Y(z) − 5{z−1Y(z) + y−1} + {z−2Y(z) + z−1y−1 + y−2} =Z
[

1

4n

]
(10.16)

We could use the basic definition of the Z-transform, or tabulated relationships to determine the
Z-transform of the right side of this equation. However, the MATLAB Symbolic Toolbox gives the
Z-transform of a function thus:

>> syms z n
>> ztrans(1/4^n)

ans =
z/(z - 1/4)

Substituting this result in (10.16), we have

(6 − 5z−1 + z−2)Y (z) = 4z

4z − 1
− z−1y−1 − y−2 + 5y−1

Substituting for y−1 and y−2 gives

Y(z) =
(

1

6 − 5z−1 + z−2

)(
4z

z − 1
− z−1 + 5

)

We can determine yn by taking the inverse of the Z-transform of Y(z). Using the MATLAB function
iztrans we have

>> iztrans((4*z/(4*z-1)-z^(-1)+5)/(6-5*z^(-1)+z^(-2)))

ans =
(5*(1/2)^n)/2 - 2*(1/3)^n + (1/4)^n/2
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Thus

yn = 5

2

(
1

2

)n

− 2

(
1

3

)n

+ 1

2

(
1

4

)n

Evaluating this solution for n = −2 and −1 shows that it satisfies the initial conditions.

10.14 FOURIER TRANSFORM METHODS
Fourier analysis transforms data or functions from the time or spacial domain into the frequency do-
main. In this description, we will transform from the x domain into the ω domain.

The Fourier series transforms a periodic function in the x domain into corresponding discrete values
in the frequency domain; these discrete values are the Fourier coefficients. In contrast, the Fourier
transform takes a non-periodic and continuous function in the x domain and transforms it into an
infinite and continuous function in the frequency domain.

The Fourier transform of a function f (x) is given by

F(s) =F[f (x)] =
∫ ∞

−∞
f (x)e−sx dx (10.17)

where s = jω, i.e., s is imaginary. Thus we may write

F(ω) =F[f (x)] =
∫ ∞

−∞
f (x)e−jωx dx (10.18)

F(ω) is complex and is called the frequency spectrum of f (x). The inverse Fourier transform is given
by

f (x) =F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(w)ejωx dω (10.19)

Here we use the operators F and F−1 to indicate the Fourier transform and the inverse Fourier trans-
form, respectively. Not all functions have a Fourier transform, and certain conditions must be met if
the Fourier transform is to exist (see Bracewell, 1978). The Fourier transform has important properties
that we introduce as appropriate.

We will begin by using the MATLAB symbolic function fourier to determine the Fourier transform
of cos(3x).

>> syms x, y = fourier(cos(3*x))

y =
pi*(dirac(w - 3) + dirac(w + 3))

This Fourier transform pair is shown diagrammatically in Fig. 10.3. The Fourier transform tells us that
the frequency spectrum of this cosine function consists of two infinitely narrow components, one at
ω = 3 and one at ω = −3. (For a description of the Dirac function, see Section 10.7.) The MATLAB

function ifourier implements the symbolic inverse Fourier transform. Thus
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FIGURE 10.3

The Fourier transform of a cosine function.

FIGURE 10.4

The Fourier transforms of a “top-hat” function.

>> z = ifourier(y)

z =

1/(2*exp(x*3i)) + exp(x*3i)/2

>> simplify(z)

ans =

cos(3*x)

As a second example of the use of the Fourier transform, consider the transform of the function
shown in Fig. 10.4 which has a unit value in the range −2 < x < 2 and zero elsewhere. We show
below how this function has been constructed from two Heaviside functions. (The Heaviside function
is described in Section 10.7.)

>> syms x

>> fourier(heaviside(x+2) - heaviside(x-2))

ans =

(cos(2*w)*1i + sin(2*w))/w - (cos(2*w)*1i - sin(2*w))/w

This expression can be simplified thus
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>> simplify(ans)

ans =
(2*sin(2*w))/w

Note that the original function, which in the x domain is limited to the range −2 < x < 2, has a
frequency spectrum that is continuous between −∞ < ω < ∞. This is shown in Fig. 10.4.

We now illustrate the use of the Fourier transform in the solution of a partial differential equation.
Consider the equation

∂u

∂t
= ∂2u

∂x2
(−∞ < x < ∞, t > 0) (10.20)

subject to the initial condition

u(x,0) = exp(−a2x2) where a = 0.1

It can be proved that

F
[

∂2u

∂x2

]
= −ω2F[u] and F

[
∂u

∂t

]
= ∂

∂t
{F [u]}

Thus, taking the Fourier transform of (10.20), we have

∂

∂t
{F [u]} + ω2F[u] = 0

Solving this first-order differential equation for F[u] gives

F[u] = A exp(−ω2t) (10.21)

To determine the constant A we must apply the initial conditions. We begin by using MATLAB to find
the Fourier transform of the initial conditions thus:

>> syms x y z w
>> z = fourier(exp(-x^2/100))

z =
(10*pi^(1/2))*exp(-25*w^2)

Hence

F[u(x,0)] = √
100π exp(−25ω2)

Comparing this equation with (10.21) when t = 0, we see that

A = √
100π exp(−25ω2)

Substituting this result in (10.21), we have

F[u] = √
100π exp(−25ω2) exp(−ω2t)
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Taking the inverse transform of this equation gives

u(x, t) =F−1
[√

100π exp(−25ω2) exp(−ω2t)
]

Suppose we require a solution when t = 4. Using MATLAB to compute the inverse Fourier transform,
we have

>> y = z*exp(-4*w^2)

y =
(10*pi^(1/2))*exp(-29*w^2)

>> ifourier(y)

ans =
(5*29^(1/2)*exp(-x^2/116))/29

Thus, when t = 4, the solution of (10.20) is

u(x,4) = 5
√

29

29
exp(−x2/116)

Consider now the Fourier transform of the Heaviside or step function.

>> syms x
>> fourier(heaviside(x))

ans =
pi*dirac(w) - 1i/w

Thus, the real part of the Fourier transform of the Heaviside function is π times the Dirac function at
ω = 0 and the imaginary part is −1/ω, which tends to plus and minus infinity when ω = 0. The step
function has many applications. For example, if we require the Fourier transform of the function

f (x) =
{

e−2x x ≥ 0
0 x < 0

using the Heaviside or unit step function, we can rewrite this as

f (x) = u(x)e−2x for all x

where u(x) is the Heaviside function. The MATLAB implementation is

>> syms x
>> fourier(heaviside(x)*exp(-2*x))

ans =
1/(2 + w*1i)
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10.15 LINKING SYMBOLIC AND NUMERICAL PROCESSES
Symbolic algebra can be used to ease the burden for the user in the numerical solution process. To
illustrate this we show how the Symbolic Toolbox can be used in a version of Newton’s method for
solving a non-linear equation which only requires the user to supply the function itself. The usual
implementation of this algorithm, (see Section 3.7), requires the user to supply the first-order derivative
of the function as well as the function itself. The modified algorithm takes the following form of the
MATLAB function fnewtsym:

function [res, it] = fnewtsym(func,x0,tol)

% Finds a root of f(x) = 0 using Newton’s method

% using the symbolic toolbox

% Example call: [res, it] = fnewtsym(func,x,tol)

% The user defined function func is the function f(x) which must

% be defined as a symbolic function.

% x is an initial starting value, tol is required accuracy.

it = 1; syms dfunc x

% Now perform the symbolic differentiation:

dfunc = diff(sym(func));

d = double(subs(func,x,x0)/subs(dfunc,x,x0));

while abs(d)>tol

x1 = x0-d; x0 = x1;

d = double(subs(func,x,x0)/subs(dfunc,x,x0));

it = it+1;

end

res = x0;

Notice the use of the subs and double functions so that a numerical value is returned. To illustrate the
use of fnewtsym we will solve cosx − x3 = 0 to find the root closest to 1 with an accuracy to four
decimal places.

>> [r,iter] = fnewtsym(’cos(x)-x^3’,1,0.00005)

r =

0.8655

iter =

4

These results are identical to those obtained using the function fnewton, (see Section 3.7), but here the
user is not required to provide the derivative of the function.

The following examples provide further illustrations of how the Symbolic Toolbox can help users
by performing routine, tedious, and sometimes difficult tasks required by some numerical methods. We
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have seen how the single-variable Newton’s method can be modified by using symbolic differentiation
and we now extend this to give the symbolic version of Newton’s multi-variable method to solve a
system of equations where the use of symbolic functions provides an even greater saving for the user.
The equations solved in this example are

x1x2 = 2

x2
1 + x2

2 = 4

The MATLAB function newtmvsym takes the form

function [x1,fr,it] = newtmvsym(x,f,n,tol)
% Newton’s method for solving a system of n non-linear equations
% in n variables. This version is restricted to two variables
% Example call: [xv,it] = newtmvsym(x,f,n,tol)
% Requires an initial approximation column vector x. tol is
% required accuracy.
% User must define functions f, the system equations
% xv is the solution vector, parameter it is number of iterations.
syms a b
xv = sym([a b]); it = 0;
fr = double(subs(f,xv,x));
while norm(fr)>tol

Jr = double(subs(jacobian(f,xv),xv,x));
x1 = x-(Jr\fr’)’; x = x1;
fr = double(subs(f,xv,x1));
it = it+1;

end

Notice how this function uses the symbolic Jacobian function in the line:

Jr = double(subs(jacobian(f,xv),xv,x));

This ensures that the user is not required to find the four partial derivatives required in this case. This
function is embedded in script e4sX05.m:

% e4sX05.m. Script for running newtonmvsym.m
syms a b
x = sym([a b]);
format long
f = [x(1)*x(2)-2,x(1)^2+x(2)^2-4];
[x1,fr,it] = newtmvsym([1 0],f,2,.000000005)

Running script e4sX05.m gives

x1 =
1.414244079951220 1.414183044794970
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fr =

1.0e-08 *
-0.093132261519485 0.186264506804511

it =

14

We note that this result provides an accurate solution for the given problem in two variables.
It is interesting to note that in a similar way we can write a script for the conjugate gradient method

that enables the user to avoid having to provide the first-order partial derivatives of the function to be
minimized. This script uses the following fragment of MATLAB code

n = 4;

for i = 1:n, dfsymb(i) = diff(sym(f),xv(i)); end

df = double(subs(dfsymb,xv(1:n),x(1:n)’));

to obtain the gradient of the function where required. To run this modified function a script similar
to that given above for the multi-variable Newton method must be written. This script defines the
non-linear function to be optimized and defines a symbolic vector x.

10.16 SUMMARY
We have introduced a wide range of symbolic functions and shown how they can be applied to such
standard mathematical processes as integration, differentiation, expansion, and simplification. We have
also shown how symbolic methods can sometimes be directly linked to numerical procedures with good
effect. For those with access to the Symbolic Toolbox, care must be taken to choose the appropriate
and efficient method, symbolic or numerical, for the problem.

10.17 PROBLEMS
10.1. Using the appropriate MATLAB symbolic function, rearrange the following expression as a

polynomial in x:
(

x − 1

a
− 1

b

)(
x − 1

b
− 1

c

)(
x − 1

c
− 1

a

)

10.2. Using the appropriate MATLAB symbolic function, multiply the polynomials

f (x) = x4 + 4x3 − 17x2 + 27x − 19 and g(x) = x2 + 12x − 13

and simplify the resulting expression. Then arrange the solution in nested form.
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10.3. Using the appropriate MATLAB symbolic function, expand the following functions:
(i) tan(4x) in terms of powers of tan(x)

(ii) cos(x + y) in terms of cos(x), cos(y), sin(x), sin(y)

(iii) cos(3x) in terms of powers of cos(x)

(iv) cos(6x) in terms of powers of cos(x)

10.4. Using the appropriate MATLAB symbolic function, expand cos(x + y + z) in terms of cos(x),
cos(y), cos(z), sin(x), sin(y), sin(z).

10.5. Using the appropriate MATLAB symbolic function, expand the following functions in ascend-
ing powers of x up to x7:
(i) sin−1(x)

(ii) cos−1(x)

(iii) tan−1(x)

10.6. Using the appropriate MATLAB symbolic function, expand y = loge(cos(x)) in ascending
powers of x up to x12.

10.7. The first three terms of a series are

4

1 · 2 · 3

(
1

3

)
+ 5

2 · 3 · 4

(
1

9

)
+ 6

3 · 4 · 5

(
1

27

)
+ ...

Sum this series to n terms using the MATLAB function symsum.
10.8. Using the appropriate MATLAB symbolic function, sum the first hundred terms of the series

whose kth term is k10.
10.9. Using the appropriate MATLAB symbolic function, verify that

∞∑
k=1

k−4 = π4

90

10.10. For the matrix

A =
⎡
⎢⎣

1 a a2

1 b b2

1 c c2

⎤
⎥⎦

determine A−1 symbolically using the MATLAB function inv and, using the function factor,
express it in the following form

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cb

(a − c)(a − b)

−ac

(b − c)(a − b)

ab

(b − c)(a − c)

−(b + c)

(a − c)(a − b)

(a + c)

(b − c)(a − b)

−(a + b)

(b − c)(a − c)

1

(a − c)(a − b)

−1

(b − c)(a − b)

1

(b − c)(a − c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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10.11. Using the appropriate MATLAB symbolic function, show that characteristic equation of the
matrix

A =

⎡
⎢⎢⎣

a1 a2 a3 a4

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

is

λ4 − a1λ
3 − a2λ

2 − a3λ − a4 = 0

10.12. The rotation matrix R is given below. Define it symbolically and find its second and fourth
powers using MATLAB.

R =
[

cos θ sin θ

− sin θ cos θ

]

10.13. Solve, symbolically, the general cubic equation having the form x3 + 3hx + g = 0. Hint: Use
the MATLAB function subexpr to simplify your result.

10.14. Using the appropriate MATLAB symbolic function, solve the cubic equation x3 − 9x + 28 = 0.
10.15. Using the appropriate MATLAB symbolic functions, find the roots of z6 = 4

√
2(1+ j) and plot

these roots in the complex plane. Hint: Convert the answer using double.
10.16. Using the appropriate MATLAB symbolic function, differentiate the following function with

respect to x:

y = loge

{
1 − x)(1 + x3)

1 + x2

}

10.17. Given that Laplace’s equation is

∂2z

∂x2
+ ∂2z

∂y2
= 0

use the appropriate MATLAB symbolic function to verify that this equation is satisfied by the
following functions:
(i) z = loge(x

2 + y2)

(ii) z = e−2y cos(2x)

10.18. Using the appropriate MATLAB symbolic function, verify that z = x3 siny satisfies the follow-
ing conditions:

∂2z

∂x∂y
= ∂2z

∂y∂x
and

∂10z

∂x4∂y6
= ∂10z

∂y6∂x4
= 0

10.19. Using the appropriate MATLAB symbolic functions, determine the integrals of the following
functions and then differentiate the result to recover the original function:

(i)
1

(a + f x)(c + gx)
(ii)

1 − x2

1 + x2
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10.20. Using the appropriate MATLAB symbolic function, determine the following indefinite inte-
grals:

(i)
∫

1

1 + cosx + sinx
dx (ii)

∫
1

a4 + x4
dx

10.21. Using the appropriate MATLAB symbolic function, verify the following result:

∫ ∞

0

x3

ex − 1
dx = π4

15

10.22. Using the appropriate MATLAB symbolic function, evaluate the following integrals:

(i)
∫ ∞

0

1

1 + x6
dx (ii)

∫ ∞

0

1

1 + x10
dx

10.23. Using the appropriate MATLAB symbolic function, evaluate the integral

∫ 1

0
exp(−x2) dx

by expanding exp(−x2) in an ascending series of powers of x and then integrating term by
term to obtain a series approximation. Expand the series to both x6 and x14 and hence find two
approximations to the integral. Compare the accuracy of your results. The evaluation of the
integral to 10 decimal places is 0.7468241328.

10.24. Using the appropriate MATLAB symbolic function, verify the following result:

∫ ∞

0

sin(x2)

x
dx = π

4

10.25. Using the appropriate MATLAB symbolic function, evaluate the integral

∫ 1

0
loge(1 + cosx)dx

by expanding loge(1 + cosx) in an ascending series of powers of x and then integrating term
by term to obtain a series approximation. Expand the series up to the term in x4. Compare the
accuracy of your result. The solution to 10 decimal places is 0.6076250333.

10.26. Using the appropriate MATLAB symbolic function, evaluate the following repeated integral:

∫ 1

0
dy

∫ 1

0

1

1 − xy
dx

10.27. Using the appropriate MATLAB symbolic function, solve the following differential equation
which arises in the study of consumer behavior:

d2y

dt2
+ (bp + aq)

dy

dt
+ ab(pq − 1)y = cA
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Also find the solution in the case where p = 1, q = 2, a = 2, b = 1, c = 1, and A = 20. Hint:
Use the MATLAB function subs.

10.28. Using the appropriate MATLAB symbolic function, solve the following pair of simultaneous
differential equations

2
dx

dt
+ 4

dy

dt
= cos t

4
dx

dt
− 3

dy

dt
= sin t

10.29. Using the appropriate MATLAB symbolic function, solve the following differential equation:

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ 2y = 0

10.30. Using the appropriate MATLAB symbolic function, solve the following differential equations
using the Laplace transform:

(i)
d2y

dt2
+ 2y = cos(2t), y = −2 and

dy

dt
= 0 when t = 0

(ii)
dy

dt
− 2y = t, y = 0 when t = 0

(iii)
d2y

dt2
− 3

dy

dt
+ y = exp(−2t), y = −3 and

dy

dt
= 0 when t = 0

(iv)
dq

dt
+ q

c
= 0, q = V when t = 0

10.31. Solve the following difference equations symbolically using the Z-transform:
(i) yn + 2yn−1 = 0, y−1 = 4
(ii) yn + yn−1 = n, y−1 = 10
(iii) yn − 2yn−1 = 3, y−1 = 1
(iv) yn − 3yn−1 + 2yn−2 = 3(4n), y−1 = −3, y−2 = 5

10.32. A formula for the computation of π is given by the infinite series developed by the Chudnovsky
brothers in 1987 (see Chudnovsky and Chudnovsky, 1989).

1

π
= 12

∞∑
k=0

(−1)k
(6k)!(13591409 + 545140134k)

(3k)!(k!)3(640320)3k+3/2

Use the symbolic toolbox and in particular the functions vpa and sym to compute various
values of π to using 2,3,4,5,6, ...,10 terms in the series. For each of these estimations, plot
the number of decimal places achieved.
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MATRIX ALGEBRA

The aim of this appendix is to give a brief overview of matrix algebra, which covers a number of issues
referred to in the main text of this book. This appendix includes an introduction to matrix properties,
operators, and classes.

A.1 INTRODUCTION
Since many MATLAB functions and operators act on matrices and arrays, it is important that the user of
MATLAB should feel at ease with matrix notation and matrix algebra. MATLAB is an ideal environment
in which to experiment and learn matrix algebra. While MATLAB cannot provide a formal proof of any
relationship, it does allow the user to verify results and rapidly gain experience in matrix manipulation.
In this appendix only definitions and results are provided. For proofs and further explanation, it is
recommended that the reader consult Golub and Van Loan (1989).

A.2 MATRICES AND VECTORS
A matrix is a rectangular array of elements which in itself cannot be evaluated. An element of a matrix
can be a real or complex number, an algebraic expression, or another matrix. Normally matrices are
enclosed in square brackets, round brackets, or braces. In this text square brackets are used. A complete
matrix is denoted by an emboldened character. For example,

A =
[

3 −2
−2 4

]
, B =

[
A A 2A
A −A A

]

x =
⎡
⎣ 11

−3
7

⎤
⎦ , e =

[
(2 + 3ı)

(
p2 + q

)
(−4 + 7ı) (3 − 4ı)

]

and hence

B =

⎡
⎢⎢⎣

3 −2 3 −2 6 −4
−2 4 −2 4 −4 8

3 −2 −3 2 3 −2
−2 4 2 −4 −2 4

⎤
⎥⎥⎦

where ı = √
(−1). In the above examples A is a 2 × 2 square matrix with two rows and two columns

of real coefficients. It also has the property of being a symmetric matrix, see Section A.7. The matrix

529
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B is built up from the matrix A and so B is a 4 × 6 real matrix. The matrix x is a 3 × 1 matrix and is
usually called a column vector and e is a 1 × 4 complex matrix, usually called a row vector. Note that
e has the algebraic expression p2 + q for its second element. In this vector each element is enclosed in
round brackets to clarify its structure. Enclosing an element in round brackets is not a requirement.

If we wish to refer to a particular element in a matrix, we use subscript notation: the first subscript
denotes the row, the second the column. In the case of the row and column vectors it is conventional to
use a single subscript. Thus, in the examples above,

a21 = −2, b25 = −4, x2 = −3, e4 = 3 − 4ı

Note also that although A and B are upper case letters it is conventional to refer to their elements
by lower case letters. In general the element in the ith row and j th column of A is denoted by aij .

A.3 SOME SPECIAL MATRICES
The identity matrix. The identity matrix, denoted by I, has unit values along the leading diagonal and
zeros elsewhere. The leading diagonal is the diagonal of elements from the top left to the bottom right
of the matrix. For example,

I2 =
[

1 0
0 1

]
, I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

The subscript indicating the size of the matrix is usually omitted. The identity matrix behaves rather
like the scalar quantity 1. In particular, pre- or post-multiplying a matrix by I does not change it.

The diagonal matrix. This matrix is square and has non-zero elements only along the leading diagonal.
Thus

A =

⎡
⎢⎢⎣

4 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 9

⎤
⎥⎥⎦ , B =

⎡
⎣ 12 0 0

0 −2 0
0 0 −6

⎤
⎦

The tridiagonal matrix. This matrix is square and has non-zero elements along the leading diagonal
and the diagonals immediately above and below it. Thus, using “x” to denote a non-zero element,

A =

⎡
⎢⎢⎢⎢⎣

x x 0 0 0
x x x 0 0
0 x x x 0
0 0 x x x

0 0 0 x x

⎤
⎥⎥⎥⎥⎦

Triangular and Hessenberg matrices. A lower triangular matrix has non-zero elements only on and
below the leading diagonal. An upper triangular matrix has non-zero elements on and above the lead-
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ing diagonal. The Hessenberg matrix is similar to the triangular matrix except that in addition it has
non-zero elements on the diagonals adjacent to the leading diagonal.

⎡
⎢⎢⎢⎢⎣

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

x 0 0 0 0
x x 0 0 0
x x x 0 0
x x x x 0
x x x x x

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

⎤
⎥⎥⎥⎥⎦

The first matrix is upper triangular, the second is lower triangular and the last is an upper Hessenberg
matrix.

A.4 DETERMINANTS
The determinant of A is written |A| or det(A). For a 2 × 2 array we define its determinant as follows:

If A =
[

a11 a12
a21 a22

]
then det (A) =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12 (A.1)

In general for an n × n array, A, cofactors Cij = (−1)i+j �ij can be defined. In this definition �ij is
the determinant formed from A when the elements of the ith row and j th column are deleted. �ij is
called the minor of A. Then

det(A) =
n∑

k=1

aikCik for any i = 1,2, ..., n (A.2)

This is known as an expansion along the ith row. Frequently the first row is used. This equation re-
places the problem of evaluating one n × n determinant A by the evaluation of n, (n − 1) × (n − 1)

determinants. The process can be continued until the cofactors are reduced to 2 × 2 determinants.
Then the formula (A.1) is used. This is the formal definition for the determinant of A but it is not a
computationally efficient procedure.

A.5 MATRIX OPERATIONS
Matrix transposition. In this operation the rows and columns of a matrix are interchanged or transposed.
The transposition of a real matrix A is denoted by AT. For example,

A =
[

1 −2 4
2 1 7

]
, AT =

⎡
⎣ 1 2

−1 1
4 7

⎤
⎦ , x =

⎡
⎣ 1

2
3

⎤
⎦ , xT = [

1 2 3
]

Note that a square matrix remains square when it is transposed and a column vector transposes into a
row vector and vice versa.
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Matrix addition and subtraction. This is done by adding or subtracting corresponding elements in the
matrices. Thus

[
1 3

−4 5

]
+

[
5 −4
6 6

]
=

[
6 −1
2 11

]
,

⎡
⎣ −4

6
11

⎤
⎦ −

⎡
⎣ 3

−3
2

⎤
⎦ =

⎡
⎣ −7

9
9

⎤
⎦

It is apparent that only matrices with the same number of rows and the same number of columns can
be added and subtracted. In general, if A = B + C then aij = bij + cij .

Scalar multiplication. Every element of a matrix is multiplied by a scalar quantity. Thus if A = sB,
where s is a scalar, then aij = sbij .

Matrix multiplication. We can only multiply two matrices B and C together if the number of columns
in B is equal to the number of rows in C. Such matrices are said to be conformable. If B is a p × q

matrix and C is a q × r matrix, then we can determine the product BC and the result, A, will be a p × r

matrix. Because the order of matrix multiplication is important, we say that B pre-multiplies C or C
post-multiplies B. The elements of A are determined from the following relationship:

aij =
n∑

k=1

bikckj for i = 1,2, . . . , n; j = 1,2, . . . , n

For example,

[
2 −3 1

−5 4 3

]⎡
⎣ −6 4 1

−4 2 3
3 −7 −1

⎤
⎦

=
[

2 (−6) + (−3) (−4) + 1 (3) 2 (4) + (−3)2 + 1 (−7) 2 (1) + (−3)3 + 1 (−1)

(−5) (−6) + 4 (−4) + 3 (3) (−5)4 + 4 (2) + 3 (−7) (−5)1 + 4 (3) + 3 (−1)

]

=
[

3 −5 −8
23 −33 4

]

Note that the product of a 2 × 3 and 3 × 3 matrix is a 2 × 3 matrix. Consider four further examples of
matrix multiplication:

[
1 2
3 4

][
5 6
3 2

]
=

[
11 10
27 26

]
,

[
5 6
3 2

][
1 2
3 4

]
=

[
23 34

9 14

]

[
1 2 3

]⎡
⎣ −4

3
3

⎤
⎦ = 11,

⎡
⎣ −4

3
3

⎤
⎦[

1 2 3
] =

⎡
⎣ −4 −8 −12

3 6 9
3 6 9

⎤
⎦

In the above examples it is seen that while the 2 × 2 matrices can be multiplied in either order, the
product is different. This is an important observation and in general BC �= CB. Note also that multi-
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plying a row by a column vector gives a scalar whereas multiplying a column by a row results in a
matrix.

Matrix inversion. The inverse of a square matrix A is written A−1 and is defined by

AA−1 = A−1A = I

The formal definition of A−1 is

A−1 = adj (A) /det (A) (A.3)

where adj(A) is the adjoint of A. The adjoint of A is given by

adj (A) = �T

where D is a matrix composed of the cofactors �ij of A. Using (A.3) is not an efficient way to compute
an inverse.

A.6 COMPLEX MATRICES
A matrix can have elements that are complex and such a matrix can be expressed in terms of two real
matrices. Thus

A = B + ıC where ı = √
(−1)

where A is complex and B and C are real matrices. Conjugation of A is normally denoted by A∗ and
is equal to

A∗ = B − ıC

Matrix A can be transposed so that

AT = BT + ıCT

Matrix A can be transposed and conjugated at the same time and this is denoted by AH and called the
Hermitian transpose. Thus

AH = BT − ıCT

For example,

A =
[

1 − ı −2 − 3ı 4ı

2 1 + 2ı 7 + 5ı

]
, A∗ =

[
1 + ı −2 + 3ı −4ı

2 1 − 2ı 7 − 5ı

]

AT =
⎡
⎣ 1 − ı 2

−2 − 3ı 1 + 2ı

4ı 7 + 5ı

⎤
⎦ , AH =

⎡
⎣ 1 + ı 2

−2 + 3ı 1 − 2ı

−4ı 7 − 5ı

⎤
⎦

It is important to note that the MATLAB expression A’ gives the conjugation and transposition of A
when applied to a complex matrix, i.e., it is equivalent to AH. However, A.’ gives ordinary transposition
which corresponds to AT.
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A.7 MATRIX PROPERTIES
The real square matrix A is

symmetric if: AT = A

skew-symmetric if: AT = −A

orthogonal if: AT = A−1

nilpotent if: Ap = 0, where p is a positive integer

idempotent if: A2 = A

The complex square matrix A = B + ıC is

Hermitian if: AH = A

unitary if: AH = A−1

A.8 SOME MATRIX RELATIONSHIPS
If P, Q, and R are matrices such that

W = P Q R

then

WT = RTQTPT (A.4)

and

W−1 = R−1Q−1P−1 (A.5)

If P, Q, and R are complex, then (A.5) is still valid and (A.4) becomes

WH = RHQHPH (A.6)

A.9 EIGENVALUES
Consider the eigenvalue problem

Ax = λx

If A is an n × n symmetric matrix, then there are n real eigenvalues, λi , and n real eigenvectors, xi ,
that satisfy this equation. If A is an n × n Hermitian matrix, then there are n real eigenvalues, λi ,
and n complex eigenvectors, xi , that satisfy the eigenvalue problem. The polynomial in λ given by
det(A − λI) = 0 is called the characteristic equation. The roots of this polynomial are the eigenvalues
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of A. The sum of the eigenvalues of A equals trace(A) where trace(A) is defined as the sum of the
elements on the leading diagonal of A. The product of the eigenvalues of A equals det(A).

It is interesting to note that if we define C as

C =

⎡
⎢⎢⎢⎢⎢⎣

−p1/p0 −p2/p0 . . . −pn−1/p0 −pn/p0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

then the eigenvalues of C are the roots of the polynomial

p0x
n + p1x

n−1 + ... + pn−1x + pn = 0

The matrix C is called the companion matrix.

A.10 DEFINITION OF NORMS
The p-norm for the vector v is defined thus:

||v||p = (|v1|p + |v2|p + ... + |vn|p
)1/p (A.7)

The parameter p can take any value but only three values are commonly used. If p = 1 in (A.7), we
have the 1-norm, ||v||1, thus

||v||1 = |v1| + |v2| + ... + |vn| (A.8)

If p = 2 in (A.7), we have the 2-norm or Euclidean norm of the vector v which is written ||v|| or ||v||2
and is defined thus:

||v||2 =
√

v2
1 + v2

2 + ... + v2
n (A.9)

Note that it is not necessary to take the modulus of the elements because in this case each element value
is squared. The Euclidean norm is also called the length of the vector. These names arise from the fact
that in two- or three-dimensional Euclidean space a vector of two or three elements is used to specify
a position in space. The distance from the origin to the specified position is identical to the Euclidean
norm of the vector.

If p tends to infinity in (A.7), we have ||v||∞ = max(|v1|, |v2|, ..., |vn|), the infinity norm. At first
sight this might appear inconsistent with (A.7). However, when p tends to infinity, the modulus of each
element is raised to a very large power and the largest element will dominate the summation.

These functions are implemented in MATLAB; norm(v,1), norm(v,2) (or norm(v)), and
norm(v,inf) return the 1, 2, and infinity norms of the vector v, respectively.
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A.11 REDUCED ROW ECHELON FORM
The RREF of a matrix also has an important role to play in the theoretical understanding of linear
algebra. A matrix is transformed into its RREF when the following conditions have been met:

1. all zero rows, if they exist, are at the bottom of the matrix,
2. the first non-zero element in every non-zero row is unity,
3. for each non-zero row, the first non-zero element appears to the right of the first non-zero element

of the preceding row,
4. for any column in which the first non-zero element of a row appears, all other elements are zero.

The RREF is determined by using a finite sequence of elementary row operations. The RREF is a
standard form and it is the most fundamental form of a matrix that can be achieved using elementary
row operations alone.

For a system of equations Ax = b we can define the augmented matrix [A b]. If this matrix is
transformed to its RREF, the following may be deduced:

1. If [A b] is derived from an inconsistent system (i.e., no solution exists) the RREF has a row of the
form [0 ... 0 1].

2. If [A b] is derived from a consistent system with an infinity of solutions, then the number of
columns of the coefficient matrix is greater than the number of non-zero rows in the RREF; other-
wise there is a unique solution and it appears in the last (augmented) column of the RREF.

3. A zero row in the RREF indicates that the original set of equations contained equations with re-
dundant information, i.e., information contained in other equations of the system.

In computing the RREF, numerical problems can arise that are common to other procedures that use
elementary row operations; see Section 2.6.

A.12 DIFFERENTIATING MATRICES
The rules for matrix differentiation are essentially the same as those for scalars, but care must be
taken to ensure that the order of the matrix operations is maintained. The process is illustrated by
the following example: differentiate f (x) = xTAx where x is a column vector with n elements,
(x1, x2, x3, ..., xn)

T, and A has elements aij for i, j = 1,2, ..., n. We note first that any matrix asso-
ciated with a quadratic form must be symmetric. Hence the matrix A is symmetric. We require the
gradient of f (x), i.e. ∇f (x). The gradient consists of all the first-order partial derivatives of f (x)

with respect to each component of the vector x. Now multiplying out the terms of f (x) we have f (x)

expressed in component terms as

f (x) =
n∑

i=1

aij x
2
i +

n∑
i=1

n∑
j=1,j �=i

aij xixj
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However we note that since A is symmetric aij = aji and consequently the terms aij xixj + ajixixj

can be written as 2aij xixj . Hence

∂f (x)

∂xi

= 2aiixi + 2
n∑

j=1, j �=i

aij xj

This is of course equivalent to the matrix form

∇f (x) = 2Ax

and this provides the standard matrix result where x is a column vector.

A.13 SQUARE ROOT OF A MATRIX
In order to have a square root, a matrix must be square. If A is a square matrix and B B = A, then B is
the square root of A. If A is singular it may not have a square root.

The square matrix A can be factorized to give A = XDX−1 where D is a diagonal matrix comprising
the n eigenvalues of A and X is an n×n array of the eigenvectors of A. We can expand this expression
for A to give

A = (XD1/2X−1)(XD1/2X−1)

Since

A = B B

then

B = XD1/2X−1

The square root of the diagonal matrix of eigenvalues, D, is determined by taking the square root of
each diagonal element, i.e. each eigenvalue. Any number, real or complex, will have one positive and
one negative square root. Thus to determine the square root of D (and hence A) we must consider
every combination of the positive and negative square roots of the eigenvalues. This gives 2n possible
combinations and hence there are 2n expressions for D1/2. This will lead to 2n different square root
matrices, B. If D1/2 comprises all the positive roots then the resulting square root matrix is called the
principal square root. This matrix is unique. Consider the following example. If

A =
⎡
⎣ 31 37 34

55 67 64
91 115 118

⎤
⎦
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then, taking the 23 = 8 combinations of square roots, we obtain the following square roots of A. Note
that B0 is the principal square root.

B0/1 = ±
⎡
⎣ 2.9798 2.9296 1.8721

4.3357 5.0865 3.9804
5.0313 7.1413 8.9530

⎤
⎦ B2/3 = ±

⎡
⎣ 1.0000 2.0000 3.0000

3.0000 4.0000 5.0000
8.0000 9.0000 7.0000

⎤
⎦

B4/5 = ±
⎡
⎣ 2.8115 3.0713 1.8437

4.5426 4.9123 4.0153
4.9594 7.2019 8.9408

⎤
⎦ B6/7 = ±

⎡
⎣ 1.1683 1.8583 3.0284

2.7931 4.1742 4.9651
8.0719 8.9395 7.0121

⎤
⎦

Multiplying any one of these matrices by itself will result in the original matrix A.
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ERROR ANALYSIS

All numerical processes are subject to error. Errors may be of the following types:

1. truncation errors that are inherent in the numerical algorithm,
2. rounding errors due to the necessity to work to a finite number of significant figures,
3. errors due to inaccurate input data,
4. simple human errors in coding, which should not happen but does!

Examples of the errors described in 1 can be found throughout this text, see, for example, Chapters 3,
4, and 5. Here we consider the implications of the type of errors described in 2 and 3 above. Errors of
the type described in 4 are outside the scope of this text.

B.1 INTRODUCTION
Error analysis estimates the error in some computation caused by errors in some previous process. The
previous process may be some experimentation, observation, or rounding in a calculation. Generally,
we require an upper estimate of the error that can arise when circumstances conspire to be at their
worst! We now illustrate this by a specific example. Suppose that a = 4 ± 0.02 (which implies an error
of ±0.5%) and b = 2 ± 0.03 (which implies an error of ±1.5%); then the highest value of a/b results
when we divide 4.02 by 1.97 (to give 2.041) and the lowest value of a/b results when we divide 3.98
by 2.03 (to give 1.960). Thus, compared with the nominal value of a/b (= 2) we see that the extremes
are 2.05% above and 2.0% below the nominal value.

A particular aspect of error analysis is to determine how sensitive a particular calculation is to
an error in a specific parameter. Thus, we deliberately modify the value of a parameter to determine
how sensitive the final answer is to changes in that parameter. For example, consider the following
equation:

a = 100
sin θ

x3

If a is evaluated for θ = 70 and x = 3, then a = 3.4803. If θ is increased by 10%, then a = 3.6088,
an increase of 3.69%. If θ is decreased by 10%, then a = 3.3, a decrease of 5.18%. Similarly, if we
independently increase x by 10%, then a = 2.6148 which is a decrease of 24.8%. If we decrease x by
10%, then a = 4.7741, an increase of 37.17%. Clearly, the value of a is much more sensitive to small
changes in x than in θ .

539
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B.2 ERRORS IN ARITHMETIC OPERATIONS
More usually, each of the independent variables has a specified error and we wish to find the overall
error in a calculation. We now consider how we can estimate the errors that arise from the standard
arithmetic operations. Let xa , ya , and za be approximations to the exact values x, y, and z, respectively.
Let the errors in x, y, and z be xε, yε, and zε, respectively. Then these are given by

xε = x − xa, yε = y − ya, zε = za

Hence

x = xε + xa, y = yε + ya, z = zε + za

If z = x ± y, then

z = (xa + xε) ± (ya + yε) = (xa ± ya) + (xε ± yε)

Now za = xa ± ya and hence from the above definitions, zε = xε ± yε. Normally we are concerned
with the maximum possible error and since xε and yε may be positive or negative quantities, then

max (|zε|) = |xε| + |yε|
Consider now the process of multiplication. If z = xy, then

z = (xa + xε)(ya + yε) = xaya + xεya + yεxa + xεyε (B.1)

Assuming the errors are small, we can neglect the product of errors in the above equation. It is conve-
nient to work in terms of relative error, where the relative error in x, xR

ε is given by

xR
ε = xε

/
x ≈ xε

/
xa

Thus, dividing (B.1) by za = xaya we have

(za + zε)

za

= 1 + xε

xa

+ yε

ya

or
zε

za

= xε

xa

+ yε

ya

(B.2)

(B.2) can be written

zR
ε = xR

ε + yR
ε

Again, we want to estimate the worst case error in z and since the error in x and y may be positive or
negative, we have

max
(∣∣∣zR

ε

∣∣∣) =
∣∣∣xR

ε

∣∣∣ +
∣∣∣yR

ε

∣∣∣ (B.3)
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It can easily be shown that if z = x/y, the maximum relative error in z is also given by (B.3). This
proof is left as an exercise for the reader.

A more general approach to error analysis is to use a Taylor series. Thus if y = f (x) and ya =
f (xa), then we can write

y = f (x) = f (xa + xε) = f (xa) + xεf
′(xa) + ...

Now

yε = y − ya = f (x) − f (xa)

Hence

yε = xεf
′ (xa)

For example, consider y = sin θ where θ = π/3 ± 0.08. Thus θε = ±0.08. Hence

yε = θε

d

dθ
{sin (θ)} = θε cos

(
π

/
3
) = 0.08 × 0.5 = 0.04.

B.3 ERRORS IN THE SOLUTION OF LINEAR EQUATION SYSTEMS
We now consider the problem of estimating the error in the solution of a set of linear equations, Ax = b.
For this analysis we must introduce the concept of a matrix norm.

The formal definition of a matrix p-norm is

‖A‖p = max
‖Ax‖p

‖x‖p

if x �= 0

where ‖x‖p is the vector norm defined in Section A.10. In practice, matrix norms are not computed
using this definition directly. For example the 1-norm, 2-norm, and the infinity-norm are computed as
follows:

||A||1 = maximum absolute column sum of A

||A||2 = maximum singular value of A

||A||∞ = maximum absolute row sum of A

Having defined the matrix norm we now consider the solution of the equation system

Ax = b

Let the exact solution of this system be x and the computed solution be xc. Then we may define the
error as

xe = x − xc
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We can also define the residual r as

r = b − Axc

We note that large residuals are indicative of inaccuracies but small residuals do not guarantee accuracy.
For example, consider the case where

A =
[

2 1
2 + ε 1

]
, b =

[
3

3 + ε

]

The exact solution of Ax = b (with a residual r = 0) is

x =
[

1
1

]

However, if we consider the very poor approximation

xc =
[

1.5
0

]

then the residual is

b − Axc =
[

0
−0.5ε

]

If ε = 0.00001, then the residual is very small, even though the solution is very inaccurate.
To obtain a formula which provides bounds on the relative error of the computed value, xc we

proceed as follows:

r = b − Axc = Ax − Axc = Axε (B.4)

From (B.4) we have

xε = A−1r

Taking the norms of this equation we have

‖xε‖ =
∥∥∥A−1r

∥∥∥ (B.5)

We can choose to use any p-norm and in the analysis that follows the subscript p is omitted. A property
of norms is that ||AB|| ≤ ||A|| ||B||. Thus we have, from (B.5)

‖xε‖ ≤
∥∥∥A−1

∥∥∥‖r‖ (B.6)

But r = Axε and so

‖r‖ ≤ ‖A‖ ‖xε‖
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Therefore

‖r‖
‖A‖ ≤ ‖xε‖

Combining this equation with (B.6) we have

‖r‖
‖A‖ ≤ ‖xε‖ ≤

∥∥∥A−1
∥∥∥ ‖r‖ (B.7)

Now since x = A−1b we have similarly

‖b‖
‖A‖ ≤ ‖x‖ ≤

∥∥∥A−1
∥∥∥‖b‖ (B.8)

If none of the terms in the above equation are zero, we can take reciprocals to give

1∥∥A−1
∥∥‖b‖ ≤ 1

‖x‖ ≤ ‖A‖
‖b‖ (B.9)

Multiplying the corresponding terms in (B.7) and (B.9) gives

1

‖A‖∥∥A−1
∥∥

‖r‖
‖b‖ ≤ ‖xε‖

‖x‖ ≤ ‖A‖
∥∥∥A−1

∥∥∥ ‖r‖
‖b‖ (B.10)

This equation gives error bounds for the relative error in the computation which are directly com-
putable. The condition number of Ais given by cond(A,p) = ||A||p||A−1||p. Hence (B.10) can be
re-written in terms of cond(A,p). When p = 2, cond(A) is the ratio of the largest singular value of A
to the smallest.

We now show how (B.10) can be used to estimate the relative error in the solution of Ax = b when
A is the Hilbert matrix. We have chosen the Hilbert matrix because its condition number is large and
its inverse is known and so we can compute the actual error in the computation of x. The following
MATLAB script evaluates (B.10) for a specific Hilbert matrix using the 2-norm.

n = 6, format long
a = hilb(n); b = ones(n,1);
xc = a\b;
x = invhilb(n)*b;
exact_x = x’;
err = abs((xc-x)./x);
nrm_err = norm(xc-x)/norm(x)
r = b-a*xc;
L_Lim = (1/cond(a))*norm(r)/norm(b)
U_Lim = cond(a)*norm(r)/norm(b)

Running this script gives
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n =
6

nrm_err =
3.316798106133016e-11

L_Lim =
3.351828310510846e-21

U_Lim =
7.492481073232495e-07

We see that the norm of the actual relative error, 3.316 × 10−11, lies between the bounds 3.35 × 10−21

and 7.49 × 10−7.
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CHAPTER 1
1.1. (a) Since some x are negative the corresponding square roots are imaginary and ı = √−1 is

used. (b) In executing x./y the divide by zero produces the symbol ∞ and a warning.
1.2. (b) Note that t2 is identical to c but t1 is not since the sqrt function gives the square root of the

individual elements of c.
1.4. x = 2.4545, y = 1.4545, z = −0.2727. Note when using the / operator the solution is given by
x=b’/a’.

1.8. The plot does not truly represent the function cos(x3) because there are insufficient plotting
points.

1.9. Function fplot automatically adjusts to provide a smoother plot. However, changing x to
-2:0.01:2 gives a similar quality graph using the function plot.

1.12. x = 1.6180.
1.14. Using x1 = 1, x2 = 2, ..., x6 = 6, a suitable script is

n = 6; x = 1:n;
for j = 1:n,

p(j) = 1;
for i = 1:n

if i~=j
p(j) = p(j)*x(i);

end
end

end
p

1.15. A suitable script is

x = 0.82; tol = 0.005; s = x; i = 2; term = x;
while abs(term)>tol

term = -term*x; s = s+term/i; i = i+1;
end
s, log(1+x)

1.17. The form of the function is

function [x1,x2] = funct1(a,b,c)
d = b*b-4*a*c;
if d==0

x1 = -b/(2*a); x2 = x1;
else

545
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x1 = (-b+sqrt(d))/(2*a); x2 = (-b-sqrt(d))/(2*a);
end

1.18. A possible script is

function [x1,x2] = funct2(a,b,c)
if a~= 0

%as in problem 1.17
else

disp(’warning only one root’); x1 = -c/b; x2 = x1;
end

1.19. The graph provides an initial approximation of 1.5. Use the function call fzero(’funct3’,1.5)
to obtain the root as 1.2512.

1.20. A possible script is

x=[ ]; x(1) = 1873;
c = 1; xc = x(1);
while xc>1

if (x(c)/2)==floor(x(c)/2)
x(c+1) = (x(c))/2;

else
x(c+1) = 3*x(c)+1;

end
xc = x(c+1); c = c+1;
if c>1000

break
end

end
plot(x)

Try different values for x(1). For example 1173, 1409, etc.
1.21. A possible script is

x = -4:0.1:4; y = -4:0.1:4;
[x,y] = meshgrid(-4:0.1:4,-4:0.1:4);
p = x.^2+y.^2;
z = (1-x.^2).*exp(-p)-p.*exp(-p)-exp(-(x+1).^2-y.^2);
subplot(3,1,1)
mesh(x,y,z)
xlabel(’x’), ylabel(’y’), zlabel(’z’)
title(’mesh’)
subplot(3,1,2)
surf(x,y,z)
xlabel(’x’), ylabel(’y’), zlabel(’z’)
title(’surf’)
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subplot(3,1,3)

mesh(x,y,z)

xlabel(’x’), ylabel(’y’), zlabel(’z’)

title(’contour’)

1.22. A possible script is

clf

a = 11; b= 6;

t = -20:0.1:20;

% Cycloid

x = a*(t-sin(t));y=a*(1-cos(t));

subplot(3,1,1), plot(x,y)

xlabel(’x-xis’), ylabel(’y-xis’), title(’Cycloid’)

% witch of agnesi

x1 = 2*a*t;y1=2*a./(1+t.^2);

subplot(3,1,2), plot(x1,y1)

xlabel(’x-xis’), ylabel(’y-xis’)

title(’witch of agnesi’)

% Complex structure

x2 = a*cos(t)-b*cos(a/b*t);

y2 = a*sin(t)-b*sin(a/b*t);

subplot(3,1,3), plot(x2,y2)

xlabel(’x-xis’), ylabel(’y-xis’)

title(’Complex structure’)

1.23. A possible function is

function r = zetainf(s,acc)

sum = 0; n = 1; term = 1+acc;

while abs(term)>acc

term = 1/n.^s;

sum = sum +term;

n = n+1;

end

r = sum;

1.24. A possible function is

function res = sumfac(n)

sum = 0;

for i = 1:n

sum = sum+i^2/factorial(i);

end

res = sum;
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1.26. A possible script is

rho1 = [zeros(2), eye(2); eye(2), zeros(2)]
rho2 = [zeros(2), i*eye(2); -i*eye(2), zeros(2)]
rho3 = [eye(2), zeros(2); zeros(2), -eye(2)]
q1 = [zeros(4) rho1;-rho1 zeros(4)]
q1 = [zeros(4) rho2;-rho2 zeros(4)]
q1 = [zeros(4) rho3;-rho3 zeros(4)]

1.27. A possible script is

x = -4:0.001:4;
y = 1./(((x+2.5).^2).*((x-3.5).^2));
plot(x,y)
ylim([0,20])
xlim([-3,-2])

1.28. A possible script is

y = @(x)x.^2.*cos(1+x.^2);
y1 = @(x) (1+exp(x))./(cos(x)+sin(x));
x = 0:0.1:2;
subplot(1,2,1), plot(x,y(x))
xlabel(’x’), ylabel(’y’)
subplot(1,2,2), plot(x,y1(x))
xlabel(’x’), ylabel(’y’)

1.39. The value of the summation to a high degree of accuracy is I = 0.538079506912768. Summing
the first 10 terms gives 0.53807950. The eleventh term is equal to 1.3125 × 10−08.

CHAPTER 2
2.1. Note the large error in the inverse of the square of the Hilbert matrix when n = 6.
2.2. For n = 3, 4, 5, and 6, the answers are 2.7464 × 105, 2.4068 × 108, 2.2715 × 1011, and

2.2341 × 1014, respectively. The large errors in Problem 2.1 arise from the fact that the Hilbert
matrix is very ill-conditioned, as shown by these results.

2.3. For example, with n = 5, a = 0.2, b = 0.1; thus a + 2b < 1 and maximum error in the matrix
coefficients is 1.0412 × 10−5. Taking n = 5, a = 0.3, b = 0.5; thus a + 2b > 1 and after 10 terms
maximum error in matrix coefficients is 10.8770. After 20 terms maximum error is 50.5327, clearly
diverging.

2.4. Eigenvalues are 5, 2 + 2ı, and 2 − 2ı. Thus taking λ = 5 in the matrix (A − λI) and finding the
RREF gives

p =
⎡
⎣ 1 0 −1.3529

0 1 0.6471
0 0 0

⎤
⎦

Hence px = 0. Solving this gives x1 = 1.3529x3, x2 = −0.6471x3, and x3 is arbitrary.
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2.6. x� = [0.9500 0.9811 0.9727]. All methods give identical solution. Note if [q,r] = qr(a) and
y = q’*b;, then x = r(1:3,1:3)\y(1:3).

2.7. The solution is [0 0 0 0 ... n + 1].
2.10. For n = 20 condition number is 178.0643; theoretical condition number is 162.1139. For n = 50

condition number is 1053.5; theoretical condition number is 1013.2.
2.11. Right-hand vectors are

⎡
⎣ 0.0484 + 0.4447ı

−0.3962 + 0.4930ı

0.4930 + 0.3962ı

⎤
⎦

⎡
⎣ 0.0484 − 0.4447ı

−0.3962 − 0.4930ı

0.4930 − 0.3962ı

⎤
⎦

⎡
⎣ 0.4082

0.8165
0.4082

⎤
⎦

The corresponding eigenvalues are 2 + 4ı, 2 − 4ı, and 1. The left-hand vectors are obtained by
using the function eig on the transposed matrix.

2.12. (i) Largest eigenvalue is 242.9773; (ii) Eigenvalue nearest 100 is 112.1542; (iii) Smallest eigen-
value is 77.6972.

2.14. For n = 5, largest eigenvalue is 12.3435, smallest eigenvalue is 0.2716. For n = 50, largest
eigenvalue is 1.0337 × 103, smallest eigenvalue is 0.2502.

2.15. Using the function roots we compute eigenvalues 22.9714, −11.9714, 1.0206 ± 0.0086ı,
1.0083 ± 0.0206ı, 0.9914 ± 0.0202ı, 0.9798 ± 0.0083ı. Using the function eig we have 22.9714,
−11.9714, 1, 1, 1, 1, 1, 1, 1, 1. This is a more accurate solution.

2.16. Both eig and roots give results that only differ by less than 1 × 10−10. Eigenvalues are
242.9773, 77.6972, 112.1542, 167.4849, 134.6865.

2.17. Sum of eigenvalues is 55, product of eigenvalues is 1.
2.18. c = 0.641n1.8863.
2.19. A suitable function is

function appinv = invapprox(A,k)
ev = eig(A);
evm = max(ev);
if abs(evm)>1

disp(’Method fails’)
appinv = eye(size(A));

else
appinv = eye(size(A));
for i = 1:k

appinv = appinv+A^i;
end

end

2.20. The MATLAB operator gives a much better result. A suitable function is

function [res1,res2, nv1,nv2] = udsys(A,b)
newA = A’*A; newb = A’*b;
x1 = inv(newA)*newb;
nv1 = norm(A*x1-b);
x2 = A\b;
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nv2 = norm(A*x2-b);
res1 = x1; res2 = x2;

2.22. Exact solution is

x = [−12.5 −24 −34 −42 −47.5 −50 −49 −44 −34.5 −20]�.

The Gauss–Seidel method requires 149 iterations and the Jacobi method requires 283 iterations to
give the result to the required accuracy.

CHAPTER 3
3.2. The solution is 27.8235.
3.3. The solutions are −2 and 1.6344.
3.4. For c = 5, with the initial approximation 1.3 or 1.4, the root 1.3735 is obtained after two or three

iterations. When c = 10, with the initial approximation 1.4, the root 1.4711 is obtained after five
iterations. With initial approximation 1.3, convergence is to 130.2764 after 25 iterations. This is a
root but the discontinuity in the function has degraded the performance of the Newton algorithm.

3.5. Schroder’s method provides the solution x = 1.0 in only one iteration but Newton’s method
gives x = 0.9991 and requires 36 iterations. The solution obtained by Schroder’s method is more
accurate.

3.6. The equation can be rearranged into the form x = exp(x/10). Iteration gives x = 1.1183. There
may be other successful rearrangements.

3.7. The solution is E = 0.1280.
3.8. The answers are 2.1602 × 10−16 and 7.1861 × 10−17 for initial values 1 and −1.5, respectively.

The exact solution is clearly 0 but this is a difficult problem.
3.9. The three answers are 1.4299, 1.4468, and 1.4458 which are obtained for four, five, and six

terms, respectively. These answers are converging to the correct answer.
3.10. Both approaches give identical results, x = 8.2183, y = 2.2747. The single variable function is

x/5 − cosx = 2. Alternatively the following call can be used

newtonmv([1 1]’,’p310’,’p310d’,2,1e-4)

It requires the functions and derivatives to be defined thus:

function v = p310(x)
v = zeros(2,1);
v(1) = exp(x(1)/10)-x(2);
v(2) = 2*log(x(2))-cos(x(1))-2;

function vd = p310d(x)
vd = zeros(2,2);
vd(1,:) = [exp(x(1)/10)/10 -1];
vd(2,:) = [sin(x(1)) 2/x(2)];
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3.11. The solution given by broyden is x = 0.1605, y = 0.4931.
3.12. A solution is x = 0.9397, y = 0.3420. The MATLAB function newtonmv requires 7 iterations

and broyden requires 33.
3.14. The five roots are 1, −ı, ı, −√

2,
√

2.
3.15. Solution is x = −0.1737−0.9848ı, 0.9397+0.3420ı, and −0.7660+0.6428ı. This is identical

to the exact answer.
3.16. The MATLAB function required is

function v = jarrett(f,x1,x2,tol)
gamma = 0.5; d = 1;
while abs(d)>to

f2 = feval(f,x2);f1=feval(f,x1);
df = (f2-f1)/(x2-x1); x3 = x2-f2/df; d = x2-x3;
if f1*f2>0

x2 = x1; f2 = gamma*f1;
end
x2 = x3

end

3.17. The third-order method provides the required accuracy after seven iterations. The second-order
method requires ten iterations.

3.18. The graphs show that for c = 2.8 there is convergence to a single solution, for c = 3.25 the
iteration oscillates between two values, for c = 3.5 the iteration oscillates between four values and
for c = 3.8 there is chaotic oscillation between many values.

3.20. Here is an example with p and q chosen to give real roots:

>> p=2.5; q = -1; if p^3/q^2>27/4, r = roots([1 0 -p -q]), end

r =
-1.7523
1.3200
0.4323

3.21. Commands to solve this problem are

>> y1 = roots([1 0 6 -60 36]);
>> y = y1(3:4)’;
>> x = 6./y;
>> z = 10-x-y

z =
4.9646 0.0446

3.22. A script to solve this problem is

c1 = (sinh(x)+sin(x))./(2*x);
c3 = (sinh(x)-sin(x))./(2*x.^3);
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fzero(@ (x) c1^2-x.^4*c3.^2,5)
fzero(@ (x) c1^2-x.^4*c3.^2,30)

3.23. A script to solve this problem is

p = 3; q = 4;
pc = [1 0 3*p -2*q];
xv = roots(pc)
%check using Cardano formula
c1 = q+sqrt(q^2+p^3)
c2 = q-sqrt(q^2+p^3)
r1 = nthroot(c1,3)
r2 = nthroot(c2,3)
x1 = r1+r2
%Complex roots use cubes of unity
w1 = (-1+i*sqrt(3))/2;w2=(-1-i*sqrt(3))/2;
x2 = w1*r1+w2*r2
x3 = w2*r1+w1*r2

3.24. A script to solve this problem is

a = 1; b = 2; c = 3;
%polynomial coefficients are
pc(1) = (a+b+c); pc(2) = 3-(a*(b+c)+b*(a+c)+c*(a+b));
pc(3) = 3*a*b*c-2*(a+b+c); pc(4) = b*c+a*c+a*b;
sol = roots(pc)
polyval(pc,sol)

3.25. Since sin(3θ) = −4 sin3 θ + 3 sin θ and cos2 θ = 1 − sin2 θ , equation becomes −0.6275x3 +
0.9412x2 − 0.4314x + 0.0588 = 0 where x = sin θ . Using roots give x = 0.75,0.5 and 0.25.
Hence θ = 0.8481,0.5236 and 0.2527 rad.

CHAPTER 4
4.1. First derivative is 0.2391, the second derivative is −2.8256. The function diffgen gives accurate

answers using either h = 0.1 or 0.01. The function changes slowly over this range of values.
4.2. When x = 1, the computed and exact derivative is −5.0488; when x = 2 the computed deriva-

tive is −176.6375 (exact = −176.6450), and when x = 3 the computed derivative is −194.4680
(exact = −218.6079).

4.3. Using the new formula for Problem 4.1, the first derivative estimate is 0.2267 and 0.2390 for
h = 0.1 and 0.01, respectively. The second derivative is −2.8249 and −2.8256 for h = 0.1 and
0.01, respectively. In Problem 4.2 for x = 1, 2, and 3 the first derivative estimates are −5.0489,
−175.5798, and −150.1775, respectively. Note that these are less accurate than using diffgen.

4.4. The approximate derivatives are −1367.2, −979.4472, −1287.7, and −194.4680. If h is de-
creased to 0.0001, then the values are the same as the exact derivatives to the given number of
decimal places.
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4.5. The exact partial derivatives with respect to x and y are 593.652 and 445.2395, respectively. The
corresponding approximate values are 593.7071 and 445.2933.

4.6. The integral method estimates 6.3470 primes in the range 1 to 10, 9.633 primes in the range 1
to 17 and 15.1851 primes in the range 1 to 30. The actual numbers are 7, 10, and 15.

4.7. Exact values are 1.5708, 0.5890, and 0.2443 for r = 0, 1, and 2, respectively. Approximations
provided by integral are 1.5338, 0.5820, and 0.2700.

4.8. The exact values are −0.0811 for a = 1 and 0.3052 for a = 2. Using simp1 with 512 points gives
agreement to 12 decimal places.

4.9. The exact answer is −0.915965591 and the answer given by fgauss is −0.9136. Function simp1
cannot be used because of the singularity at x = 0.

4.10. The exact answer is 0.915965591; fgauss gives 0.9159655938. Note that the integrals of 4.9
and 4.10 have the same value apart from the sign.

4.11. (i) Using (4.32) with 10 points gives 3.97746326050642, 16-point Gauss gives 3.8145.
(ii) Using (4.33) gives 1.77549968921218, 16-point Gauss gives 1.7758.

4.13. Function filon gives
2.00000000000098, −0.13333333344440, and −2.000199980281494 × 10−4

4.14. Using Romberg’s method with nine divisions gives −2.000222004003794×10−4. Using Simp-
son’s rule with 1024 intervals gives −1.999899106566088 × 10−4.

4.18. The solution for (i) is 48.96321182552904 and for (ii) 9726.56492. These compare well with
the exact solution which can be computed from the formula 4π(n+1)/(n+1)2 where n is the power
of x and y.

4.19. (i) To fix limits, substitute y = (√
x/3 − 1

)
z + 1. Answer: −1.71962748468952. (ii) To fix

limits, substitute y = (2 − x)z. Answer: 0.22222388780205.
4.20. The answers are (i) 9725.75264, (ii) 0.22222222200993.
4.21. Values of the integral are given in the following table:

z Exact 16-point Gauss
0.5 0.493107418 0.49310741784618
1.0 0.946083070 0.94608306999140
2.0 1.605412977 1.60541297617644

4.22. Use gauss2v and define the following function:

z = @(x,y) 1./(1-x.*y);

4.23. The following will provide the solution of this problem:

% Probability of engine failure
p = [ ];
a = 3.5; b = 8200;
i = 1;
for T = 200:100:4000
P(i) = quad(@(x) a*b^a./((x+b).^(a+1)),0.001,T);
i=i+1;
end
figure(1)
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plot(200:100:4000,P)
xlabel(’Time in hours’), ylabel(’Probability of failure’)
title(’plot of probability of failure against time’)
grid

4.24. The following will provide the solution of this problem, the value of the integral is −0.15415
correct to 5 places.

p = 3; q = 4; r = 2;
f = @(x) (x.^p-x.^q).*x.^r ./log(x);
val = quad(f,0,1);
fprintf(’\n value of integral = %6.5f\n’,val)
check = log((p+r+1)/(q+r+1))
fprintf(’\n value of integral = %6.5f\n’,check)

4.25. The three integrals are approximately equal to 0.91597.
4.26. The integral equals zero to five decimal places.
4.27. A fairly low accuracy result is obtained.
4.28. Accuracy to two decimal places is obtained.
4.29. There is good agreement between values. The script is:

f = @(x) -log(x).^3 .* exp(-x)
val = quadgk(f,0,Inf);
fprintf(’\n value of integral = %6.5f\n’,val)
gam = 0.57722;
S3 = gam^3+0.5*gam*pi^2+2*zeta(3)
fprintf(’\n Approximate sum of series = %6.5f\n’,S3)

4.30. The best result is given by dblquad is 2.01131. The script is:

R = dblquad(@(x,y) (1-cos(50*x).*cos(100*y))./(2-cos(x)-cos(y))...,
0.0001,pi,0.0001,pi);R=R/pi^2;
fprintf(’\nValue of integral using dblquad = %6.5f\n’,R)
R1 = simp2v(@(x,y) (1-cos(50*x).*cos(100*y))./(2-cos(x)-cos(y))...,

0.00001,pi,0.00001,pi,64);R1=R1/pi^2;
gamma = -psi(1);
R = (gamma+3*log(2)/2+log(50^2+100^2)/2)/pi;
fprintf(’\nValue of integral using simp2v = %6.5f\n’,R1)
fprintf(’\n Approximate value check = %6.5f\n’,R)

4.31. Value of integral is 0.46306.
4.32.
4.33.
4.34.
4.35. The solution to a high level of accuracy is I = 0.538079506912768. Using 32 panels in the

Filon integration gives I = 0.5380795.
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4.36. You should show that the Lagrendre polynomials are orthogonal so that

Im,n =
∫ 1

−1
Pm(x)Pn(x) dx = 2/(2n + 1),

if m = n, else zero.

CHAPTER 5
5.1. When t = 10, the exact value is 30.326533.
feuler: 29.9368, 30.2885, 30.3227 with h = 1, 0.1, and 0.01, respectively.
eulertp: 30.3281, 30.3266 with h = 1 and 0.1, respectively.
rkgen: 30.3265 with h = 1.

5.2. Classical method gives 108.9077, Butcher method gives 109.1924, Merson method gives
109.1924.
Exact answer is 2exp(x2) = 109.1963.

5.3. Adams–Bashforth–Moulton method gives 4.1042, Hamming’s method gives 4.1043. Exact
answer is 4.1042499.

5.4. Using ode23 gives 0.0254; using ode45 gives 4.
5.5. Solution of Problem 5.1 with h = 1 is 30.3265. Solution of Problem 5.2 with h = 0.2 is 108.8906.

Solution of Problem 5.2 with h = 0.02 is 109.1963.
5.6. (i) 7998.6, exact = 8000. (ii) 109.1963.
5.9. Method is stable for h = 0.1 and 0.2, and unstable for h = 0.4.
5.11. Define the right-hand sides using the following function:

function v = p511(t,x)
v = ones(2,1);
v(1) = x(1)*(1-0.001*x(1)-1.8*x(2));
v(2) = x(2)*(.3-.5*x(2)/x(1));

5.12. Define the right-hand sides using the following function:

function v = p512(t,x)
v = ones(2,1);
v(1) = -20*x(1); v(2) = x(1);

5.13. Define the right-hand sides using the following function:

function v = p513(t,x)
v = ones(2,1);
v(1) = -30*x(2);
v(2) = -.01*x(1)*x(2);

5.14. Define the right-hand sides using the following function:
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function v = p514(t,x)
global c
k = 4; m = 1; F = 1;
v = ones(2,1);
v(1) = (F-c*x(1)-k*x(2))/m;
v(2) = x(1);

The script to solve this equation is

global c
i = 0;
for c = [0,2,1]

i = i+1;
c
[t,x] = ode45(’q514’,[0 10],[0 0]’);
figure(i)
plot(t,x(:,2))

end

5.16. The script to solve this problem is:

function prhs = planetrhs(t,x)
% global x0
% NB global is used if initial values x0
% are used to calculate impact probabilities
% rather than x the variable values
for i=1:3

for j=1:3
A(i,j)=x(i).*x(j)./(x(i)+x(j))/1000;

end
end
prhs = zeros(3,1);
prhs(1) = -x(1).*(A(1,2).*x(2)+A(1,3).*x(3));
prhs(2) = 0.5*A(1,1)*x(1).*x(1)-x(2).*(A(2,2).*x(2)+A(2,3).*x(3));
prhs(3) = 0.5*A(1,2)*x(1).*x(2);

Together with

% Solution of planetary growth
% the coagulation equation three size model
% Let x(1), x(2) and x(3) represent the
% number of planetesimals of the three sizes
global x0
% Initially
x0 = [200,25,1];
tspan = [0,2];
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[t,x] = ode45(’planetrhs’, tspan,x0);
fprintf(’\n number of smallest planets= %3.0f’,x(end,1))
fprintf(’\n number of intermediate planets=%3.0f’,x(end,2))
fprintf(’\nlargest planets=%3.0f\n’,x(end,3))
figure(1)
plot(t,x)
xlabel(’time’), ylabel(’planet numbers’)
grid

5.17. The script to solve this problem is:

%Solution of Daiy world problem
span = 10;
[x,t] = ode45(’daisyf’,span,[0.2, 0.3]);
plot(x,t)
xlabel(’Time’), ylabel(’black and white daisy areas’)
title(’daisy world’)
grid

and the function:

function daisyrhs = daisyf(t,x)
daisyrhs = zeros(2,1);
gamma = 0.3;
Tb = 295; Tw = 285;
betab = 1-0.003265*(295.5-Tb);
betaw = 1-0.003265*(295.5-Tw);
barbit = 1-x(1)-x(2);
daisyrhs(1) = x(1).*(barbit.*betab-gamma);
daisyrhs(2) = x(2).*(barbit.*betaw-gamma);

CHAPTER 6
6.1. (i) hyperbolic, (ii) parabolic, (iii) f (x, y) > 0, hyperbolic, f (x, y) < 0 elliptic.
6.2. Initial slope = −1.6714. Shooting and FD methods give good results.
6.3. This is an example of a stiff equation. (i) The actual slope when x = 0 is 1.0158×10−24. Because

we cannot determine this slope accurately, the shooting method gives a very inaccurate solution.
(ii) In this case the shooting method provides a good result because the initial slope is −120. In
both cases the FD method requires a large number of divisions to give an accurate result.

6.5. Finite difference method gives λ1 = 2.4623. Exact λ1 = (π/L)2 = 2.4674.
6.6. At t = 0.5 the variation of z is almost linear between the boundaries at 0 and 10.
6.7. The exact and FD approximations are very similar.
6.8. The exact and FD approximations are similar with a maximum error of 0.0479.
6.9. With 9 divisions in x, λ = 5.8870, 14.0418, 19.6215, 27.8876, 29.8780. Even with 36 divisions

in x the eigenvalues have not converged.
6.10. [0.7703 1.0813 1.5548 1.583 1.1943 1.5548 1.583 1.194 1.0813 0.7703].
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CHAPTER 7
7.1. Using the Aitken function, E(2◦) = 1.5703, E(13◦) = 1.5507, E(27◦) = 1.4864. These are

accurate to the places given.
7.2. The root is 27.8235.
7.3. (i) p(x) = 0.9814x2 + 0.1529 and p(x) = −1.2083x4 + 2.1897x2 + 0.0137. The fourth degree

polynomial gives a good fit.
7.4. Interpolation gives 0.9284 (linear), 0.9463 (spline), 0.9380 (cubic polynomial). The MATLAB

function aitken gives 0.9455. This is the exact value to four decimal places.
7.5. p(x) = −0.3238x5 + 3.2x4 − 6.9905x3 − 12.8x2 + 31.1429x. Note that the polynomial oscil-

lates between data points. The spline does not exhibit this characteristic, suggesting that it better
represents any underlying function from which the data might have been taken.

7.6. (i) f (x) = 3.1276 + 1.9811ex + e2x . (ii) f (x) = 685.1 − 2072.2/(1 + x) + 1443.8/(1 + x)2.
(iii) f (x) = 47.3747x3 − 128.3479x2 + 103.4153x − 5.2803.
Plotting these functions shows that the best fit is given by (i). The polynomial fit is a reasonable
one.

7.7. The plot should display an airfoil section.
7.8. Product of primes less than P is given by 0.3679 + 1.0182 loge P approximately.
7.9. a0 = 1, a1 = −0.5740, a2 = 0.9456, a3 = −0.6865, a4 = 0.4115, a5 = −0.0966.
7.10. Exact: −78.3323. Interpolation gives −78.3340 (cubic) or −77.9876 (linear).
7.11. The minimum values of E are approximately −14.95 and −6.45 at points 40 and 170. The

maximum values of E are 3.68 and 16.47 at points 110 and 252.
7.12. Estimated production cost in year 6 is $31.80 using cubic extrapolation and $20.88 using

quadratic extrapolation. Using the revised data the estimated costs are $24.30 and $21.57, respec-
tively. These widely varying results, some of which are barely credible, show the dangers of trying
to estimate future costs from insufficient data.

7.13. x = 2.4679.
7.14. I = 1.5713, α = 8.71406.
7.15. fn = n

6

(
n2 + 3n + 2

)
.

7.18. The values are: 22.70, 22.42, 22.42.

CHAPTER 8
8.1. The data is sampled from y = sin(2πf1t) + 2 cos(2πf2t) where f1 = 1.25 Hz and f2 =

3.4375 Hz. At 1.25 Hz, DFT = −15.9999ı and 3.4375 Hz, DFT = 32.0001. The negative com-
plex coefficient is related to the positive size of the coefficient of the sine function and the positive
real component is related to the cosine function. To relate the size of the DFT components to the
frequency components in the data we divide the DFT by the number of samples (32) and multiply
by 2.

8.2. Algebraically,

32 sin5(30t) = 20 sin(30t) − 10 sin(90t) + 2 sin(150t)
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and

32 sin6(30t) = 10 − 15 cos(60t) + 6 cos(120t) − cos(180t)

To verify these results from the DFT it is necessary to divide it by n and multiply by 2. The real
components are the values of the cosine coefficients. The imaginary components in the DFT are
the negative of the values of the sine coefficients. Note also that the coefficient at zero frequency
is 20, not 10. This is a consequence of the definition of the DFT; see Section 8.2.

8.3. Components in spectrum at 30 Hz and 112 Hz. The reason for the large component at 112 Hz is
that the component in the data at 400 Hz is above the Nyquist frequency and is folded back to give
a spurious component, i.e., 400 Hz is 144 Hz above the Nyquist frequency of 256 Hz; 112 Hz is
144 Hz below it.

8.5. With 32 points the frequency increment is 16 Hz and the significant components are at 96 Hz
and 112 Hz (the largest amplitude). With 512 points the frequency increment is reduced to 1 Hz
and the significant components are at 106, 107, and 108 Hz with the largest amplitude at 107 Hz.
With 1024 points the frequency increment is reduced to 0.5 Hz and the component with the largest
amplitude is at 107.5 Hz. The original data had a frequency component of 107.5 Hz.

8.7. In each case the sequency is 2 z/s but in Case (a) the predominant sequency is a SAL function;
in Case (b) it is a CAL function.

8.8. For both functions the major components at sequencies of 40 z/s, 100 z/s, and 140 z/s equivalent
to 20 Hz, 50 Hz, and 70 Hz, but the spectra show many other components, even though there is
no random noise in these cases. This is to be expected when using the Walsh transform to analyze
data comprising harmonic functions. It is less easily explained in the case where the function is
composed of square waves.

8.9. Case (a) components are at level −1 and 3. Case (b) components start at level 3, then increase
to 4 and finally decrease to 3. Case (c) is much more difficult to interpret because sampling is not
over an integer number of periods. From the wavelet map the most significant component is level 3,
but components at level 4 and even 5 appear to be present. This is misleading.

8.10. The script for this problem is

load sunspot.dat

year = sunspot(:,1);

sunact = sunspot(:,2);

figure(1)

plot(year,sunact)

xlabel(’Year’), ylabel(’Sunspots’)

title(’Sunspot activity by year’)

Y = fft(sunact);

N = length(Y);

Power = abs(Y(1:N/2)).^2;

freq = (1:N/2)/(N/2)*0.5;

figure(2)

plot(freq,Power)

xlabel(’freq’), ylabel(’Power’)
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CHAPTER 9
9.1. Objective is 21.6667. Solution is x1 = 3.6667, x3 = 0.3333, other variables are zero.
9.2. Objective is 21.6667. Solution is x1 = 3.3333, x2 = 1.6667, x4 = 0.3333, other variables are

zero. Thus this problem and the previous one have objective functions of equal magnitude.
9.3. Objective is 100. Solution is x1 = 10, x3 = 20, x5 = 22, other variables are zero.
9.4. This is a difficult function for the conjugate gradient method and this is why the accuracy of the

line-search for the built-in MATLAB function fminsearch was changed to produce more accurate
results. Solution is [1.0007 1.0014] with gradient [0.33860.5226] × 10−3.

9.5. Exact and computed solutions are both [−2.9035 −2.9035 1 1 1].
9.6. Solution is [−0.4600 0.5400 0.3200 0.8200]�. Norm(b − Ax) = 1.3131 × 10−14.
9.11. The solution obtained values are 0.1605 and 0.4931.
9.12. The script to solve this question is

clf

[x,y] = meshgrid(-4:0.1:4,-4:0.1:4);

p = x.^2+y.^2;

z = (1-x).^2.*exp(-p)- p.*exp(-p) - exp(-(x+1).^2 - y.^2);

figure(1)

surf(x,y,z)

xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)

title(’mexhat plot’)

figure(2)

contour(x,y,z,20)

xlabel(’x-axis’), ylabel(’y-axis’)

title(’contour plot’)

optp = ginput(3);

x = optp(:,1); y = optp(:,2);

p = x.^2+y.^2;

z = (1-x).^2.*exp(-p)- p.*exp(-p) - exp(-(x+1).^2 - y.^2)

fprintf(’maximum value= %6.2f\n’,max(z))

fprintf(’minimum value= %6.2f\n’,min(z))

x

y

P=x(1).^2+x(2).^2;

fopt=@ (x)(1-x(1)).^2 .*exp(-(x(1).^2+x(2).^2))...

- (x(1).^2+x(2).^2).*exp(-(x(1).^2+x(2).^2))...

- exp(-(x(1)+1).^2 - x(2).^2) ;

[x,fval] = fminsearch(fopt,[-4;4])

fprintf(’\nNon global solution= %8.6f\n’,fval)

9.14. The minimum is achieved at 63.8157.
9.15. The minimum is achieved at 63.8160, a very similar result to Problem 9.14.
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CHAPTER 10
10.1. Use >>collect((x-1/a-1/b)*(x-1/b-1/c)*(x-1/c-1/a)).
10.2. Use >>y = x^4+4*x^3-17*x^2+27*x-19; z = x^2+12*x-13;
>>horner(collect(z*y))

10.3. Use >>expand(tan(4*x)) >>expand(cos(x+y))
>>expand(cos(3*x)) >>expand(cos(6*x))

10.4. Use expand(cos(x+y+z)).
10.5. Use >>taylor(asin(x),8) >>taylor(acos(x),8)
>>taylor(atan(x),8)

10.6. Use taylor(log(cos(x)),13).
10.7. Use >>[solution, how] = simple(symsum((r+3)/(r*(r+1)*(r+2))*(1/3)^r,1,n)).
10.8. Use symsum(k^10,1,100).
10.9. Use symsum(k^(-4),1,inf).
10.10. Use a = [1 a a^2;1 b b^2;1 c c^2]; factor(inv(a)).
10.11. Set a = [a1 a2 a3 a4;1 0 0 0;0 1 0 0;0 0 1 0] and use ev = a-lam*eye(4) and det(ev).
10.12. Set trans = [cos(a1) sin(a1);-sin(a1) cos(a1)]; and use
>>[solution,how] = simple(trans^2)
>>[solution,how] = simple(trans^4)

10.13. Set r = solve(’x^3+3*h*x+g=0’) and use
[solution,s] = subexpr(r,’s’).

10.14. Use solve(’x^3-9*x+28 = 0’).
10.15. Use p = solve(’z^6 = 4*sqrt(2)+i*4*sqrt(2)’);
res = double(p).

10.16. Use f5 = log((1-x)*(1+x^3)/(1+x^2)); p = diff(f5);
factor(p). Then use pretty(ans) to help interpret this result.

10.17. Use >>f = log(x^2+y^2);
>>d2x = diff(f,x,2)
>>d2y = diff(f,y,2)
>>factor(d2x+d2y)
>>f1 = exp(-2*y)*cos(2*x);
>>r = diff(f1,’x’,2)+diff(f1,’y’,2)

10.18. Use
>>z = x^3*sin(y);
>>dyx = diff(diff(z,’y’),’x’)
>>dxy = diff(diff(z,’x’),’y’)
>>dxy = diff(diff(z,’x’,4),’y’,6)
>>dxy = diff(diff(z,’y’,6),’x’,4)

10.19. (i) Use >>p = int(1/((a+f*x)*(c+g*x)));
>>[solution,how] = simple(p)
>>[solution,how] = simple(diff(solution))
(ii) Use >>solution = int((1-x^2)/(1+x^2))
>>p = diff(solution); factor(p)

10.20. Use int(1/(1+cos(x)+sin(x))) and int(1/(a^4+x^4)).



562 Solutions to Selected Problems

10.21. Use int(x^3/(exp(x)-1),0,inf).
10.22. Use int(1/(1+x^6),0,inf) and int(1/(1+x^10),0,inf).
10.23. Use

>>taylor(exp(-x*x),7)
>>p = int(ans,0,1); vpa(p,10)
>>taylor(exp(-x*x),15)
>>p = int(ans,0,1); vpa(p,10)

10.24. Use int(sin(x^2)/x,0,inf).
10.25. Use

>>taylor(log(1+cos(x)),5)
>>int(ans,0,1)

10.26. Use

>>dint = 1/(1-x*y)
>>int(int(dint,x,0,1),y,0,1)

10.27. Use

>>[solution,s] = subexpr(dsolve(’D2y+(b*p+a*q)*Dy+a*b*(p*q-1)*
y = c*A ’, ’y(0)=0’, ’Dy(0)=0’,’t’),’s’)

Using the subs function

>>subs(solution,{p,q,a,b,c,A},{1,2,2,1,1,20})

we obtain the solution for the given values as

ans =
10-5*s(2)/s(1)^(1/2)*exp(-1/2*s(3)*t)+5*s(3)/s(1)^(1/2)*exp(-1/2*s(2)*t)

In addition, since we also require the values of s(1), s(2), s(3), we again use subs as follows:

>>s = subs(s,{p,q,a,b,c},{1,2,2,1,1})

s =
[ 17]
[ 5+17^(1/2)]
[ 5-17^(1/2)]

10.28. Using

>>sol = dsolve(’2*Dx+4*Dy = cos(t),4*Dx-3*Dy = sin(t)’,’t’)

gives the solution in the form

sol =
x: [1x1 sym]
y: [1x1 sym]
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To see the specific elements of the solution use

>>sol.x

ans =
C1+3/22*sin(t)-2/11*cos(t)

and

>>sol.y

ans =
C2+2/11*sin(t)+1/11*cos(t)

10.29. Use dsolve(’(1-x^2)*D2y-2*x*Dy+2*y = 0’,’x’).
10.30. (i) Use

>>laplace(cos(2*t))

and then

>>p = solve(’s^2*Y+2*s+2*Y = s/(s^2+4)’,’Y’);
>>ilaplace(p)

(ii) Use

>>laplace(t)

and then

>>p = solve(’s*Y-2*Y = 1/s^2’,’Y’);
>>ilaplace(p)

(iii) Use

>>laplace(exp(-2*t))

and then

>>p = solve(’s\ 2*Y+3*s-3*(s*Y+3)+Y = 1/(s+2)’,’Y’);]
>>ilaplace(p)

(iv) The Laplace transform of zero is zero. Thus take the Laplace transform of the equation and
then use

>>p = solve(’(s*Y-V)+Y/c=0’,’Y’);
>>ilaplace(p)

10.31. (i) The Z-transform of zero is zero. Thus take the Z-transform of the equation and then use

>>p = solve(’Y=-2*(Y/z+4)’,’Y’);
>>iztrans(p)
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(ii) Use

>>ztrans(n)

and then use

>>p = solve(’Y+(Y/z+10) = z/(z-1)^2’,’Y’);
>>iztrans(p)

(iii) Use

>>ztrans(3*heaviside(n))

and then use

>>p = solve(’Y-2*(Y/z+1)=3*z/(z-1)’,’Y’);
>>iztrans(p)

(iv) Use

>>ztrans(3*4^n)

and then use

>>p = solve(’Y-3*(Y/z-3)+2*(Y/z^2+5-3/z) = 3*z/(z-4)’,’Y’);
>>iztrans(p)
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Adams–Bashforth–Moulton method, 251–253, 256,

258, 284, 296, 555
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Aitken’s algorithm, 330–333
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Algorithm, 158–160, 170–173, 177, 178, 182, 183,

185, 219, 220, 330, 434–437, 444, 445,
448–451, 455, 456, 458, 460–462, 465,
466, 471, 472

evolutionary, 433, 461
Aliasing, 386, 396
Amplitude, 131, 275, 288, 318, 373, 391, 392, 395,

397, 400, 402, 403, 405–407, 411, 420,
429, 466

Analysis, principal component, 371, 373, 374, 377
Analytic signal, 400, 401, 403
Anonymous functions, 30, 57, 58, 70, 71, 230, 231,

446, 454, 482
Array, 1–5, 7, 20, 22, 59, 60, 65, 105, 106, 265, 267,

286, 321, 372, 373, 387, 529, 531
cell, 59, 60

ASCII code, 21, 23
Astronomical Unit, see AU
AU (Astronomical Unit), 50, 236
Augmented matrix, 89–91, 536

B
Bairstow’s method, 173–177
Barnes method, 436–440
Bessel function, 18, 19, 442, 443
Bézier curve, 335
Bisection method, 160
Blocks, 5, 11, 146, 287–289, 294
Boltzmann constant, 458
Boltzmann probability, 458
Borwein’s algorithm for π , 490
Boundary, 315, 318, 319, 327, 328, 421, 422, 467, 557
Boundary conditions, 302, 307, 308, 310, 311, 313,

314, 316, 319, 323, 326, 327

Boundary value problem, 287, 307
finite difference method, 304–306
ordinary differential equations

central difference approximation, 304–306
characteristic value problem, 307
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eigenvalue problem, 307
fictitious node, 311
finite difference method, 304–306
the shooting method, 302–304
two-point examples, 306–313

partial differential equations
characteristic value problem, 319, 324
classification of systems, 301
eigenvalue problem, 319, 324
elliptic equations, 319–325
explicit method, 314
hyperbolic equations, 316–318
implicit method, 314
parabolic equations, 313–316
symbolic solution, 503, 504

two-point, 302
Brent’s method, 172
Broyden’s method, 181–185

C
Calculations, 65, 101, 107, 168, 178, 181, 201, 215,

219, 236, 237, 282, 286, 365, 369, 539, 540
Characteristic polynomial, 130, 154
Cholesky decomposition, 82, 95–97
Coefficient matrix, 76, 86, 88, 90, 113, 118, 129, 142,

308, 437, 445, 536
Coefficients, 80, 89, 90, 98, 99, 129, 130, 171, 219,

220, 248, 249, 330, 332–336, 338, 339,
356, 357, 385, 386, 412, 413, 423, 424, 429

known, 74, 76
Column vector, 4, 14, 15, 65, 76, 81, 98, 180, 266,

268, 459, 466, 468, 530, 531, 533, 536, 537
Command window, 2–4, 19, 34, 45, 51, 57, 67, 295
Complex matrix, 137, 530, 533
Complex numbers, 24, 65, 76, 529
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Component, 61, 180, 385, 386, 391, 392, 394, 396,
403, 405, 407, 412, 421, 422, 428, 429,
431, 434, 559

Component column vector, 281, 434, 443
Computer time, 182, 183, 242
Condition number, 85, 87, 88, 102, 105, 122, 138, 139,

152, 153, 155, 457, 543, 549
Conjugate gradient algorithm, 445, 448, 449, 455
Conjugate gradient method, 437, 445, 449, 455, 457,

460, 479, 485, 523, 560
direction of search, 436
Fletcher Reeves algorithm, 445
for linear systems, 455–457
gradient, 444
line search, 451
orthogonal directions, 444
pre-conditioning, 457
symbolic differentiation, 523

Constant, 46, 47, 174, 234, 236, 239, 260, 263, 277,
278, 294, 296, 297, 345, 347, 349–353,
413, 414, 416

symbolic, 489, 490, 505
Constant term, 340, 341, 343, 352, 355, 356, 416, 420
Constrained non-linear optimization, 472–479
Constraints, 266, 333, 339, 434–437, 439, 440,

472–478, 480, 482
Continuous functions, 390, 400, 513, 517
Continuous wavelet transform (CWT), 414, 424, 425,

428, 429
Contour plot, 419, 428, 447, 448, 460, 461, 471, 482

three-dimensional, 36
Contours, 35, 36, 68, 69, 419, 448, 513, 547, 560
Convergence, 142, 144, 145, 160–163, 165, 168, 171,

178, 184, 280, 282, 286, 458, 466, 471,
472, 550, 551

Corrector, 247, 251, 254, 282, 286
Correlation matrix, 340, 372, 373
Covariance matrix, 340, 362–367, 372, 373
Crossover, 461, 462, 465, 466, 468, 469
Cubic equation, 185, 186, 189, 190, 204, 294, 352, 525
Cubic spline, 333–336

end conditions, 333
knot, 333

Curve fitting
Fourier analysis, 383–388
least squares, 336–339, 355–358
non-linear regression, 356–358

polynomial regression, 348–354
transforming data, 359–362
using spline, 333–336

CWT, see Continuous wavelet transform
Cycles, 223, 224, 260, 263, 267, 276, 385, 386, 395,

411
integer number of, 392

D
Data

array, 3, 341, 343, 347, 372
original, 339, 347, 362, 373, 376, 389, 397, 400,

402, 404–406, 559
points, 329, 330, 332, 333, 335, 337, 343, 344, 348,

350, 353, 354, 356, 358, 359, 378, 380,
384, 388, 389, 429, 430

sequence of, 353, 354, 384, 388, 389, 397, 419, 515
values, 34, 203, 330, 333, 351, 354, 358, 359, 372,

378–380, 384, 385, 387, 418
Daubechies wavelets, 423–425
Decomposition, 97, 99–101, 137, 403–405, 420
Degree, 18, 26, 44, 159, 171, 173, 177, 178, 200, 203,

204, 206, 208, 248, 330–333, 348, 354
Dependent variable, 239, 240, 508
Derivation, 161, 174, 175, 219, 248, 265, 363, 364,

366
Description, 2, 62, 66, 118, 172, 173, 178, 211, 219,

363, 364, 371, 426, 433, 461, 465, 517
Determinant, 78, 86, 90, 95, 130, 131, 133, 155, 495,

531
Deviation, standard, 344, 348, 351, 359, 363, 372, 376,

393, 412, 421, 428
DFT, see Discrete Fourier transform
DHT, see Discrete Hilbert transform
Diagonal matrix, 11, 12, 86, 131, 135, 136, 372, 373,

530, 537
Difference, 156, 161, 166, 171, 219, 245, 246, 249,

270, 271, 276, 363, 365, 366, 379, 380,
439, 477, 481

Difference approximations, central, 193, 304–306,
313, 314

Difference equation, 516
Differential equations, 239, 241–244, 256, 259–261,

263–268, 277, 279, 280, 282, 287, 295,
296, 302, 304, 306–308, 508–512, 516

higher-order, 264, 508
linear, 265, 513
non-linear, 265, 273
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partial, 44, 301, 305, 314, 317, 319, 320, 326, 519
second-order, 264, 265, 273, 289, 301, 302, 512
simple, 239, 511
simultaneous first-order, 265
simultaneous ordinary, 292, 293
solution of, 299, 515
system of, 259, 260, 262, 271, 277–281, 288, 295,

508, 513
system of first-order, 264, 265

Differentiation, 241, 289, 326, 502–504, 514, 523
Digits, binary, 280, 389, 408, 461–465
Direction, 29, 39, 71, 225, 233, 234, 262, 306, 321,

323, 437, 444
Discrete data, 425
Discrete Fourier transform, 275, 383–389, 391–393,

395–397, 401, 409, 413, 429, 430, 558, 559
aliasing, 386
bit reversed algorithm, 389
complex form, 388
fast Fourier transform (FFT), 388–390
FFT example, 390–397
Fourier analysis, 383
frequency, 383
frequency spectra, 392
Hanning window, 430
inverse DFT, 387
leakage, 392, 429
matrix form, 387
Nyquist frequency, 385
period, 384
periodic function, 383
periodograms, 392
zero-padding, 430

Discrete Hilbert transform (DHT), 400, 405
Discrete Walsh transform, see DWT
Displacement, 52, 266, 269, 275, 276, 288, 289
Display, 21, 25, 32, 67, 68, 150, 270, 293, 294, 378,

392, 558
Distribution, normal, 348, 362, 364, 368
Divisions, 3, 46, 81, 174, 215, 224, 232–234, 237, 296,

298, 326, 327, 330, 464, 553, 557
Domain, 36, 301, 383, 384, 398, 399, 513, 517, 519
Duffing’s equation, 273, 274
DWT (discrete Walsh transform), 383, 409–412, 415,

417, 422–424
Dynamic systems, 271, 287, 288, 362

E
Eigensolutions, 131–135, 139, 144, 150

subdominant, 143
Eigensystems, 73
Eigenvalue decomposition, 137, 138, 372
Eigenvalue problem, 95, 128–134, 136, 137, 140, 141,

143, 145, 146, 148, 151, 268, 307, 319,
324, 327, 498, 534

algebraic, 128, 129
boundary value problems, 307, 319, 324
characteristic polynomial, 130
characteristic values, 129
characteristic vectors, 129
definition of, 129
dominant eigenvalue by iteration, 140–143
eigenvalues, 129
eigenvectors, 129
example of, 128, 129
inverse iteration, 143–145
iterative methods, 140–145
normalized eigenvectors, 131
orthogonality, 131
QR decomposition, 145
QZ decomposition, 146
Schur decomposition, 146
smallest eigenvalue by iteration, 143
stiff equations, 280–282
subdominant eigenvalues by inverse iteration,

143–145
Eigenvalues, 95, 122, 123, 129–135, 138–150,

152–155, 281, 307, 312, 324, 325, 327,
372, 373, 494–498, 534, 535, 537, 548, 549

diagonal matrix of, 372, 537
dominant, 142, 143, 149, 150
real, 131, 146, 534
smallest, 143, 153, 281, 549

Eigenvectors, 129, 131–134, 138, 140–146, 148, 150,
152, 281, 324, 372, 537

Electrical network, 73–76
Elementary row operations, 89–91, 97, 536
EMD (empirical mode decomposition), 403–405
Empirical mode decomposition, see EMD
Energy function, 278
Equation system, 76, 79, 80, 85, 86, 88, 89, 91, 94,

104, 105, 109–111, 114, 115, 183, 263,
280, 297–299, 308, 338

inhomogeneous, 77, 78
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large, 91, 183
over-determined, 81, 338

Equations
constraint, 434, 473
nonlinear, 180, 183
normal, 338, 340
polynomial, 159, 173, 176, 187
predictor–corrector, 253, 282

Error, 62, 63, 192–194, 196, 197, 213, 214, 241–244,
246, 252, 253, 255, 256, 305, 306, 329,
336, 337, 356, 357, 363, 364, 366, 367,
539–541

absolute, 244, 246, 253
analysis, 244, 245, 539, 541
covariance matrix, 363, 365
relative, 243, 244, 250, 540–544
variance, 345, 351, 356, 380

Error analysis, 539–544
Estimate, 195, 199, 200, 219, 220, 245, 248, 254, 312,

329, 330, 337, 339, 362, 364–366,
403–405, 429, 430, 540

Euler-gamma constant, 507
Euler-trapezoidal method, 244–246
Euler’s method, 240–244, 246
Exact solution, 153, 187, 189, 202, 233, 239, 240, 242,

257, 258, 295–297, 326, 327, 464, 472,
541, 542, 550, 553

Executing script, 41, 43, 512
Experiment, 82, 83, 152, 156, 217, 296, 337, 458, 479,

480, 482, 529
Explanatory variables, 337, 339–341, 343–345,

347–350
single, 337, 354, 355

Expressions, 3, 46–49, 56, 204, 206, 208, 210, 266,
365, 366, 449, 450, 486–488, 498, 502,
504, 505, 537

algebraic, 486, 504, 529, 530
symbolic, 486–488, 505

Extrapolation, 329

F
FaceAlpha, 35, 38, 39
Fast Fourier transform (FFT) algorithm, 388, 389, 398
FD, see Finite difference
Fibonacci series, 441
Fill-in, 123

Filon’s integration formulae, 214–218
Finite difference approximations, 305, 306, 308, 311,

313, 314, 320, 325
ordinary differential operators, 304
partial differential operators, 306–317

Finite difference (FD), 304, 306–308, 310–314, 316,
317, 320, 324–328, 557

Finite difference method, 304, 320, 326, 327, 557
Finite difference solution, 310, 313, 327
Fitting, 195, 200, 329, 330, 332, 336, 337, 339, 348,

350, 352, 357, 359, 360, 380, 383
Fixed point method, 160, 161
Fletcher Reeves algorithm, 445
Fourier coefficients, 517

complex, 387
Fourier power spectrum, 431
Fourier transform, 275, 383, 398, 399, 403, 404, 407,

409, 413, 417, 513, 517–520
discrete, 275, 383, 384, 409
fast, 388, 410, 429, 431
scaled, 403
short-time, 398
symbolic inverse, 517
symbolic methods, 517–520

definition, 517
inverse transform, 517
partial differential equations, 519

Frequency, 34, 51, 75, 223, 273, 288, 383–386,
390–392, 394, 396, 397, 402–406, 411,
413, 420–423, 425–430

increment, 385, 430, 559
instantaneous, 400, 401, 405, 430
plot, 404, 406
resolution, 405, 413, 430
spectrum, 397, 517, 519

Frequency components, 275, 386, 392, 394, 396, 397,
399, 405–407, 413, 429, 430, 558, 559

negative, 399–401
positive, 399, 401

Full matrix, 119, 120, 123, 146
Functions

Bessel, 442
definitions, 51, 53, 54, 181, 222
delta, 501
Dirac, 501
evaluations, 197, 251, 256
Heaviside, 501
unit step, 501
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user-defined, 57, 65, 70, 446, 454, 455, 482
zeta, 493

G
GA, see Genetic algorithm
Gauss–Hermite formula, 208–210
Gauss–Jordan elimination, 90
Gauss–Laguerre formula, 205–207
Gauss–Seidel iteration, 118
Gaussian elimination, 89–91
Gaussian integration, 203–205

for repeated integrals, 227–229
Genetic algorithm, 461–466, 479

binary strings, 461
crossover, 462
discrete value solutions, 465
fitness, 462
global optimum, 465
initial population, 461
mating, 462
mutation, 462
selection, 463

Google matrix, 150, 151
Gradient, 231, 444, 445, 447, 455, 457, 523, 536, 560
Gragg’s method, 286
Graph, 29–31, 43, 45, 67, 69, 71, 72, 149, 150, 163,

164, 170–172, 261, 270, 296, 297, 354,
355, 361, 362, 378, 379

three-dimensional, 35, 36
Graphical output, 66, 397
Graphics, 2, 39–41, 43, 45

H
Haar wavelets, 414–417, 419–421, 423, 425
Hamming’s method, 253–256, 282, 284, 296, 555
Heat flow equation, 313
Heaviside function, 501, 503, 507, 518, 520
Helmholtz equation, 319
Hermite’s method, 282–285
Hermitian, 95, 96, 101, 130, 133–135, 137, 534
Hermitian matrix, 82, 130–133, 135, 534
Hessenberg matrix, 145, 531
Heun’s method, 246
Hilbert matrix, 87, 88, 152, 348, 543, 548

in least squares method, 348
used in test, 84, 87

Hilbert transform, 383, 398–405, 429, 430
discrete, 400, 405

Hopfield and Tank neuron model, 279
Householder’s method, 98–100

I
Identity matrix, 79, 82, 339, 530
Ill-conditions

in least squares, 348
in linear equation systems, 85–88
in polynomial equations, 171, 178

Illinois method, 188
Imaginary parts, 14, 18, 32, 71, 147, 148, 176, 392,

402–404, 426, 429, 520
IMF (intrinsic mode functions), 403–406
Implicit function, 37, 39, 72
Improved approximation, 160, 165, 174, 180, 201,

285, 444
Inconsistent equation system, 110, 112
Initial approximation, 158, 160, 161, 163, 164,

166–168, 170–172, 174, 177–180, 182,
186–189, 444, 451, 480, 482, 546, 550

Initial conditions, 259, 262, 265, 271–273, 275–277,
281, 284, 288, 290, 295, 296, 302, 303,
313, 508–511, 515–517, 519

Initial displacements, 275, 276, 290
Initial value problem, 239

absolute stability, 243, 252, 253
Adams–Bashforth–Moulton method, 251, 253
Butcher–Runge–Kutta, 248
classic Runge–Kutta, 247, 248
comparison of methods, 256–259, 284
error propagation, 256
Euler-trapezoidal method, 244–246
Euler’s method, 240–242
extrapolation techniques, 285–287
Gill–Runge–Kutta, 248
Gragg’s method, 286
Hamming’s method, 253–255
Hermite’s method, 282–285
Heun’s method, 246
higher-order equations, 264, 265
Laplace transform method, 513–515
Lorenz equations, 271, 272
Merson–Runge–Kutta, 248
neural networks, 276–280
predator–prey problem, 262, 264
predictor–corrector methods, 251, 285
Ralson–Runge–Kutta, 248
Romberg’s method, 285–287
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stability of methods, 256
stability problems, 242–244
stiff equations, 280–282
systems of simultaneous equations, 260
Van der Pol’s equation, 260
Volterra equations, 262–264
Zeeman catastrophe model, 260–262

Initial values, 156, 186, 188, 239, 242, 245, 265, 283,
285, 286, 296, 298, 299, 315, 317, 367,
368, 451

Input, 26, 29, 51, 57, 67, 68, 155, 170, 261, 263, 271,
275–277, 279, 287, 288, 291, 293, 294

Input frequency, 275
Input functions, 26, 446
Integrals, 195, 203, 205, 206, 208, 210, 214, 218, 220,

223, 224, 227, 229, 232, 234, 505, 506,
553, 554

elliptic, 377
Fresnel, 233
Rabbe, 232
sine, Si, 234

Integration, 56, 57, 191, 195, 196, 200, 203–205,
212–214, 218–220, 222–232, 234, 281,
286, 294, 523

adaptive, 218, 219, 231
symbolic, 505, 507

Interior point methods, 433, 436, 477
Interpolation, 303, 329–331, 333, 335, 336, 377, 397,

558
Aitken’s algorithm, 330–333
cubic interpolation, 330
cubic spline, 333–336
inverse, 377
linear interpolation, 329

Intersection, 76, 80, 81, 86, 110, 112, 163, 171, 182,
186, 475

Intervals, 160, 170, 171, 195, 196, 200, 201, 203, 205,
215, 218, 219, 233, 241, 242, 286, 395,
405, 406, 428–430, 440

Intrinsic mode functions, see IMF
Inverse discrete Fourier transform (IDFT), 387–389
Inverse Fourier transform, 399, 517, 520
Inverse transform, 399, 417, 513, 515, 520
Iterates, 25, 160, 161, 163, 164, 167, 168, 188, 447,

448
Iterations, 141–144, 150, 161, 162, 166, 168–170,

178–180, 184, 186, 188, 246, 247, 449,
450, 460, 461, 482, 490, 550, 551

Iterative methods, 117, 118, 142, 160, 162, 174
chaotic behavior, 162–164
convergence, 162, 163
inverse, 143–145
roots of equations, 160, 161
solving eigenvalue problems, 140–145
solving system of equations, 117, 118

Iterative procedures, 160–163, 457, 475

J
Jacobi iteration, 118
Jacobian matrix, 180, 182

K
Kalman filter, 362–365, 367–371
Kalman gain matrix, 362, 366
Karmarkar’s method, 435–439
Kepler’s equation, 186
Kronrod integration, 214

L
Lagrange multiplier method, 473–475
Laguerre’s method, 177, 178
Laplace equation, 319, 320, 323, 525
Laplace transform, 289, 290, 513–516, 527, 563

definition, 513
derivatives, 514
Heaviside function, 514
inverse, 513

Large errors, 171, 548
Largest eigenvalue, 140, 153, 155, 281, 372, 549
Leading diagonal, 12, 86, 90–92, 95, 98–100, 530,

531, 535
Least squares

non-linear, 356–358
non-negative, 115
over-determined system, 115–117
polynomial regression, 348
problem, 115, 127
regression, 336–339
relation to Hilbert matrix, 348
transforming data, 359–362
under-determined system, 115–117

Legendre polynomials, 211, 237
Line search, 451
Linear equation systems, 15, 20, 73–76, 81, 85, 90,

111, 115, 117, 118, 328, 348, 433, 455
augmented matrix, 89
back substitution, 90
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Cholesky decomposition, 82, 95–97
coefficient matrix, 88
condition number, 85, 87, 102
conjugate gradient method, 455–457
consistent equations, 76, 79
determinants, 78, 86, 90, 531
diagonally dominant, 118
elementary row operations, 89
fill-in, 123
forward substitution, 94
Gauss–Jordan elimination, 90
Gauss–Seidel iteration, 118
Gaussian elimination, 89–91
graphical representation, 76
homogeneous equations, 76
Householder’s method, 98–100
ill-conditioning, 85–88
inconsistent equations, 76, 80
inhomogeneous equations, 76
inverse matrix, 77, 78, 82, 533
iterative methods, 118
Jacobi iteration, 118
linearly independent equations, 78
LU decomposition, 91–95
minimum degree ordering, 123
multiple right sides, 91
non-singular system, 79
over-determined system, 109–117
partial pivoting, 90
permutation matrix, 93
pivot, 89
pseudo-inverse matrix, 104–111
QR decomposition, 97–101
rank, 78
rank deficient, 78
reduced row echelon form, 79, 536
residuals, 110, 111
singular system, 78
singular value decomposition, 101–104
sparse matrices, 118–128
under-determined system, 109–117
unique solution, 76, 79
upper triangular form, 91, 95, 97

Linear equations, 15, 20, 74–76, 79, 81, 82, 85, 109,
117, 130, 175, 179, 330, 348, 361, 455

Linear programming, 118, 433–437, 439, 440, 457
Barnes method, 436–440
dual problem, 437

geometric interpretation, 435
interior point method, 436
Karmarkar method, 435–439
objective function, 434
primal dual, 437
problems, 433, 435, 436, 439, 457
simplex method, 434
slack variables, 439

Lobatto integration, 210–214, 226
Lorenz equations, 271–273, 296
LP, see Linear programming
LU decomposition, 91–95, 121, 124–126
LU matrices, 126

M
MATLAB

3D graphics, 35, 36
anonymous function, 57, 58
data structures, 58–62
editing scripts, 62
element-by-element operations, 15, 16
graphics, 28–33
graphics symbols, 29
handle graphics, 39–45
input and output, 25–28
logical operators, 48
mathematical functions, 17
matrix, 3
matrix division, 15
matrix elements, 5
matrix operations, 8
matrix transpose, 4, 9
origins, 1
pitfalls, 64
relational expressions, 48
scripting, 10, 45–51
special graphics symbols, 42–45
special matrices, 9
speed up calculation, 65
string variables, 20–25
symbolic toolbox, 485–523
timing functions, 19, 20
user-defined function, 51–53

MATLAB constants
eps, 45
i, j, 45
inf, 45
NaN, 45
pi, 45
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realmax, 45
realmin, 45

MATLAB functions
/, 81
\, 74
axis, 29
bar, 391
bessely, 442
bicg, 457
bin2dec, 25
blkdiag, 12
cell, 58, 59
cell2struct, 62
celldisp, 60
cgs, 457
char, 23
checkcode, 62
chol, 95, 97
colmmd, 126
compass, 32
cond, 86, 102
contour, 35
contour3, 35
csvread, 28
csvwrite, 28
date, 25
dec2bin, 25
det, 95
diag, 11
disp, 25
double, 23
echo, 19
eig, 129, 327
eigs, 148
expm, 14
eye, 10
ezplot, 31
feval, 52
fft, 389
figure, 30
findstr, 22
fminbnd, 446
fplot, 30
fprintf, 25
full, 119
fzero, 158, 172, 186, 189
gallery, 88, 497
gca, 39

get, 39
ginput, 29
grid, 29
gtext, 29
hadamard, 88
hess, 145
hilb, 88
hold, 29
ifft, 389
input, 26
int2str, 25
integral, 220
integral2, 230
integral3, 230
interp1, 329
interpft, 397
inv, 82
invhilb, 152
issparse, 119
length, 5
linspace, 10
load, 26
loglog, 29
logm, 14
logspace, 11
lsqnonneg, 115, 440
lu, 93
mesh, 35
meshgrid, 35
mlint, 62
nnz, 119
num2cell, 62
num2str, 25
ode113, 258
ode23, 239
ode45, 250, 303
odeset, 240
ones, 5
pcg, 457
pinv, 106
plot, 29
polar, 32
poly, 130, 171
polyfit, 332
polyval, 332
ppval, 335
qr, 100, 112, 153
quad2d, 231
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quadgk, 222
qz, 146
rand, 9
randi, 9
randn, 9
rank, 78, 102
rcond, 86
repmat, 11
reshape, 8
roots, 130, 173, 211
rosser, 281
rref, 79
save, 27
schur, 146
semilogx, 29
semilogy, 29
set, 39
size, 5
sparse, 118
speye, 119
spline, 334
sprandn, 121
sprandsym, 121
spy, 119
str2double, 24
str2num, 24, 25
strcat, 25
strcmp, 25
strrep, 22
struct, 60
struct2cell, 62
subplot, 31
surf, 36
surfc, 36
surfl, 35
svd, 102
symamd, 123
symmmd, 123
symrcm, 126
text, 29
title, 29
trapz, 196
vander, 102
view, 36
who, 4
whos, 4
wilkinson, 88
xlabel, 29

xlim, 31
ylabel, 29
ylim, 31
zeros, 5

MATLAB functions developed in text
abm, 252
aitken, 331
asaq, 458
bairstow, 175
barnes, 437
broyden, 183
diffgen, 193
eiginv, 144
eigit, 142
ellipgen, 320
eulertp, 245
feuler, 241
fgauss, 204
fhamming, 254
fhermite, 282
filon, 215
fnewton, 165
fnewtsym, 521
ftable, 224
ftau2cg, 447
fwave, 317
gaherm, 208
galag, 206
gauss2v, 227
golden, 442
heat, 314
hopbin, 279
jarrett, 551
lobattof, 211
lobattomp, 212
mincg, 445
minscg, 452
mregg2, 341
newtmvsym, 522
newtonmv, 180
nlls, 357
plotapp, 170
rkgen, 249
romb, 202
rombergx, 286
sawblade, 52
schroder, 169
simp1, 197
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simp2, 197
simp2v, 226
solveq, 176
solvercg, 455
twopoint, 308

MATLAB symbolic functions
collect, 489
det, 495
diff, 502
dirac, 501
double, 491
dsolve, 508
eig, 494
eulergamma, 507
expand, 488
factor, 488
fourier, 517
gamma, 493
heaviside, 501
horner, 488
ifourier, 517
ilaplace, 515
int, 505
inv, 495
iztrans, 516
jacobian, 522
laplace, 514
pretty, 487
simplify, 487
solve, 498
subs, 489
sym, 486
syms, 486
symsum, 491
taylor, 491
vpa, 490
zeta, 493
ztrans, 516

Matrices, 3–6, 9, 11–15, 17, 52, 53, 82, 118–120, 123,
126, 252, 254, 368, 369, 529, 532, 534

addition and subtraction of, 532
adjoint of, 78
algebra, 3, 529
companion, 173, 535
complex, 533
covariance, 367, 368
definition of, 529
determinant of, 531

diagonal, 530
differentiation of, 338, 367, 536
division, 15
Hadamard, 88, 407, 408
Hermitian, 82, 534
Hessenberg, 145, 530
Hilbert, 84
idempotent, 534
identity, 530
inverse of, 77, 78, 82, 135, 137, 143, 144, 533
inversion of, 77
Jacobian, 180, 182
multiplication of, 4, 107, 532
nilpotent, 534
non-square, 78, 101
of zeros, 7, 70
operations, 65, 119, 123, 536
orthogonal, 97–101, 131, 156, 372, 417, 534
permutation, 93, 94
positive definite, 122
pseudo-inverse of, 104–111
singular, 78
skew-symmetric, 534
sparse, 118–128
special, 10, 13
square root of, 537
stochastic, 149, 150
symmetric, 534
transpose of, 531
tri-diagonal, 530
triangular, 530
unitary, 97, 101, 131, 135, 145, 147, 534
Vandermonde, 102

Matrix algebra, laws of, 2, 3
Minimization problem, 434, 444, 466, 473, 476, 482
Minimum degree ordering, 123–126
Model, 148, 149, 239, 260, 262, 277, 278, 287–292,

294, 295, 297, 299, 339–341, 343, 344,
346, 347, 355, 356, 364, 365, 380

improvement, 341, 347, 348
Morlet wavelet, 425, 426
Multiple regression, 336–339
Multiplications, 3, 4, 13, 46, 78, 91, 95, 99, 101, 107,

109, 123, 124, 199, 330, 388, 418

N
Neural networks, 1, 276–280, 449
Newmark’s method, 265, 267, 268
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Newton–Cotes formulae, 200
Newton’s method, 165–170, 174, 178–180, 184, 485,

521, 522, 550
for multiple roots, 168
for solving an equation, 164–168
for solving systems of equations, 179–181
symbolic differentiation, 521, 523

Nodal points, 305, 308
Non-linear equation systems

Broyden’s method, 181–185
comparison of methods, 184, 185
Newton’s method, 179–181
quasi-Newton methods, 181

Non-linear equations, 157–159, 162, 170, 171, 181,
183, 185, 475, 521, 522

single-variable, 170, 485
solution of, 157, 164, 171
system of, 179, 481

Norm, 84, 111, 114, 115, 117, 152, 156, 181–183,
357, 358, 436, 445, 446, 452–454, 456,
457, 535, 542–544, 549, 550

Numerical differentiation
approximating derivatives, 191–195
approximating partial derivatives, 232
definition of a derivatives, 191

Numerical integration
as an area, 195
change of limits, 229
Filon’s formula, 214, 218
Gauss–Chebyshev formula, 210
Gauss–Hermite formula, 208–210
Gauss–Laguerre formula, 205–207
Gauss’s method, 203–205
Gauss’s method for repeated integrals, 227–229
infinite range, 205–210
Kronrod extension, 214
Lobatto method, 210–214
Newton–Cotes formulae, 200
problems in evaluation, 223, 224
repeated integrals, 225
Romberg integration, 201–233
Simpson’s rule, 196–200
Simpson’s rule for repeated integrals, 225–227
test integrals, 224
Trapezoidal rule, 195, 196

Nyquist frequency, 385, 386, 559

O
Objective function, 434–437, 439, 440, 458, 466, 476,

477, 480, 560
Operations, 14, 15, 19, 20, 46, 76, 81, 88, 89, 91, 92,

96, 113, 118, 123, 165, 279, 435, 477
element-by-element, 15, 16
floating-point, 126, 148, 227

Operator, 15, 17, 46, 48, 81–85, 88, 94, 96, 97,
111–114, 117, 123, 127, 153, 155, 156, 529

Optimization
conjugate gradient method, 455–457
Evolutionary algorithms, 461
global optimum, 465
golden ratio, 441
Lagrange multiplier method, 473
linear programming, 436–440
scaled conjugate gradient method, 449–454
Sequential unconstrained minimization technique,

476–479
simulated annealing, 460
single variable functions, 440

Optimization methods, 449, 458, 465
Optimization problems, 433, 434, 436, 461, 462, 465,

471, 476, 480, 481
constrained, 476, 482

Optimum solution, 435, 447, 461, 478
Options, 49, 50, 158, 171–173, 220, 222, 240, 252,

258, 259, 261, 263, 272, 279, 303, 304,
419, 420, 512

Order of convergence of iterative methods, 162
Ordering, 126, 389, 408, 409
Ordinary differential equations, 243, 289, 292
Output, 3, 4, 19, 20, 25, 26, 35, 36, 51–54, 66–68, 175,

176, 217–220, 275–277, 287, 288, 291,
293, 294, 323, 324, 352–354, 376

Over-determined systems, 80, 85, 109–117, 153

P
Paley functions, 409
Parabolic equations, 313, 315, 327
Partial pivoting, 90
PCA (principal component analysis), 371–374, 377
Pivoting procedures, 89
Plot

compass, 32, 34
function, 28, 32, 44, 57
three-dimensional, 31, 68, 403, 404, 448,481
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Plotting points, 30, 31, 223
Point Walsh transform, 409, 411, 430
Poisson equation, 319, 323, 328
Polynomial, 154, 159, 171, 173, 174, 177, 178, 186,

187, 203, 206, 211, 212, 223, 330–335,
354, 359, 360, 523, 534, 535

cubic, 333, 348–350, 558
fifth-degree, 348, 351–353, 378, 379
regression, 341, 343, 348

Positive definite matrix, 84, 95, 96, 122, 139, 140
Power method, 140–143, 150
Predator–prey problem, 262, 264
Predictor–corrector methods, 251, 252, 256, 282, 285,

295
Preordering, 123–126
Principal component, 372–374, 376

analysis, see PCA
first, 372, 373, 376, 377

Problem
binary conversion, 278, 279
boundary conditions, 308, 319
characteristic value, 324, 327
dual, 434, 437
initial value, 239, 240, 287, 302
neural network, 280, 444, 449
original, 436, 437, 440
plotting, 36, 171
predator–prey, 260, 262, 296
salesman, 279, 280

Pseudo-inverse, 104–112

Q
QR decomposition, 82, 97–101, 112, 145
QR procedure, 145
QZ algorithm, 146
QZ decomposition, 146

R
Random errors, 337, 340, 347, 348, 351, 360
Random number, 72, 83, 412, 458, 466, 467
Rank, full, 78, 79, 105, 106
Rank deficient, 78
Rank of a matrix, 78
Real matrix, 98, 530, 531
Rearrangement, 291, 474, 475, 515, 550
Reduced row echelon form, 79, 102–104, 536, 548
Regression analysis, 336–339, 348–354

coefficient of determination, 339

Cook’s distance, 344
correlation matrix, 340
covariance matrix, 340
diagnostics for model improvement, 339–343
hat matrix, 338
ill-conditioning, 348
multicollinearity, 340
normal equations, 340
polynomial, 348–354
regression equations, 337
residuals analysis, 343–347
sum of squares of errors, 337
variance inflation factors, 341

Regression model, 338, 340, 343, 344, 347, 348, 355,
380

Regula falsi, 168
Repeated integrals, 225–227, 233
Residuals, 110, 111, 343–347
Ricker wavelet, 414, 426, 427
Romberg integration, 201–233, 285
Romberg’s method for differential equations, 285–287
Roots, 32–34, 68, 69, 129, 130, 154, 158–178, 181,

182, 184–190, 211, 212, 443, 498, 521,
525, 534, 535, 546, 549–552

coincident, 159, 169
complex, 167, 168, 178, 189, 552
multiple, 168, 169, 178
real, 68, 167, 186, 188, 190, 551

Roots of non-linear equations
Bairstow’s method, 173–177
bisection method, 160
Brent’s method, 172
chaotic behavior, 162
comparison of methods, 171–173
complex, 167, 168
convergence, 160–162
discontinuities, 171
fixed point methods, 160, 161
graphical method, 170
ill-conditioning, 171
Illinois method, 188
initial approximations, 170
iterative methods, 160, 161
Laguerre’s method, 177, 178
multiple roots, 168
Newton’s method, 164–168
numerical problems, 170, 171
regula falsi, 168
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Schroder’s method, 169, 170
secant method, 168
symbolic solution, 498

Rounding errors, 192, 196, 199, 200, 271, 539
Row vector, 4, 47, 48, 240, 530, 531
RREF, see Reduced row echelon form
Runge–Kutta

Butcher method, 248
classical method, 247, 248
Gill method, 248
Merson method, 248
methods, 247–252, 256, 258, 295
Ralston method, 248

S
Scalar operations, 17
Scaled conjugate gradient method, 449–454
Scalogram, 419, 421–423, 427, 428
Schroder’s method, 169, 170
Schur decomposition, 146
Script, possible, 546–548
Scripting, 45
SE (standard error), 215, 340, 347
Search range, 441–443, 465, 483
Secant method, 168
Selection process, 463, 464, 466
Sequency, 408, 411, 412, 559
Sequential unconstrained minimization technique,

433, 476–479
Series approximations, 215, 218, 491, 526
Shooting method, 302–304
Significant problem, 200, 202, 277, 367
Simpson’s rule, 196–200, 204, 215, 217, 218, 220,

225–227, 229
repeated integrals, 225–227

Simulated annealing, 457–460
Boltzmann constant, 458
Boltzmann probability, 458

Simulink, 287–295
Simultaneous differential equations, 260, 511, 527
Singular function

integration of, 223, 224
Singular matrix, 78
Singular value decomposition, 86, 101–104, 107–109,

138–140, 371, 374
Solution

approximate, 80, 157, 188, 239, 242, 273, 307, 310
infinite number of, 76, 115, 307

non-negative, 115, 116
non-trivial, 130, 307
numerical, 241, 265, 273, 485, 496, 505, 512, 513
of Lorenz equations, 272, 273
symbolic, 499, 508, 512, 513
unique, 76, 78–80, 109, 114, 536

Solution vector, 181, 183, 437, 522
Sparse matrices, 118–128, 148
Sparsity, 118, 119, 126–128, 151
Spectrum, 393–395, 397, 404, 407, 413, 429, 559
Spline, 333–335, 377, 378, 558
Square matrix, 9, 14, 15, 17, 74, 78, 82, 83, 104, 105,

137, 140, 142, 155, 156, 529, 531, 533, 537
Square root, 3, 18, 65, 95, 99, 111, 115, 188, 340, 537,

538, 545
Stability, differential equations, 242–244
Standard error, see SE
STFT (short-time Fourier transform), 398
Stiff equations, 280–282
Strange attractors, 272
String variables, 20
Strings, 20–26, 40, 316, 318, 461–463, 465, 498
Structure, 2, 39, 47, 49, 52, 60–62, 118, 119, 128, 182,

371, 480, 494, 504, 508, 530
Subintervals, 195–197, 210, 212–214
Substitution, 85, 90, 91, 96, 112, 204, 223, 260, 264,

265, 361
Summation and expansion of series, 491–494

zeta function, 493
SUMT, see Sequential unconstrained minimization

technique
SVD, see Singular value decomposition
Symbolic differentiation, 503, 521
Symbolic function, 190, 491, 492, 503, 521–527
Symbolic matrices, 494
Symbolic methods

collecting terms of an expression, 489
comparing numerical and symbolic solutions, 512
conjugate gradient method, 523
conversion of values to numeric, 491
differentiation, 502–504
double integrals, 507
eigenvalues, 494–498
Euler-gamma constant, 507
expand an expression, 488
factorization, 488
Fourier transform, 517–520
integration, 488, 504–508
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integration with infinite limits, 505
Laplace transform, 513–515
linking to numerical analysis, 485, 521–523
manipulation of matrices, 494–498
Newton’s method for roots, 521–523
partial differentiation, 503, 504
pretty printing, 487, 504
simplifying an expression, 487
solution of difference equation, 516
solution of equations, 498, 499
solution of ordinary differential equations, 508–512,

514
solution of partial differential equations, 519
substituting in an expression, 488
summation of series, 491–494
Taylor series, 491
variable precision arithmetic, 490, 491
variables and expressions, 486
Z-transform, 515–517

Symbolic toolbox, 152, 185, 190, 231, 485, 489, 498,
500, 502, 505, 508, 513–516, 521, 523, 527

Symbolic variables, 486–488, 494, 498
Symmetric matrix, 95, 97, 145, 529, 534
System, chaotic, 271
System matrix, 82, 85, 105, 111, 292

T
Taylor series expansion, 192
Time interval, 298, 363, 364, 368
Time series, 384, 393, 413
Time steps, 313, 314, 316, 317, 362
Tolerance, 69, 104, 172, 181, 240, 441, 480, 481
Transpose, 4, 9, 96, 131, 133, 156, 409
Trapezoidal rule, 195, 196
Trial solutions, 356, 458, 465–467
Triangular matrix, 81, 82, 531

lower, 91, 93, 94, 96, 530
Truncation error, 196, 197, 199–201, 248, 251, 254,

256, 282, 285, 539
local, 241, 243, 247, 248, 254

U
Unconstrained problems, 476, 477

Under-determined systems, 79–81, 104, 109–117, 151,
155, 156

Upper triangular matrix, 90–92, 95–97, 99–101,
144–146, 530

V
Van der Pol’s equation, 260, 290, 291
Vandermonde matrix, 102, 103
Variable names, 20, 25, 45, 46, 51, 64, 240, 503
Variable precision arithmetic, 490, 491
Variables, 24–26, 38, 39, 46, 47, 178–181, 225, 226,

363, 364, 372–374, 376, 435, 436, 458,
459, 465, 467, 468, 470–472, 486, 502, 503

independent, 31, 171, 178, 191, 203, 218, 220, 223,
231, 240, 280, 301, 302, 313, 508, 509, 514

slack, 434, 439, 440, 480
Variance inflation factors, see VIF
VIF (variance inflation factors), 341, 343, 345,

347–352, 354
Volterra equations, 262–264, 272

W
Walsh functions, 407–410, 412
Walsh transform, discrete, 383, 409, 415
Wave equation, 316
Wavelet analysis, 383, 413, 428
Wavelet functions, 423, 425, 426
Wavelet transform, 403, 414, 415, 419, 425
Wavelets

discrete, 414, 415, 419
mother, 414, 425, 426

Wilkinson’s polynomial, 171

Z
Z-transform, 515–517, 527, 563

definition, 515
difference equation, 516
inverse, 515

Zeeman’s catastrophe model, 260–262
Zeeman’s model, 261, 262
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